

Computer Engineering department, Faculty of engineering, Cairo
University

Computer
Architecture
Project
Fall 2013

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 1

Objective

To design and implement a simple CISC processor, Von Neumann or
Harvard architecture. The design should conform to the ISA specification
described in the following sections.

Main Components

You are required to design a simple 32-bit processor, general needed components are

 Assembly to machine code translator

 Register Table

 ALU

 Control unit

 two levels of memory

 cache controller

Bonus Addition

 Floating point arithmetic unit (IEEE or IBM format)

General Rules

 The processor required is a 32-bit processor.

 The VHDL code must be Synthesizable and pass the functional
simulation correctly.

 Design your system using a Bottom-Up strategy, after all the
system should be in the form of modules which interact with each
other, using these modules in a hierarchical way to build your
processor

 Use test benches to test your design and to avoid forcing signals
every time by hand

 Test vectors will be provided on the discussion day.

 For the assembly to machine code translator, you can use any
available software, and all the teams can share same software as
well. You will not be graded for coding the translator.

 Any missing information will be assumed by you and hence you
need to justify why you took these assumptions.

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 2

Memory Details

The memory is word-addressable, where the word is 16 bits. The memory
address bus is 16-bits wide. Thus the PC register need not be more than 16 bits.
All memory addresses used will be relative addresses that start from ZERO.

For those who will use Von Neumann architecture, the memory size for 1st
level (cache) is 16 word, while for the 2nd level (Main memory) it will be 2 K word
locations.

For Harvard Architecture the total size of D and I (Data and Instruction) is

16 word for the cache and 2K word for the main memory. You have choice of
how to split them; it is not required to have D and I of equal sizes.

The processor control unit will deal with the 1st level and it doesn’t have

access to the 2nd level, in case memory address isn’t in the 1st level, a miss is
introduced and the controller is responsible to retrieve the required addresses
from the 2nd level and here comes your own design for the cache controller to
decrease the miss rate and hence obtain faster code.

In our processor -after all- both 1st level and 2nd level are just a ram so to

simulate that access for 1st level is faster than 2nd level, WMFC is introduced for
access of 2nd level address (assume it is fixed delay with additional one clock
cycle) while for 1st level there is no WMFC.

You don't need to use the external buses the same way they are used in

PDP-11, you are free to design how the processor interact with the memory (but

make sure that the cache is transparent to the processor).

Note that when a cache miss happens, there is one clock cycle spent to

check the cache and deduce that the needed memory location is not stored in

the cache and that a miss happened.

Stack

You need to assume the presence of a static sized stack of 128 words that
is available at the end of the memory map. You are free to decide whether the
stack is filled in upwards or downwards direction.

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 3

Registers

In the testing program that will be used to test your designs, only 4
general purpose 32-bits registers will be used (R0, R1, R2 and R3). Moreover
you must implement special purpose registers such as PC (program counter),
SP (stack pointer), and you are free to add any number of internal registers that
are hidden from the programmer’s side. You are supposed to design the
suitable internal bus architecture according to your needs.

Addressing Modes

You are required to support three addressing modes:

 Register Direct: Operands are found directly in registers

 Absolute Address: The effective address for an absolute instruction
address is the address parameter itself with no modifications. For
example [3FH] to access the contents in address 3FH.

 Register Indirect: The effective address for a Register indirect
instruction is the address in the specified register. For example, [R1]
to access the content of address in register R1.

More details about the addressing modes could be understood from the ISA
table.

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 4

Instruction Set

Below is a table that describes all the instructions that must be supported
by your processor. The default type of operand is double word (32-bits) unless
otherwise indicated. For each instruction, the supported addressing modes are
presented. For a given instruction, if one of the addressing modes is not
identified, then it is NOT required.

Mnemonic

Description

Addressing Modes
Operation Register Direct Register

Indirect*
Absolute**

Add Adds two 32-bit operands add r1, r2

add r1, r2 add r1,
[ADD0]

R1 = R1 + R2

Adc Adds two 32-bit operands
+ Carry

adc r1, r2 adc r1, [r2] adc r1,
[ADD0]

R1 = R1 + R2 +Carry

Sub Subtracts two 32-bit
operands

sub r1, r2 sub r1, [r2] sub r1,
[ADD0]

R1 = R1 - R2

Inc Increments operand by 1 inc r1 R1 = R1 + 1

Dec Decrements operand by 1 dec r1 R1 = R1 – 1

Mulb Multiplies two least 8-bits
of operands and puts
result in the least 16-bits
of first operand

mulb r1, r2 R1[15..0] = R1[7..0] *
R2[7..0]

Mulw Multiplies two least 16-bits
of operands and puts
result in the 32-bits of first
operand

mulw r1, r2

 R1[31..0] = R1[15..0] *
R2[15..0]

Muld Multiplies two 32-bits
operands and puts result
two operands where the
High Siginificant 32-bits
are in the first operand,
and the least are in the
second operand

muld r1, r2

 R1[31..0].R2[31..0] =
R1[31..0] * R2[31..0]

div Divides two 32-bits
operands and put result in
first operand

div r1, r2

 R1 = R1 / R2
R2 = R1%R2

And Logical AND for 32-bits
operands

and r1, r2 and r1, [r2] R1 = R1 and R2

Xor Logical XOR for 32-bits
operands

xor r1, r2

xor r1, [r2]

 R1 = R1 xor R2

Or Logical OR for 32-bits
operands

or r1, r2

or r1, [r2]

 R1 = R1 | R2

Not Inverts 32-bit operand not r1 R1 = not R1

cmp Compares two 32-bits
operands

cmp r1, r2 Flags are modified

swp Swaps operands swp r1, r2 R1 swapped with R2

clr Clears operand clr r1 R1 = ZERO

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 5

mov Copies second operand
into first operand

mov r1, r2 mov [r1], r2 mov r1,
[ADD0]

