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Abstract 

Prior selection is considered as a crucial difficulty that have ever encountered Bayesian 

framework for many applications, since prior specification is the prime step to perform a 

Bayesian analysis to the unknown parameters for the decision making. Bayesian machine 

updates the prior information available about parameters through the prior distribution in the 

light of information provided by the likelihood function to get finally the so-called posterior 

distribution. This last distribution contains all possible information about parameters. Thus, it 

is used for making inference about the parameters.  

That essential rule of prior selection in the structure of Bayesian analysis explains the 

vast literature in prior selection problem. This selection can be done using one of two main 

approaches, noninformative prior and informative prior according to the existence of prior 

information about the parameters in the model of interest.  

Noninformative prior approaches are used when no or few information are available 

about parameters. These approaches are widely accepted in literature since they do not require 

subjective determinations. Besides, they introduce automatic consecutive steps to derive the 

posterior results. One of the most well-known noninformative prior is the Jeffreys' prior. Such 

prior has gained widespread acceptance in many fields due to its simplicity. One of its main 

features is the invariance property. However, Jeffreys’ prior can not be applied in some cases 

when there are different types of parameters or when no regularity conditions are available. 

That motivates authors to develop some other noninformative prior distributions. These 

approaches differ in their philosophies. One of those outstanding approaches is the locally 

uniform prior proposed by Box and Tiao (1973) that is based on the concept of the data 

translated likelihood. Another one developed by Zellner (1977), is the maximal data 

information prior that is based on maximizing the data provided by the sample. That last 

approach requires developing some informational criteria.  
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On the other hand, the informative prior distributions are used when information are 

available about the unknown parameters. Many approaches were developed in literature to 

quantify such information in a form of probability distribution. The progress in computing 

facilities motivates authors to develop more accepted informative prior distributions. One of 

the most famous informative prior approaches is the natural conjugate prior developed by 

Raiffa and Schlaifer (1961). This prior is chosen such that it has the same functional form as 

the likelihood function when the last is expressed as a function of the parameters. The only 

difficulty encounters that type is the specification of hyperparameters. However, there are 

many methods developed in the literature to solve such a problem. Another type of 

informative priors is the g-prior introduced by Zellner (1986) to formulate the Bayesian 

analysis of the general linear model. This type of informative prior is a special case of the 

natural conjugate one but with less effort required to assess the hyperparameters, since it only 

requires estimating the location hyperparameters of the coefficient parameters while the 

variance-covariance matrix is estimated using the design matrix. 

Since the study aims to investigate the different types of noninformative and informative 

prior distributions, a complete perspective over both approaches is displayed and applications 

to these approaches have been introduced to produce the posterior analysis of the general 

linear model (GLM) and the AR(1) models. A comparative study is also demonstrated 

through simulation devices to investigate the efficiency of the different prior approaches to 

produce the posterior analysis of AR(1) models. All priors are demonstrated by some real life 

time series data sets to compare the performance of the candidate priors.  

From all what have been introduced in the thesis, the current thesis emphasizes the great 

importance of the prior selection according to the characteristics of the model of interest and 

to the sample size as well. Thus, caution must be given to the different situations that may be 

encountered and it is recommended to examine the appropriate prior since no clear-cut 

method tells the investigator which is the best prior to be used. 
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IntroductionIntroductionIntroductionIntroduction    

In Bayesian analysis for a parametric statistics problem, it will be inevitable to 

specify a prior for the unknown parameters. Bayesian analysis makes inference about 

parameters by assessing a prior distribution and then deriving the posterior distribution 

via Bayes' theorem. Thus, the Bayesian framework allows one to incorporate prior 

information into statistical models for decision-making. This prior information is 

combined with information from the data using the axioms of probability to yield 

posterior distribution for parameters of interest. This is done using the Bayes' rule 

which says the posterior is proportional to the likelihood times the prior (Hahn, 2006).  

Accordingly, due to the crucial rule of prior selection in Bayesian analysis, 

various approaches have been developed in literature to assess prior distribution. A 

prior distribution which is "automatically" specified by the given model, is called a 

noninformative prior since no other entries are required to derive such a prior. 

Alternative names are given to these kinds of priors such as "default", "vague", 

"reference", "ignorance", "weak", "inner", "invariant", "objective", "flat ", or "diffuse" 

priors (Ye, 1990). Such approach of determining priors is termed as "objective" and 

has long been attractive in practice since it involves numerous methodological 

advantages (Yang, 1994). 

 However, subjective determination of the prior density has been the foremost 

philosophical foundation for Bayesian analysis, though it is often criticized. That sort 

of determination are named as informative priors since one has a certain "degree of 

beliefs" and the Bayesian algorithm is followed to study how the data change these 

beliefs. Probability theories have been developed in the literature to measure these 

beliefs numerically (Lindley, 1965a and 1965b). 

In this chapter, a brief discussion to the perspective and motivation for the prior 

information are presented, followed by a discussion of difficulties in prior selection. 
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Then, the most recent approaches to develop prior distributions will be briefly 

reviewed. Finally, the objectives and the structure of the thesis will be sketched. 

1.1. Perspective on Prior Information 

In many practical applications, the decision maker usually has additional 

information about the parameters of interest more than those found in current or 

observed data. For example, a manager may know perfectly that another competitor’s 

factory has burnt down. What should he do? Does he ignore the information or try to 

make use of it? A trading company knows well that a new legislation will appear in the 

short coming period (approximately 15% increasing in the tax rate). Will the company 

make changes in its production activity, such as increasing or decreasing production or 

ignore the information?  Such knowledge is a further form of relevant information that 

would be desired to combine with the observed data to make a more refined estimation 

of the parameter of interest (Barnett, 1973). Information of such sort is derived from 

outside the current situation and termed as a "priori" or "prior information". Prior 

information is generally of various types, usually one of the following sources or a 

mixture of them, 

1. Information of previous data and studies. 

2. Theoretical information.  

3. Casual observation. 

Methods have been set up to quantify a priori. Generally, the expected effect of 

such measures is probabilistic. A probability distribution for that expected effect is 

decidedly required to characterize its uncertainty. A powerful tool to do this task is the 

so-called "prior distribution". The reader may refer to (Barnett 1973) and (Berger, 

1985) for an inclusive discussion to variety of methods of probabilistic determination 

of prior information. This probability distribution is used to represent the degree of 

reasonable belief that may be available about the parameter and is always conditional 

on our state of information. Consequently, this probability distribution is revisable 

against variation in such state of knowledge. Furthermore, this process of revising 

probability associated with the priori in the face of new information is the essence of 

learning form experiment. Incorporating new information made by the use of Bayes' 
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theorem that is considered as an essential part of Bayesian approach. It is known in 

literature as "principle of inverse probability", since information from data are used to 

infer what random process generates them (Zellner, 1971). 

A fundamental feature of Bayesian analysis is the use of prior information as well 

as the observed data in the final analysis. Bayesian mechanism combines information 

from sample through “likelihood function” with the prior information through “prior 

distribution” to get the so-called “posterior distribution”, according to Bayes’ rule, that 

is, 

Posterior distribution  α  Prior distribution  ×  Likelihood function 

In this prospect, prior distribution embodies the probability density function based 

on our initial belief about the parameter. Whereas the posterior density function 

incorporates our initial information as represented by the prior distribution and our 

sample information as represented by the likelihood function. Zellner (1971) declared 

some remarkable characteristics of the posterior distribution are: 

1. As the sample information grows, it will more dominate the posterior distribution 

which will become more concentrated about the true value of the parameter. 

2. The posterior distribution will be the same in the case when there are different 

prior distributions as long as they are combined with common large sample 

information.  

However, Bayesian results could be sensitive to different assumptions on the prior 

distribution. This is studied in literature under the so called "sensitivity analysis" or 

"Bayesian robustness". 

Nevertheless, in the Bayesian approach, the prior information about parameters of 

a given model is represented by a chosen probability density function (p.d.f.). That 

distribution must be adequate in representing prior or initial information about 

parameters otherwise another prior p.d.f. have to be chosen to represent adequately the 

prior information.  This fact guides us to a very crucial question "How one could be 

able to assign a prior p.d.f. to represent a state of knowledge about the parameter of the 

given model? Are the information about parameters always available? These questions 

will be replied through the following section. 
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1.2. Difficulties of Prior Selection 

Bayesian analysis of a statistical problem consists of three stages, namely the 

prior, posterior and predictive distributions. The prior distributions reflect the expert’s 

beliefs about the parameters, and the posterior distribution is considered as a 

modification of the prior information in the light of the observed sample. Therefore, 

the posterior distribution construction is affected by the selection of the prior 

distributions. Hence, careful specification of the prior distribution is of great 

importance, since using bad prior will lead to bad posterior results. 