R1 = R2

shl Logical Shift Left shl r1 R1[31..1] = R1[30..0],
R1[0] = 0

shr Logical Shift Right shr r1 R1[30..0] = R1[31..1],
R1[31]=0

ror Logical Rotate Right ror r1 R1[30..0] = R1[31..1],
R1[31]=R1[0]

rorc

Logical Rotate Right with
Carry

rorc r1

 ROR R1, Carry = R1[0]

rol Logical Rotate Left rol r1

 R1[31..1] = R1[30..0],
R1[0] = R1[31]

rolc Logical Rotate Left with
Carry

rolc r1 ROL R1,
Carry = R1[31]

jmp Jump to operands
address

 jmp [r1] ++ jmp [074F] ++ PC = 074F

jz Jump if ZERO jz [r1] ++ jz [074F] ++ If Z=1, PC = 074F

jnz Jump if NOT ZERO jnz [r1] ++ jnz [074F] ++ If Z=0, PC = 074F

push*** Push operand on top of
stack

push r1 SP = SP -2, [SP] = R1

pop*** Pops top of stack into
operand

pop r1 R1 = [SP], SP = SP + 2

clc Clear Carry flag Carry = 0

stc Sets Carry flag Carry = 1

clz Clear ZERO flag ZERO = 0

hlt

Halt Processor. PC does
not increment anymore

 Stop Execution

reset

Resets processor. PC is
initialized to the beginning
of the program

 PC = Initial value

nop No Operation PC = PC + 2

* Note that in the table above, for all Register Indirect operations, the indirect
addressing could be applied to first operand, or second operand, or both. For example,
the add instruction could be in one of these forms: add r1, [r2] or add [r1], r2 or add
[r1], [r2]. Hence the MOV instruction is used load and store data in memory by calling
MOV R1, [R2] and MOV [R1], R2, respectively. Moreover, the MOV instruction could
be used to copy memory locations by calling MOV [R1], [R2].
** The same rule for Register Indirect applies to the Absolute instructions.
*** The operation of these instructions are for stacks that are filled in upwards direction.
++ For jmp, jz, jnz: The absolute mode is like when we are using a label for a loop, in
this case the address in in the IR and no memory accesses needed. For the indirect
mode, the address to jump to is stored in memory.

 For instructions related to bonus sections (such as floating point instructions),

each group is free to design his own set of instructions and prepare several

programs to demonstrate it.

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 6

Evaluation Criteria

Here are some guidelines to how the evaluation process will be going to give you
some insight about what you need to care about when thinking about your design.

 Number of supported Instructions according to the ISA given above (you
have to implement all of them of course).

 Well documented reports.

 Average CPI.

 Cache protocol used by your cache controller (hit count and miss count as
well will be taken into account so you need to show them as output
signals).

 Teamwork (organization, efficient workload distribution).

 Code comments.

 Following a naming convention in your code.

 (Bonus) Fast implementation for Multiply and Divide operations without
usage of embedded functions.

How will the TA test my processor?

You will be given different memory initialization file that contains different

test programs. You are required to load it in the RAM, reset your processor to

start and execute from memory location 0000. Each program would test some

instructions (you should notify the TA if you haven’t implemented or have

logical errors concerning some of the instruction set), each file will include a

small program will contain some instructions and some variables.

You MUST prepare a wave form with the main signals that show that the

processor is working correctly (R0, R1, R2, and R3), (reset, clk, hit count,

miss count), (PC, IR, MAR, MDR, UAR …).

The test programs’ code will have the following properties:

 20% of the instructions will be jump instructions (conditional or

unconditional).

 5% of the instructions will be Mul or Div instructions.

 The mean number of instructions in a loop body (without the loop

header) is 3 instructions, with a standard deviation ±1 instruction.

Computer Engineering Department Faculty of Engineering, Cairo University

Computer Architecture Project, Fall 2013 7

Deliverables

Phase #1

1. Design Document with the following elements

 Internal Bus architecture and accordingly the data path.

 Control Unit (whether hardwired or microprogrammed control)
including every detail (e.g. optimization done, bit Oring and ROM
size in case of microprogammed control).

 Cache policy and replacement algorithm used.

 (Bonus) Implementation design for both Mul and Div, and an
estimate of HW and time needed for each of them.

Phase #2

1. Project Document, describing each module in your system and a small

description on how It behaves for different inputs in different modes
(I/P O/P relationship or in other words each module as a black box)

2. The code for each group and the testbench for the whole processor (and
any extra files like RAM and ROM files) will be put in a folder named with
the group name, and delivered on a CD.

Due Date and other issues

 Due date for the phase #1 will be Tuesday 3/12/12 10:00 AM (a hardcopy
of your design document in Eng Sherif Shehata’s mailbox)

 Due date for the phase #2 will be Sunday 22/12/12 10:00 AM (this due
date is for both the CD, in addition to a hardcopy of your project document
in Eng Sherif Shehata’s mailbox). This doesn’t mean that you will start
working in phase #2 from 3/12 till 22/12, you are free to start earlier than
3/12 on phase #2.

 Demonstration and oral discussion for it will be announced later

 Meetings are to be scheduled with the TA in advance.

 If you have any questions regarding VHDL, architectural design and
project requirements, refer to your Architecture TA.

 Any email should contain subject [CMP301 Computer Architecture
project][Group_number] and replace Group_number with your group
number in the spreadsheet (e.g. Group 5 would send an email with
subject like this [CMP301 Computer Architecture project][G05])