Choosing the prior distribution is considered the hardest part in applying the 

Bayesian framework. Prior selection faces two main problems. 

• How to express the case of  “knowing nothing” or “knowing little” about the 

parameters in a probability distribution representation. (For more details about this 

problem, one may refer to Zellner (1971), Box and Tiao (1973), Berger (1985), and Ye 

(1990)). 

• How to express the information about the parameters, if exist, in a satisfying 

probability distribution representation. (For more details see Berger (1985)). 

Many essays are developed in the Bayesian literature to discuss the above 

problems and introduce various solutions to overcome them. 

As a solution for the first problem, one may use the so-called noninformative 

prior. That is termed as "weak informative prior" as well since few information is the 

merely available about parameters.  Moreover, noninformative priors are described as 

"objective" because prior elicitation does not require assigning any personal or 

subjective consideration. A noticeable remark is that Bayesian statistics are termed as 

"objective", due to the use of noninformative prior distributions. The outstanding 

motivation for noninformative priors is that they are considered as a remedy of the 

often disapproval of "subjectivity" that most Bayesians rely on when quantifying prior 

distribution through personal judgments. Thus, noninformative priors achieve a 

conventional agreement as it retains the prevailing preconception that the science must 

be objective. Moreover, noninformative prior distributions are more practical since 

they have no population basis and play a minimal role in the posterior distribution. The 
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idea behind the use of noninformative prior distributions is to make inferences that are 

not greatly affected by external information or when external information is not 

available.  

The variety of the approaches to develop noninformative prior distributions in 

Bayesian analysis is vast and complex. Many philosophies are available in the 

literature to choose a noninformative prior. The most famous types are Jeffreys’ prior, 

locally uniform prior, maximal data information prior and reference prior.  

To solve the second problem, one may use the so-called informative prior. 

Informative prior distributions are used when there is information, usually subjective, 

about the parameters available before assessing the data. Ignorance of this information, 

just for the sake of objectivity, is not recommended. Subjective beliefs are usually 

available in scientific inference. For example, a scientist decides to do a particular 

experiment in order to confirm some hypothesis about the parameter, see Press (1989). 

A probability distribution is needed to represent these subjective beliefs.  

On the other hand, informative priors have a stronger influence on the posterior 

distribution. The influence of the prior distribution on the posterior is related to the 

sample size of the data and the form of the prior. Generally speaking, large sample 

sizes are required to modify strong priors, where weak priors are overwhelmed by even 

relatively small sample sizes.  

Informative priors are typically obtained from past data and are commonly used in 

small samples where there is insufficient data to form a convenient conclusion.  

Nonetheless, in developing strategies for specifying informative priors, 

researchers have recognized the importance of carefully eliciting an expert's judgments 

so that the translation from belief to a probability distribution is as accurate as 

possible. As a result, a wide variety of procedures for eliciting informative priors have 

been developed (Hahn, 2006). A brief review of informative prior approaches provides 

an indication of the extent in this area of research, as represented in a later chapter.  

Representing the prior information by a proper distribution has been widely covered in 

statistical literature. Such procedures are available to select informative prior such as 

conjugate prior, g-prior, predictive density approach and ML-II prior. 



CHAPTER1: Introduction 
  

1.3. Objectives and structure of the Thesis 

6 

Approaches that are widely followed in literature to select both noninformative 

and informative priors will be discussed in details in subsequent chapters.  

1.3. Objectives  and structure of the thesis 

The main objective of the thesis is reviewing the best-known approaches of 

selecting informative and noninformative prior distributions. The philosophy, 

derivation, and properties of each type will be studies and demonstrated by some 

theoretical examples and by real and simulated time series data sets as well. 

In more details, the objectives of the current study can be summarized as 

follows: 

1. The study reviews the best-known approaches of selecting noninformative prior 

distributions, such as Jeffreys’ prior, locally uniform prior and maximal data 

information prior. 

2. The study reviews the best-known approaches of selecting informative prior 

distribution, such as natural conjugate prior, and g-prior. 

3. The philosophy, procedure for derivation and properties of each type are 

explained. In addition, the difficulties in the construction of each prior are 

discussed. Moreover, relations between priors are verified. Finally, some selected 

examples are devoted to illustrate the derivation techniques of each type. 

4. Posterior analysis of the general linear model (GLM) is established using 

informative priors; natural conjugate prior and g-prior. 

5. Posterior analysis of the well known time series model, the autoregressive model 

of order one (AR(1)), is demonstrated using the noninformative and informative 

prior distributions. 

6. Numerical examples are introduced, based on simulation studies for AR(1) model, 

to compare the performance of the studied priors using some criteria. Comparative 

study is implemented concerning the general case of AR(1) process when the 

stationarity assumption is ignored. 

7. All priors are demonstrated by some real time series data sets to illustrate the 

behavior of the candidate priors. 
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The thesis is structured as follows: 

In chapter 2, a comprehensive discussion of noninformative priors is considered 

involving definitions, motivations and importance of noninformative priors. Various 

approaches to develop noninformative priors are introduced. Particular attention is 

given to certain noninformative priors such as Jeffreys’ prior, locally uniform prior and 

maximal data information prior. 

Chapter 3 throws light on the methodologies of informative priors' elicitation as 

introduced in the literature. Types of prior information that may be available about 

parameters of a given model are reviewed as well. A specific interest is focused on the 

natural conjugate prior and the g-prior. 

Chapter 4 shows the application of the natural conjugate prior and the g-prior to 

the well known general linear model (GLM). These informative priors are used to 

compare the posterior analysis of the GLM resulted from each prior. 

Chapter 5 applies some of the preceding noninformative and informative priors to 

the well known time series model, AR(1). Attention is restricted to the posterior 

analysis of AR(1) using different priors concerning the general case of the process 

when stationarity is not assumed. Moreover, a comparative study has been carried out 

based on simulation to compare the efficiency of the studied priors. Some efficiency 

criteria are provided to serve the comparative study. Finally, the posterior analysis of 

some real time series data sets, that follows AR(1), is done. Most of the discussed prior 

distributions are applied and the posterior analysis is produced using the candidate 

priors.  

Finally, the main results of the current work are summed-up in a concluding 

chapter (chapter 6). Moreover, some points for future work are presented.  

The simulation study and the computations concerning the posterior analysis of 

the real examples are carried out using Matlab software (version 7.1). The scripts to do 

such task are exhibited through Appendices II and III. 
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2.1.   Definitions and motivations 

A prior that is constructed by some formal rules or subsequent algorithms and that 

is specified automatically by the given model is called ‘noninformative prior’. A 

researcher does not need any other inputs to derive such prior (Ye, 1990).  

Noninformative priors are mainly used when the information about the 

parameters, to be provided by the prior, is little with respect to that from the data. The 

literature contains many alternative names for this type of priors such as "objective 

priors", "vague priors", "diffuse priors", "reference priors", and "invariant priors", 

"default priors", "ignorance priors", "weak informative priors", "inner priors" or finally 

"flat priors". 

Since the use of noninformative priors has been considered as a routine in 

Bayesian practice, it would be helpful to review the numerous motivations to 

noninformative priors and the reasons of their importance to Bayesian analysis. These 

motivations are briefly summarized by Berger and Yang (1996) as follows: 

1. Utilizing noninformative priors avoids difficulties and criticisms that face Bayesian 

analysis when using subjective prior distributions and being away from using of 

objective inference. Also in the case of large amount of data, there is no need to do 

more effort by using subjective prior distributions. Therefore, Bayesian analysis 

with noninformative priors is the most preferred objective inference that is possible. 

2. Moreover, elicitation of subjective prior distribution is difficult, because of cost or 

time constraint. On the other hand, in particular circumstances, a simple and fast 

approximation is always needed regarding the complexity and high dimensionality 

of various modern Bayesian models, such as, Bayesian time series models.  
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Automatic or default prior distributions are then needed since they provide good 

approximation at much less effort than a full Bayesian analysis.  

3. In high dimensional problems, subjective prior elicitations are desirable for 

"interesting" parameters whereas noninformative priors can be given to the 

unimportant or "nuisance" parameters. Therefore, in multiparameter statistical 

problems, using a noninformative prior may be the best method for diminishing 

nuisance parameters (Ye, 1990). 

4. Subjective determination to the prior information may easily result in "poor" prior 

distributions because of the inherent elicitation bias, where that elicitation typically 

yields only a few feature of the specified prior (such as its functional form) in 

addition to some other characteristics that are convenient but inappropriate. 

Therefore, it is important to compare outputs from a subjective analysis with those 

from noninformative prior analysis. It is important to check that the expected 

substantial differences are due to the features of the prior that are trusted.  

5. In addition, noninformative priors could be considered as a starting point for 

investigating the effect of any other suggested subjective priors by comparing the 

Bayesian analysis using these two approaches. 

6. Another motivation to noninformative priors is due to their simplicity in the 

Bayesian analysis particularly in Bayesian time series analysis. That is because of 

the difficulties that face posterior computations using other subjective prior 

distributions. Furthermore, applying such priors in Bayesian time series analysis 

does not face any problems in dealing with usual presence of constrains on the 

parameters in time series models, such as stationarity and invertiblity (Ismail, 

1994). 

On the other hand, there are some difficulties and problems in selecting such 

priors. The main difficulty is that there is no clear-cut method for saying which 

noninformative prior should be used. Besides most of noninformative priors are 

improper, which makes interpretation about posterior results unclear (Berger, 1985). 
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2.2. Literature Review 

There has been a tremendous amount in the statistical literature of noninformative 

priors. Procedures for deriving such priors vary according to the philosophy of each 

type. Furthermore, several books and articles have been concerned with discussing or 

comparing different approaches in developing noninformative priors, see (Kass and 

Wasserman, 1996) and (Berger and Yang, 1996). The last reference is considered as a 

catalog of most of noninformative priors that have been developed.  

The work in developing noninformative priors has begun so early by Bayes 

(1763), which is known as Bayes’ Postulate, and Laplace (1812). They developed a 

noninformative prior to represent the state of complete ignorance or knowing nothing 

about the parameters. They depended on the principle of insufficient reason to evolve 

such prior that is if there is no reason to prefer one value of the parameter to any other 

then all values should be taken equally likely. Hence, they used the uniform prior as a 

noinformative prior. Such prior is improper, in the case of infinite parameter space, 

and is not parameter invariant. 

Jeffryes (1961) tried to overcome the lack of invariance to transformations through 

developing what is the most famous known as Jeffreys’ prior. The real contribution 

due to Jeffreys’ work is that his prior is advocated by convention (or international 

agreement), see Kass and Wesserman (1996). He did not insist on unique 

representation of ignorance, but he worked to derive the best rule in each of many 

cases, as it will be shown in next sections. The Jeffreys’ prior has gained widespread 

acceptance on many fields especially Bayesian time series analysis. This wide use is 

due also to its simplicity to derive so it is considered as a standard noninformative 

prior in Bayesian time series analysis. 

The principal of choosing noninformative priors based on invariance property is 

widely discussed in the literature beside Jeffreys’ prior such as Hartigan (1964) and a 

recent work for Datta and Ghosh (1996). 

Some other modification to Jeffreys’ prior is presented according to a different 

philosophy. Box and Tiao (1973) have derived the locally uniform prior as a 
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noninformative prior based on the concept of data translated likelihood. They 

developed a noinformative prior that makes the likelihood independent of the data 

except for its location. This prior is proposed because of the difficulties that face the 

use of Jeffreys’ prior in dealing with multiparameter case with different types of 

parameters. Recent work in deriving that type of priors is introduced by Kass (1990). 

Maximum entropy is another approach to construct a noninformative prior, where 

prior with larger entropy is considered as being less informative.  This principle seeks 

the prior that maximizes the Shannon (1948) entropy. Such priors were developed by 

many authors such as Jaynes (1957, 1968, 1980, 1982, 1983) and Zellner (1991, 1995). 

Another criterion for selecting a noninformative prior is that based on the 

information measurement, the most important studies to derive the prior are due to 

Zellner (1971, 1977) and Berger and Bernardo (1989). The Zellner’s method leads to 

maximal data information prior, which gives the minimum information compared with 

the sample information. While Berger and Bernardo (1989, 1992) introduced the most 

formal rule to derive a noninformative prior that is called reference prior. A very recent 

work discusses definition and application of the reference prior is due to the work of 

Berger et al (2007). The last prior is often used in the case when there are nuisance 

parameters, where the Jeffreys’ prior does not adopt such case. Many authors have 

extended the implication of reference priors to multiparameter case through different 

applications such as Ye (1990) and Yang (1994).  

Frequentist coverage matching approach is another method to select the 

noinformative prior that makes “the data speak for themselves”. Such prior is the one 

that achieves probability agreement between the sample and the posterior distributions. 

This approach has been widely undertaken to discriminate among alternative candidate 

prior distributions such as Welch and Peers (1963), Peers (1965 and 1968), Ye (1990) 

and Yang (1994), Datta and Ghosh (1995), Sun and Ye (1995). 

For more review and discussion to a variety of criterion to select noninformative 

priors reader may be refered to Kass and Wasserman (1996). 
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2.3.   Jeffreys’ Prior 

2.3.1. Introduction 

Tracing Jeffreys' work throws light on opulent literature with vast writings of 

other eminent statisticians who undertake exploring Jeffreys' contributions to Bayesian 

statistics. They have appreciated Jeffreys' work due to its particular influence on their 

own work in statistics. The influence of Jeffreys' work in the analysis of several 

statistical problems reflects the power of Jeffreys' contributions and insights. Some of 

those outstanding writings are for Geisser (1980), Good (1980), Lindley (1980), Kass 

(1982) and Zellner (1980, 1982a and 1982b). 

The current thesis will mainly rely on those writings to present a short summary of 

Jeffreys' numerous contributions to Bayesian analysis. However the main emphasize 

will be given to the noninformative prior suggested by Jeffreys, the so-called Jeffreys' 

prior. Thus, it should be emphasized that the work will highlight these contributions 

bearing in mind that the prime interest is writing up the Jeffreys' entry to the prior 

distributions when no or little information is available within the Bayesian work. 

Some of Jeffreys' contributions to the philosophy, methodology, and applications 

of Bayesian analysis could be presented through the following headings: 

Jeffreys as a scientist besides being a statistician:  

Jeffreys was a noted physical scientist who re-established the statistical theory in 

his time on the Bayesian foundations. Therefore most of his work on Bayesian 

statistics was oriented towards the natural sciences. In this regard, one can never 

ignore the very important citation of Lindley (1980, p. 4), 

It is of course, one of Jeffreys' great strength as a statistician that he is a scientist. 

This feature produces the inherent appearance of mixing those theories and 

applications found in Jeffreys' work. This also reflects a testimony of the coherent 

statistics apparent in Jeffreys' work, which was built on the theoretical satisfaction and 

practical implementation. In this respect, Zellner (1980, p. 4) comments: 

This is a recognition of the pervasive interaction between theory and application that is 

present in his work. 
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It is noteworthy that his procedure for estimation, prediction, and inference is 

applicable in natural and social sciences. So the applications of his techniques in 

astronomical and geophysical fields are similar to that in econometrics and other social 

sciences (Zellner, 1980). 

Jeffreys' contributions to probability: 

 Most of Jeffreys' contributions to statistics, particularly to Bayesian statistics, are 

found in probability. Jeffreys was the first who used probability to deal with problems 

in the philosophy of science in addition to using probability to explain and investigate 

the reasonability of scientific theories. This work was introduced through his work 

with Wrinch (1919, 1921 and 1923), and through his famous book Scientific Inference 

(1931). Furthermore, Jeffreys (1939) extended the notion of “degree-of-belief”, which 

was first used by those who adapted the subjective concept of probability. However 

Jeffreys disagreed with them in their confining on the personal beliefs, so he treated 

probability in the logical sense. Jeffreys' theory of probability book has been 

introduced in two more editions, in 1948 and in 1961, but the third in 1961 was of the 

Bayesian revival. Jeffreys (1961) introduced the logical concept of probability in 

Bayesian framework based on the principle of inverse probability, to compute 

probabilities rather than the empirical calculations which followed in the frequentist 

approach. In other words, Jeffreys' work in probability is developed along Bayesian 

lines. 

Jeffreys defines probability to be the reasonable “degree of belief”, or “priori”, 

that an individual has in a proposition "q" given some body of evidence (the observed 

data) "p". Then, the formal notion p(q | p) expresses the measure of the implication in 

which "p" support or refutes "q". This concept of probability is considered to be 

objective through the Jeffreys' view “there is one and only one opinion "q" justified by 

any body of evidence "p" which could be the same”. Thus, such probability p(q | p) is 

considered to be unique impersonal logic one could calculate or estimate only in the 

context of Bayesian framework (Zellner, 1982b). Then the logical view adapted by 

Jeffreys straddled the subjective and frequentist view in being objective but expressing 

degree of belief (Barnett, 1973). 
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However, Jeffreys does not assume that everyone always have the same prior 

information (Zellner, 1982b). Moreover, he is the first to adopt the case when the 

person has no opinion which is the case of formulating “ignorance”, “nothing” or 

“knowing little” resulting in the so called Jeffreys' prior, which will be discussed in the 

next point. Such type of prior is noninformative. For that last reason, the probability 

theory book of Jeffreys' is considered as a modern book because it introduces a recent 

meaning of probability when little information is available (Lindley, 1980). That 

concept of probability could be updated in the light of new information using the 

Bayes’ theorem or the principle of inverse probability, where the resulted posterior 

distribution could be used as a prior distribution taking into account further set of data 

(Huzurbazar, 1980). 

Jeffreys' ingenuity in quantifying “ignorance”: 

 As mentioned above, Jeffreys in developing his theory of probability, has not 

denied the presence of any type of information (prior information) the investigator may 

have and need to be tested with data. Such sort of priori is termed as “informative 

prior”. Jeffreys was aware of many applications in which informative priors rather than 

noninformative priors should be applied (Zellner, 1980). Furthermore, Jeffreys in his 

work argued that each scientific law should be assumed to have a priori otherwise no 

law could ever become probable no matter the evidence includes it (Good, 1980). 

On the other hand, it may be the case of lack of information, i.e. the case when the 

investigator has “no opinion” or “know little” about the proposition. In such case, 

Jeffreys was considered as the unparalleled statistician that blew up the well-known 

procedure for formulating “ignorance”, which is translated into the so called Jeffreys' 

prior. However, he had a firm belief in the existence of an “initial” state of knowledge 

even before data is available, and the importance of being able to make inference 

merely based on data. Zellner (1982a) describes Jeffreys as pragmatic in his valiant 

attempts to represent such a state of information, he says as well: 

The situation is similar to the need to formulate the concept of vacuum in physics. 

At this point, it is noteworthy to put forward the reasons that motivated Jeffreys to 

develop procedures to express such state of ignorance; those reasons are as follows: 
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1. It is a matter of common nature of science to let the data speak for itself. Since in 

many contexts including; scientific reports, courts of law and many other fields, one 

wishes to abstract from personal views of an investigator (Zellner, 1980). 

2. "A subjective assessor who had some prior information would need to be driven back to 

the cradle or womb to reveal a time when what he knew was negligible or irrelevant to the 

matter at hand." (As stated by Geisser, 1980, p. 17). 

3. One of the difficulties that faced the Bayesian theory is which prior distribution to 

be used when the prior knowledge is weak relative to that provided by the data. 

This difficulty has been considered as a serious block to the universal acceptance of 

Bayesian approach. Thus, Jeffreys tried to describe that relative lack of information 

and developed a theory to deal with this difficulty (Lindley, 1980). It is very 

important here to notice that, this type of prior distribution will set the Bayesian 

machinery in motion providing indifference or impartial stance (Geisser, 1980). 

The most noticeable criticism encountered Jeffreys is the dissatisfaction with his 

technique to obtain numerical values of such unknown prior probabilities. Jeffreys' 

respond was "It is not a correct description or an exact quantification, but a type of 

approximation, to determine some infinite number of initial probabilities, each is 

consistent, and then choose the best one according to some type of international 

agreement". Jeffreys (1961) takes on providing satisfying general canonical rules for 

choosing initial probabilities to express ignorance. On that same matter, Kass and 

Wasserman (1996, p. 1345) state: 

The real contribution that due to Jeffreys' prior is that he gives an evaluation to the prior 

distribution base by convention away from unique representation of ignorance.  That 

means that Jeffreys did not insist on unique representation of ignorance, but he did work 

to find “the best” rule in each of many cases. 

Jeffreys also gave a further support of these general rules in case of large amount 

of data. Where, in such case, the assignment of these initial probabilities by a 

conventional choice of priors would make little difference in the posterior results. 

Moreover the results given by the Bayesian inference are indistinguishable from those 

given by the classical inference (Huzurbazar, 1980). 
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In view of what have been presented, Jeffreys' prior is considered as an essential 

part of the furniture of the Bayesian statistics. 

 

2.3.2. Derivation 

The preceding section discusses the Jeffreys' motivation to express the case when 

the prior information about the parameter is vague relative to that provided by the 

observed data and his attempts to seek a general formal rule or a standard prior 

distribution. Such distribution would be viewed as an approximated representation to a 

vague prior. 

Jeffreys (1961) defined the noninformative prior distribution of the parameter as 

follows: 

It is a way of saying that the magnitude of the parameter is unknown when none of the 

possible values need special attention. 

Jeffreys stated that if there is no information relevant to the actual value of the 

parameter then the prior distribution must be chosen to express none or to say nothing 

about the parameter values. However, it may be restricted within certain constraints. 

Therefore, Jeffreys (1961) derived some rules for choosing the prior distribution to 

cover the most common cases of the regular type. He identified rules that should 

satisfy the following characteristics: 

1. Provide a formal way to express ignorance of the parameter value over the 

permitted range. 

2. Make no statement of how frequently that parameter occurs within different 

ranges. 

3. Give the same results in terms of several different sets of parameters, that is, the 

rules have to be invariant under re-parameterization. 

Jeffreys’ first rule:  

If the parameter θ , the mean in location densities for example, may have any value 

in a finite range or from -∞  to ∞ , the prior distribution should be taken as uniformly 

distributed in the form: 

constant)( ∝θp                 (2.3.1) 
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The uniform distribution was first used, to express complete ignorance, by Bayes 

(1763) and later by Laplace (1812). It is based on the “principle of insufficient reason” 

where if there is no reason to prefer one value of the parameter to any other then all 

values should be taken to be equally likely. The choice of the uniform prior has long 

been known as Bayes' postulate as an indication to Bayes' theorem. Jeffreys indicated 

that the uniform distribution could not be a final solution for all problems because of 

its lack of invariance under transformation. In more explicit meaning, the ignorance 

about the parameter values intuitively implies ignorance about the values of any 

transformation of the parameter. However, given a certain transformation, the uniform 

distribution would not be the distribution of such function of the parameter (see Lee, 

1989). This concept is usually termed as invariance, which will be explained in a 

following subsection. 

It is obvious that the p.d.f. in (2.3.1) is improper which means that it has infinite 

mass or the integral on that density over the entire range of the parameter leads to ∞  

rather than the unity. 

Using (2.3.1) involves representing complete ignorance about the parameter values. 

Jeffreys explained this by the statement { } 0baPr =<< θ , where a and b are any finite 

numbers, however this statement does not mean that θ  is outside the closed interval 

[a,b], (which resembles the fact that the probability of a continuous random variable 

taking a specific value equals zero). This property corresponds to the first 

charachteristic mentioned above. 

Based on the previous property, the odds { } { }dcPr/baPr <<<< θθ  is 

indeterminate, where a, b, c and d are any finite numbers. This property corresponds to 

the second characteristic, since no statement can be made about the odds that θ  lies in 

any particular pair of intervals. The indeterminacy of this ratio seems to be adequate to 

justify the use of the rectangular p.d.f. (see Zellner, 1971). 

To check whether the distribution in (2.3.1) meets the third characteristic, consider 

another parameter )(θη g= , say )exp(θη =  hence, the inverse function given by 

)ln(ηθ = . This is a one-to-one transformation, through which the new parameter η  
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will be defined over (0,∞ ). Hence if )(θp is the density of θ  then the corresponding 

noninformative prior distribution )(* ηp of η  could be derived as follows: 

( ) ,)()( 1*

η

θ
ηη

d

d
gpp −

∝  

Based on equation (2.3.1.), the above relation could be simplified to: 

,)(*
η

θ
η

d

d
p ∝  

( ) ,)ln()(* η
η

η
d

d
p ∝  

then 

.)( 1* −
∝ηηp      (2.3.2) 

Therefore, the noninformative prior distribution of η  have to be proportional to 1−
η  

to maintain consistency and to obtain the same answers in each parameterization. 

Thus, the consistency could not be satisfied if a constant prior distribution is chosen 

for both θ  and η  since (2.3.1) in terms of η  would not meet the third characteristic 

(see Berger, 1985). 

From what stated above, the argument that the lack of prior information should 

correspond to the constant density (2.3.1) would be hard to defend in general. 

Therefore, the lack of invariance of (2.3.1) motivated Jeffreys to search for 

noninformative priors that are appropriately invariant under transformations. 

Jeffreys’ second rule:  

If the parameter σ , the standard deviation in scale densities for example, may have 

any value in a semi-infinite range from 0 to ∞ , the prior distribution of its logarithm 

should be taken uniformly distributed in the form: 

[ ] constant,)ln( ∝σp  

which is equivalent to 

σ

σ
1

) ∝p(      (2.3.3) 

This distribution is termed as "Jeffreys-Haldan" distribution. An interesting natural 

application of this distribution is the "table entry" problem, which represents the study 
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of positive entries in various natural numerical tables, such as table of population sizes 

and tables of positive physical constants. 

The form in (2.3.3) can be proved using Jeffreys' first rule in (2.3.1). The proof is 

the same as presented for (2.3.2). The prior distribution in (2.3.3) is again an improper 

prior distribution. 

Jeffreys pointed out that (2.3.3) has the property { } { } ∞=∞<<=<< σσ aPra0Pr , 

which indicates that nothing is known about σ , the case of complete ignorance 

provided by the first characteristic. 

The previous property implies that the ratio { } { }∞<<<< σσ aPr/a0Pr  is 

indeterminate, where "a" is any finite number, and thus nothing can be said about the 

odds of these two probabilities, which correspond to the second characteristic. Again 

this indeterminacy is considered as a formal presentation of ignorance. 

With reference to the third characteristic, Jeffreys observed that (2.3.3) is invariant 

to the one-to-one transformations only in the form n
ση = , in other words (2.3.3) is 

invariant under positive or negative powering of σ . This is an important property, 

because some investigators parameterize models in terms of the standard deviation σ  

and others in terms of the variance 2
σ , or the precision parameter 2−

= στ . 

Checking the invariance property of the powering transformation can be done as 

follows (in case if n=2 for example):  

Let  

),(ση f=      (2.3.4) 

where 2)( σσ =f  in this case, then applying the change of variable technique using 

the distribution in (2.3.3) will lead to 

( ) ,)()( 1*
ησηη ddfpp −

∝  

where )(* ηp is the required noninformative prior, then 

,)( 2/12/1* −−
∝ ηηηp  

then 

.
1

)(*
η

η ∝p      (2.3.5) 

Then 22* 1)( σσ ∝p  has the same form as (2.3.3). Thus, applying Jeffreys' rule in 

(2.3.3) to different parameters of the form n
σ  provides prior p.d.f.’s of the same form 
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and consistent with each other. These prior distributions are consistent in the sense that 

posterior probability statements based on the alternative parameters will be also 

consistent. i.e., if an investigator "A" parameterizes a model in terms of σ  and uses 

(2.3.3) as his prior p.d.f., whereas another investigator "B" parameterizes the model in 

terms of η  and uses (2.3.5) as his prior p.d.f., they would get their posterior p.d.f.’s in 

terms of their own parameter. If the invariance property is satisfied, "B" can use (2.3.4) 

to transform his posterior distribution in terms of σ  and gets the same posterior 

distribution that "A" has obtained. Alternatively, "A" can use (2.3.4) to transform his 

posterior distribution in terms of η  to get the posterior distribution that "B" has 

obtained (see Zellner, 1971). 

Jeffreys’ general rule:  

Jeffreys (1961) generalized the invariance property base to develop the 

noninformative prior distribution and hence, solve more general problems such as 

problems involving multiparameter cases. Jeffreys pointed out that the prior p.d.f. of 

the parameter vector θθθθ  should be taken as: 

,Inf)(
2/1

θθθθ
θθθθ ∝p     (2.3.6) 
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where )
21 κ

θθθ ............((((θθθθ =′ is the k-vector of parameters defined on the space KR∈∈∈∈Ω , y is 

the n-vector of observations having the p.d.f. )( θθθθyp  over the space nRS ⊂ , which 

has continuous θθθθ  derivatives for all S∈∈∈∈y , 
θθθθ

Inf  is the (k × k) Fisher’s information 

matrix for the parameter vector θθθθ , and E denotes the expectation with respect to the 

p.d.f. of y.  

The most important property of Jeffreys’ prior in (2.3.6) is the invariance property, 

in the same sense explained in the previous section. Thus if )(θθθθηηηη G= , where G is a 

one-to-one differentiable transformation of θθθθ , then the invariance virtue of (2.3.6) 

involves that, the prior p.d.f. of η should be taken as 

.Inf)(
2/1

ηηηη
ηηηη ∝p  
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Therefore, the posterior probability statements will be consistent for all problems 

that are parameterized in terms of θθθθ  and η (for the proof of this property, one could 

refer to Zellner (1971, p. 47)). 

It is important here to notice that Jeffreys himself pointed out that such 

multiparameter rule must be applied with caution, especially in scale and location 

parameters problems that occur simultaneously. He also emphasized that this rule must 

be examined to avoid adding some unwanted prior information into analysis. This 

guides Jeffreys to assume the following rule: 

Jeffreys’ independence rule:  

In such cases he suggested treating location parameters separately. Thus, consider 

the case when the parameters' vector specified by )
21

′θ
κ

µµµ ............((((  such that 
i

µ 's 

denote the location parameters whereas θ  is an additional vector of parameters that 

includes the scalar parameters. Then the modified general rule recommended by 

Jeffreys is given by 

,Inf),(
2/1

21 θθθθ
θθθθ,...,,...,,...,,...,,,,, ∝

κ
p µµµ     (2.3.8) 

Kass and Wasserman (1996) called (2.3.8) Jeffreys' location general rule while called 

(2.3.6) Jeffreys' non-location general rule.  

Difficulties encounter applying Jeffreys' general rule 

The major difficulty associated with the application of Jeffreys' rule in (2.3.6) arises 

when parameters of different types are considered simultaneously. For example, in 

problems containing both location and scale parameters, Jeffreys (1961) avoided 

applying (2.3.6) and derived alternatively a noninformative prior density assuming 

independence between parameters of different types. This modification leads to the 

rule given by (2.3.8). Jeffreys explained the nonuse of his general rule, in (2.3.6), in 

such cases by his deem that this rule will lead to dissatisfying results and the derived 

prior density based on it will be inferior. So he, instead, derived the noninformative 

prior by assuming independence then applying the rule separately to parameters of 

each type (that is the rule in (2.3.8)). He also proposed that the resulted prior 

distribution is invariant under transformations of a certain type. Zellner (1971) proved 
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that Jeffreys' prior assuming independence is "minimal information" prior. This 

concept will be explained in a next section (see §2.5). 

On the contrary, Box and Tiao (1973) stated in this respects, that the independence 

assumption between parameters of different types could appear inappropriate in certain 

cases. They showed some applications in which the location and the scale parameters 

could be dependent according to the nature of data of interest. To overcome this 

problem, they suggested manipulating data by adapting some appropriate 

transformations such as taking the logarithm of the original data to remove constrained 

dependence. For further details and explanations, one could refer to the example which 

they introduced (see Box and Tiao, 1973). 

Another difficulty, that impedes working with Jeffreys' general rule, is that the rule 

could not be applied with distributions of non-regular type and distributions 

indifferentiable with respect to parameters (Huzurbazar, 1980). In this respect, Jeffreys 

himself realized that his assumption only works under regularity conditions in one 

parameter; in continuous problems (see Irony and Singpurwalla, 1996). 

Regarding the invariance requirement attained by Jeffreys' rule, Jeffreys insists on 

viewing his rule as unique for any given model, which is considered to be wrong by 

many other statisticians. Huzurbazar (1980) considered seeking a single invariance 

rule, which is adequately applicable to all distributions, as an impossible hope. He 

deemed that such hope is as unlikely as discovering a single scientific law to explain 

satisfactorily all physical phenomena.  

In essence, the application of Jeffreys' rule leads to inappropriate results in large 

dimensional parameter space and in distributions of non-regular type as well. Hence an 

inevitable technique of noninformative prior will be required. Some other techniques 

could be available to produce a noninformative prior distribution that fits those cases, 

see Berger and Bernardo (1989 and 1992) who developed the reference prior. 

 

2.3.3. Properties 

For long decades and till nowadays, Jeffreys' prior has been considered the most 

widely used standard noninformative prior in many applications, particularly in 
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Bayesian time series applications. This is due to its simplicity in being derived 

automatically. Therefore, it was important to provide a subsection here discussing the 

two main properties of Jeffreys' prior. First, being an improper prior is considered by 

many others to be a flaw. Second, the invariance consideration involved by such prior 

is considered by many as a great contribution. 

 

Impropriety 

It happens frequently that noninformative priors are improper, which means that it 

has infinite mass. In such case the function used is not a probability density at all. 

Many statisticians consider this a serious drawback of the noninformative Bayesian 

analysis because it is hard to apply it with problems in estimation and inferences 

(Koop, 1994). A reasonable response to this criticism revealed by Bernardo through 

his discussion of noninformative priors in Irony and Singpurwalla (1996, answer to 

question 7) was: 

One should not interpret any noninformative prior as a probability density. 

Noninformative priors are merely technical devices to produce non-subjective posterior 

distributions by formal use of Bayes theorem and sensible non-subjective posterior 

distributions are always proper. 

This involves that the improper noninformative priors will be "unacceptable" if they 

yield improper posterior distributions. So the propriety of the posterior distributions 

should be the first property required when improper noninformative prior is applied 

even for minimum sample size as it will be illustrated in following parts. 

The previous discussion has not confined the noninformative priors to be improper, 

however, proper noninformative priors are usually found whenever the parameter 

space is bounded (see example 2.3.1), although this is not a general case. 

Jeffreys was the first to propose an axiomatic foundation of improper 

noninformative priors. The most applicable use of such improper distributions is in 

elementary quantum mechanics (Good, 1980). 

Jeffreys considered using improper noninformative priors as the best way to 

describe the case of complete ignorance. Commenting on this, O'Hagan (1994) argued 

that there is no prior information that is completely absent, but improper priors are 
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used precisely to reflect weak information relative to the data. In such point of view, 

the posterior distribution will generally be robust to any reasonable choice of 

noninformative prior even improper one. In the same sense (see Irony and 

Singpurwalla, 1996) similar representation of noninformative priors are adopted, 

whether proper or improper, to construct a posterior distribution that reflects data 

dominance. 

Another two interested arguments must be mentioned. First, in the case of large 

sample sizes choices of noninformative priors, whatever proper or improper, will have 

minor effect on the posterior results (Gelman, 2002). Second, an improper prior can be 

approximated by a proper one, for example the Jeffreys-Haldan distribution in (2.3.3) 

can be approximated very closely by a log Caushy distribution (Good, 1980). 

 

Invariance 

One of Jeffreys' great contributions to Bayesian inference is that he introduced and 

developed invariance considerations into the Bayesian system (Geisser, 1980). 

Furthermore, Jeffreys' prior was the first explicit use of the concept of invariance in 

statistics and particularly in the selection of noninformative prior distributions (Good, 

1980). He was then the first to set up rules for noninformative prior distributions that 

satisfy various invariance principles, as will be illustrated below. On the other hand, 

the invariance principle is suitable only when no prior information is available, so the 

analysis of invariance will correspond to Bayesian analysis with noninformative priors 

(Berger, 1985). 

The invariance requirements are crucial for sensible posterior distributions that are 

based on noninformative prior. Furthermore, one should not seriously consider an 

assumption for noninformative Bayesian inference which does not satisfy them. The 

importance of meeting invariance principles could briefly be due to the following 

reasons as mentioned in Berger (1985): 

1. People who don't like to talk about noninformative priors are welcome to do the 

same procedure in terms of invariance. 
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2. Existence of many choices of noninformative prior, which is considered as a 

crucial criticism to noninformative Bayesian analysis, will be restricted to one 

particular noninformative prior if invariance is satisfied. 

Most of the recent use of invariance could be traced back directly or indirectly to 

Jeffreys' work (Good, 1980). Later efforts to derive noninformative priors through 

considerations of transformations of a problem had been extensively used in Hartigan 

(1964), Jaynes (1983 and 1968), and Villegas (1977, 1981 and 1984) and Berger 

(1985). 

The most apparent noticeable property of Jeffreys' general prior is that it satisfies all 

requirements of invariance concept as Hartigan (1964) proposed. Zellner (1971) 

introduced the invariance principles that they all hold through applying Jeffreys' prior 

in (2.3.6) according to the establishment of Hartigan (1964). These requirements are as 

follows: 

Let y be the n-vector of observations having the p.d.f. )( θθθθyp  over the space 

nRS ⊂ , which has continuous θθθθ  derivatives for all S∈y , where )
21 κκκκ

............((((θθθθ θθθ= is 

the k-vector of parameters defined on the space KR∈∈∈∈Ω . Hartigan (1964) established 

that if the Jeffreys' prior in (2.3.6) is considered, the Bayesian transformation, by 

combining the prior information with sample information, will have the following 

invariance properties: 

1. S-Labeling Invariance: Let )G(yz =  be a differentiable one-to-one 

transformation that takes the sample space S for y into S
*
, the sample space for z, 

then  

)()( yz θθθθθθθθ pp ∝ , 

where )(and)( yz θθθθθθθθ pp  denote posterior distributions of z and y respectively. This 

property is important particularly if this transformation in data involves a change in the 

units of measurement. 

2. Ω-Labeling Invariance: Let )(θθθθηηηη F= be a differentiable one-to-one transformation 

of θθθθ , then 

)()( yy θθθθηηηη pp ∝ , 
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where )(and)( yy θθθθηηηη pp  denote posterior distributions of η and θθθθ  respectively. This 

property, as mentioned above, is important in different parameterization of the 

problem. 

3. Ω-Restriction Invariance: Assume that Ω⊂Ω∈
*

θθθθ . Then  

)()(* yy θθθθθθθθ pp ∝ , 

where )(* yθθθθp is the posterior distribution based on )(* θθθθyp with *
Ω∈θθθθ . This 

property means that Jeffreys' prior is not affected by a restriction on the parameter 

space. In other words, applying Jeffreys' prior under restriction on the parameter space 

will lead to the same posterior. 

4. Sufficiency Invariance: Let )...(
2 m1

ttt=′t  be a vector of sufficient statistic of θθθθ . 

Then:  

),()( yt θθθθθθθθ pp ∝  

where )( tθθθθp is the posterior distribution obtained from the model )( θθθθtp . In this 

regard, Jeffreys' rule will lead to appropriate prior distributions for all well-known 

distributions that admit a sufficient statistic for a parameter, but merely in the case of 

single parameter. 

5. Direct Product Invariance: Let y
1
 and y

2
 be two independent sample vectors each 

of n×1, then 

),()()(
222111

yyy θθθθθθθθθθθθ ppp ∝  

where ),()()(
i iiiiii
ppp θθθθθθθθθθθθ yy ∝ for i = 1,2, 11 Ω∈θθθθ , 22 Ω∈θθθθ , 21 Ω×Ω=Ω∈θθθθ , 

and the prior p.d.f.'s )(and),(),(
2211

θθθθθθθθθθθθ ppp are each taken in Jeffreys' form in (2.3.6). 

6. Repeated Product Invariance: Suppose that y
1
,y

2
,…, y

m
 are each n×1 independent 

observations vector and each is from )( θθθθyp , the same as for y. Then 

∏

=

=

m

i
im

pp

1
21

)(),...,,( θθθθθθθθ yyyy , 

and 

∏

=

=

m

i
im

ppp

1
21

* )()(),...,,( θθθθθθθθθθθθ yyyy , 

and 
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∏=

=

m

i
im ppp

2
121

* )()(),...,,( θθθθθθθθθθθθ yyyyy , 

where )(θθθθp is the form in (2.3.6). 

 

2.3.4. Examples 

In this subsection, the derivation of Jeffreys' rule will be illustrated to several 

distributions from which observations are generated. The same examples will be 

demonstrated in the following sections for discussing other approaches for selecting 

noninformative priors.  

Example 2.3.1:  Binomial (θ ) 

According to this distribution, the parameter of interest θ , defined over the range 

[0,1], is the probability of success in each trial of total fixed number of trials n. Then 

an observation y (the number of success) will be distributed as follows: 

.,...,1,0,)1()( nyyp yny
=−∝

−

θθθ  

The importance of providing such a distribution is that there are several candidates 

in the literature for the noninformative prior form of the Binomial parameter. 

 Deriving Jeffreys' prior requires computing the square root of the determinant of 

Fisher's information matrix, which is a scalar in such case, having the form 














−=

2

2 (log
Inf

θ

θ

d

pd

y
E

))))y

θθ . 

Then the computation can be proceeded as follows: 

),1log()(log)(log θθθ −−+∝ ynyyp  

then 

,
1

)()(log

θθθ

θ

−

−
−∝

yny

d

ypd
 

and 

,
)1(

)()(log

222

2

θθθ

θ

−

−
−

−
∝

yny

d

ypd
 

,
)1(

)(
Inf

22 













−

−
−

−
−∝

θθ

yny

y
E

θθ  
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,     
22
)1(

)1(

θ

θ

θ

θ

−

−
+∝
nn

 

)1(
     

θθ −

∝
n

. 

Jeffreys' prior, which has the form θInf)( ∝θp , will be 

2/12/1 )1()( −−

−∝ θθθp .   (2.3.9) 

This is a proper distribution well known as Beta(1/2, 1/2) which is also called as the 

arc-sine distribution. Some different plausible alternative suggestions to this 

distribution will be seen later. 

Example 2.2.3:  Normal (θ ) 

In such distribution the observations are generated from a normal distribution with a 

known variance. The unknown parameter θ , which is the location parameter, is the 

parameter of interest defined over the parameter space ),( ∞−∞ . This distribution, 

which belongs to the family of location densities, is in the form 

.),(,)(

2

2
)(

2

1

∞−∞∈∝

−
−

yyp
y

e
θ

σθ  

As illustrated in the preceding example, the algorithm of driving Jeffreys' prior will 

be as follow: 

,)()(log 2
θθ −∝ yyp  

),(
)(log

θ

θ

θ

−∝ y
d

ypd
 

constant
)(log

2

2

∝

θ

θ

d

ypd
 

Hence, Jeffreys' prior of such normal mean will be 

constant)( ∝θp , 

which is in the same form as Jeffreys suggested in his first rule in (2.3.1). 

Example 2.3.3:  Normal (σ ) 

The observations are also generated from a normal distribution but with a known 

mean. The unknown parameter σ , which is the scale parameter, is the parameter of 

interest, defined over the parameter space ),0( ∞ . This distribution, which belongs to 

the family of scale densities, is in the form 
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.),(,)(

2
21

)(
2

1

∞−∞∈∝

−
−

−
yyp

y

e
θ

σ
σσ  

Deriving Jeffreys' prior can be done through the following steps: 

,)(
2

1
log)(log 2

2
θ

σ

σσ −−−∝ yyp  

,
)(1)(log

3

2

σ

θ

σσ

σ −
+

−
∝

y

d

ypd
 

,
)(31)(log

4

2

22

2

σ

θ

σσ

σ −
−∝

y

d

ypd
 

,
)(31

4

2

2










 −
−−∝

σ

θ

σ
σσ

y
E yInf  

 ,
31
22

σσ

+
−

∝  

 ,2 2−
∝ σ  

then, Jeffreys' prior in such case which takes the form 
σ

σ Inf)( ∝p , will be 

1)( −
∝ σσp  

which is in the same form as Jeffreys suggests in his second rule in (2.3.3). 

Example 2.3.4:  Normal ( σθ , ) 

In such case the observations are generated from a location-scale normal 

distribution with unknown mean and variance. The parameter space over which the 

parameters are defined is the same as mentioned in the above two examples, for θ  in 

example 2.3.2 and for σ  in example 2.3.3. The form of this distribution is as follow: 

.),(,),(

2
21

)(
2

1

∞−∞∈∝

−
−

−
yyp

y

e
θ

σ
σσθ  

To follow the procedure for deriving Jeffreys' prior we need first to calculate, 

,)(
2

1
log),(log 2

2
θ

σ

σσθ −−−∝ yyp  

then to find the Fisher's information matrix, which is symmetric having the form 





















∂

∂

∂∂

∂

∂∂

∂

∂

∂

−∝

2

22

2

2

2

),(log),(log

),(log),(log

,,Inf

σ

σθ

σθ

σθ

σθ

σθ

θ

σθ

σθσθ ypyp

ypyp

y
E , 











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0
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1

σ
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then, Jeffreys' prior with the form 
σθ

σθ ,Inf),( ∝p , will be 

2),( −
∝ σσθp .     (2.3.10) 

Jeffreys discarded to use this prior, as mentioned in a previous subsection, and 

recommended alternatively another prior distribution that resulted from assuming 

independence between both the location and the scale parameters. That leads to the 

Jeffreys' non-location rule.  

The main reason of considering this result inappropriate is that, when the model 

extended to the k-means and a common unknown variance, the marginal posterior 

distribution of the location parameters is the student-t with degrees of freedom depend 

only on the sample size regardless the value of k (see Zellner, 1971).  So given this 

assumption the joint prior density in this case taken as the product of the Jeffreys' 

priors for the mean parameter θ  and the scale parameter σ  separately to get the joint 

prior in the form 

1),( −
∝ σσθp ,    (2.3.11) 

which is the result of the product of constant)( ∝θp  and 1)( −
∝ σσp . This result can 

be obtained, as well, by applying directly Jeffreys' location general rule in (2.3.8). This 

final form is the recommended prior distribution by Jeffreys to this problem. 

Example 2.3.5:  k-Normal ( σ,θθθθ ) 

It is essential to provide another example for a multiparameter distribution. 

Therefore, the distribution of k-normal independent populations with k-vector of 

unknown means )( 21 kθθθ ,...,,...,,...,,...,,,,,θθθθ =′ , defined on the parameter space kR∈Ω , and 

unknown common standard deviation σ , which is defined over ),0( ∞ , will be 

presented here. In such distribution there are k independent random samples y
i
's , each 

of size in  defined over the sample space i
n

RS ⊂ and each also generated from 

Normal( σθ ,i ), where, i =1,2,…,k. The joint distribution of the k-vector of samples 

)yyy 21 k,...,,...,,...,,...,,,,,((((=′y will be in the form 

.
)y(

),( 1

2

2

1
2∑ −

∝
=

−

−

k

ii
k iep

θ

σ
σ

σθθθθy  

Derivation of Jeffreys' prior in (2.3.6) requires computing the following term 

2

1

2

2

)y(

log),(log
σ

θ

σσ

∑ −

−−∝
=

k

i
ii

kp θθθθy . 
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Then compute the Fisher's information matrix in (2.3.7), with a minor difference that 

there is another additional parameter σ , which means that the matrix will be of order 

(k+1)×(k+1). The elements of this matrix will be computed according to the following 

steps: 

The first k elements on the main diagonal will be proportional to  

,,..,2,1,
2

,(log2

,
ki

i

p
E =

∂

∂

−∝















θ

σ

σ

))))θθθθ

θθθθ

y

y  

2−
∝ σ . 

But the last (k+1)
th
 element on the main diagonal will equal to 

,
,(log

2

2

, 













∂

∂

−∝

σ

σ

σ

))))θθθθ

θθθθ

y

y

p
E  

22 −
∝ σk . 

Since 
σ,

Inf
θθθθ

 is symmetric, the off-diagonal elements except for the last row and last 

column will be hence in the form 

 ,,..,2,1,
,(log2

,
kji

ji

p
E =≠

∂∂

∂

−















θθ

σ

σ

))))θθθθ

θθθθ

y

y  

zero∝ . 

Similarly, the off-diagonal elements on the last row and the last column will equal : 

,,..,2,1,
(log2

ki
i

p
E =

∂∂

∂

−















θσ
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σ

))))θ,θ,θ,θ,

θ,θ,θ,θ,

y

y  

eroZ∝ . 

It is noticed, so far, that the Fisher's information matrix for this problem is of 

diagonal type. Therefore, Jeffreys' prior, which is the square root of the determinate of 

Fisher's information matrix, will be computed as follows: 

)2()(),( 2

1

2 −

=

−
×∏∝ σσσ kp

k

i

θθθθ , 

22),( −−
×∝ σσσ

kp θθθθ . 

Then, Jeffreys' prior for this problem based on his general rule in (2.3.6) will have the 

form 

    )1(),( +−
∝

kp σσθθθθ .    (2.3.12) 
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Jeffreys deemed this last derived form as a dissatisfying prior. Instead, he derived 

another noninformative prior form for this problem assuming independence between 

both the vector of means and the standard deviation, where both are of different kinds. 

He then, applied his general rule separately to each type of parameters, to get 

constant)( ∝θθθθp  as a noninformative prior distribution for θθθθ  and 1)( −
∝ σσp as a 

noninformative prior distribution for σ . This can easily be proved in the two cases for 

this problem. Then the joint noninformative prior distribution will result from the 

product of these marginal distributions to be 

   1),( −
∝ σσθθθθp .    (2.3.13) 

This was the final form accepted by Jeffreys and practically applied in similar 

problems. Zellner (1971) considers (2.3.12) as more informative for large k than the 

(2.3.13). In other words, Zellner described (2.3.13) as "minimal information prior". 

This latter concept introduced by Zellner (1971), as another tool to derive 

noninformative prior forms, will be discussed later (see §2.5). Zellner generally, and 

particularly in such problem, explained Jeffreys' departure from his general rule by his 

concern to add inconvenient prior information to the analysis. 

 

2.4. Locally Uniform Prior 

2.4.1. Introduction 

Box and Tiao (1973) objected the reckless application of Bayes' postulate to 

characterize the situation where nothing is known about the parameter. They also 

disagreed with the realistic existence of "complete ignorance" state of knowledge 

about the parameter. The state of "knowing little" is considered to have meaning only 

relative to the information provided by an experiment. This refutation has been 

justified by many reasons. The most noticeable one, which has been indicated in the 

preceding section, is lacking of this postulate leads to consistent posterior distributions 

if it is applied to different transformations of the parameter using the same data. 

However, they did not absolutely reject the uniform prior distribution. They permit 

using it approximately in certain cases such as: 
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1. In cases where the range of uncertainty of the parameter is not large, since 

many transformations would be nearly linear such as logarithmic and reciprocal. 

However, this argument would not necessarily work if a very extreme 

transformation was considered such as ))exp(exp(θφ = or 10
θφ = , assuming that 

θ  is the parameter of interest and φ  is some transformation of this parameter. 

2. For large or moderate-sized samples. Since fairly crucial modification of the 

prior distribution, through transformations in parameter may, only lead to minor 

modification of the posterior distribution. 

Away from these limited cases, they proposed a tool for choosing a particular 

metric (transformation) in terms of which a uniform, or locally uniform distribution as 

they call, can be regarded as a noninformative prior distribution about the parameter. 

Such a noninformative prior distribution is termed by them as a reference prior which 

is used as a standard prior to characterize the situation of ignorance about parameter 

relative to the informative data. 

Relevance Concepts: 

The technique for choosing a noninformative prior distribution proposed by Box 

and Tiao (1973) is mainly inherent to some basic terms. 

Likelihood Function (LF) 

Suppose that y is a vector of n observations whose density )( θyp depends on the 

value θ , the parameter of interest. )( θyp  is considered as a function of θ  for fixed y 

not as a function of y. In such case, )( θyp  is called the likelihood function (LF) of θ  

given y and written as )( yθl . Further, assuming )(θp  indicates to the prior 

distribution for θ , Bayes' theorem is very often written in the form 

)()()( θθθ plp ×∝ yy . 

Therefore, the LF plays a very important role in Bayes' formula. It is the function 

through which the data y modifies the prior beliefs about θ . It can hence be regarded 

as representing information about θ  coming from the data. The main properties of the 

LF can be summarized as follows: 
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1. Multiplication of LF by a constant, or generally by a function of the data y only, 

leaves the LF unchanged. 

2. The LF should not have the same properties as )( θyp , that is )( yθl is not always 

integrated or summed to unity. In this case, the LF is often scaled so that the area 

under the curve is one as follow 

θθ

θ

dl

l

∫ )(

)(

y

y
.    (2.4.1) 

This quantity is often termed as standardized LF.  

Dominance LF 

Box and Tiao were concerned with problems of scientific inference occurring in 

scientific investigation. They deemed that analyzing scientific data would often be 

sensible on the assumption that the LF dominates the prior. For more clarification of 

this concept, consider the example of the normal distribution with known variance, 

where θ  is the location parameter. The concept of dominant LF may be illustrated by 

the following figure. 

It is obvious from the above figure that the LF reflects less uncertainty about θ  

compared to that reflected by the prior distribution. So the LF tends to be more 

informative about θ  than the prior distribution, whose shape indicates that little is 

known about θ . Such relationship between the LF and the prior distribution figures 

that the prior is dominated by the LF. 

Box and Tiao motivated the dominance of the LF in scientific investigation for 

many reasons such as: 

 LF 

 Prior distribution 

θθθθ 

Figure 2.4.1 

The LF dominates the prior distribution 
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1. An experiment, for sake of scientific investigation, is not usually undertaken 

unless information supplied by it is likely considered more significant than 

information already available. 

2. It is appropriate for a scientist who has strong prior beliefs, which strictly disagree 

with what others have, to begin with deriving a posterior distribution that 

represents the view of someone else who has no strong beliefs or knows little about 

the parameter in the light of data. Such posterior distribution can merely be derived 

using prior distribution dominated by the LF. 

Locally Uniform Prior 

A basic property of the Bayes' postulate is that it is an improper distribution. Box 

and Tiao (1973) were hesitant to employ the improper p.d.f.'s recommended by 

Jeffreys through (2.3.1) and (2.3.3). They rather used such densities to express the 

local behavior of the prior distribution of the parameter over the region where the LF 

is appreciable but not over its entire admissible range. They have used the term local 

as a remedy to impropriety, which have been considered by them as impractical to 

occur. So by assuming the prior approximately follows (2.3.1) or (2.3.3) only over the 

range of appreciable LF and tails to zero outside that range, the resulted priors used are 

actually proper and have hence more practical sense. 

Considering the above argument only as for the uniform distribution in (2.3.1), that 

can be regarded as a normal distribution with infinite variance. It can hence be 

approximately having this form locally over some (possibly very large) interval, 

precisely over the range of appreciable LF, and is never very large outside it. The 

posterior distribution derived based on such prior distribution is approximately 

numerically equal to the standardized LF in (2.4.1). It follows that the dominant 

feature of the posterior is the LF, Lee (1989). Such a prior distribution used in this 

case, which is a proper one, is termed as locally uniform prior. So Box and Tiao 

overcome the theoretical difficulty of the impropriety of the uniform distribution in 

(2.3.1) by introducing instead, the practical sensible, the locally uniform prior 

distribution. 
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In general, the locally uniform prior is the prior which is dominated by the LF and 

does not change very much, or may be further considered as reasonably flat, over the 

region in which the LF is appreciable and does not assume large values outside that 

range (see Fig. 2.4.1). Kass and Wesserman (1996) considered such suggestion of the 

locally uniform prior by Box and Tiao (1973) as a response to the suspicions about the 

often impropriety property of many noninformative priors. Kass and Wesserman 

explained the use of locally uniform prior as a truncation of an improper prior to make 

its domain more compact and it hence becomes a proper distribution. 

Difficulties associated with locally uniform prior:  

It is of interest to bear in mind that, appealing to the locally uniform prior, as a 

remedy to the impropriety, has not yet so far wiped out the crucial flaw of its being 

self-inconsistent. It's being so, in the sense when it is applied to different 

transformations for the original parameter, which has just been indicated at the 

beginning of this section. Box and Tiao (1973) have devoted an effective technique for 

choosing a noninformative prior that overcomes such crack, as will be demonstrated. 

Data Translated LF 

Box and Tiao (1973) introduced the notion of data-translated LF to refine the use of 

locally uniform priors. For more assimilation to such terminology, consider again the 

example of the random sample y of size n from the normal distribution with known 

variance 2
σ . The LF for θ , the location parameter, can be considered to be normal 

distribution with mean equal the sample mean y , and standard deviation 
n

σ . This 

LF has precisely the following form 

.),(

2

2
)(

2
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n
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−

∝

θ

σσθ y  

Considering different sets of data represented by different values for y 's, the 

standardized LF curves would have the appearance shown in figure 2.4.2(a). It 

obviously illustrates how different sets of data exactly translate the LF curves on the 

θ  axis but leave it otherwise unchanged, with same functional form, except for a shift 

in location. Now if the locally uniform prior is taken for θ , the posteriors based on 

these sets of data will be also the same except for their locations. That’s why Box and 
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Tiao considered that it seems sensible to adopt a locally uniform prior when the LF is 

data translated. 

It is now important to provide the case when the LF is not data translated in terms 

of the parameter of interest. Consider, therefor, the case when the random sample y is 

generated from normal distribution with known mean but unknown variance σ
2
. Then 

the LF for σ will be in the form  

,),(
)]()1[(

2

1 2
2
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. 

In such a case, the standardized LF curves in terms of the original metric σ with 

different data sets, expressed by different values of S's, as shown in figure 2.4.2(b). 

 Box and Tiao considered that the noninformative prior for σ should not be taken as 

locally uniform distribution. 

In such a case, they suggested to express the unknown parameter σ in terms of 

another metric, say φ(σ), so that the corresponding LF for this transformation is 

exactly data translated. That is the LF curves for φ(σ) are unchanged via data sets 

except for their locations. The locally uniform prior could hence be sensible to be 

Likelihoods 

θθθθ (Normal mean) 

Likelihoods A noninformative 

prior for θθθθ 

(a)The likelihood is data translated in terms of θθθθ 

Figure 2.4.2 

The standardized LF shapes relative to different sets of data and the 

corresponding noninformative prior distributions of the parameter 

The corresponding 

noninformative prior for σσσσ 

(b)The likelihood is not data translated in terms of σσσσ 

σσσσ (Normal standard deviation) 
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assigned as a noninformative prior for φ(σ). Then the corresponding prior distribution 

for σ  could hence be easily derived by the usual change-of-variable rule based on the 

distribution of φ(σ). Such a resulted prior distribution for σ is termed as 

noninformative prior. 

In essence, for the moment, the above argument strengthens the use of locally 

uniform prior as long as it guarantees the LF to be exactly data translated. That is, in 

another words, the LF is said to be data translated when the sets of data only serve to 

relocate the LF with the same functional form. However, if this is not the case another 

transformation for the original metric is still a natural urge to be sought for and that 

makes the LF in terms of which exactly data translated. The locally uniform 

distribution is hence chosen as a noninformative prior for such transformation. Then 

by formal rules of change-of-variable techniques the corresponding noninformative 

prior distribution of the original parameter could easily be derived based on the locally 

uniform distribution of the transformation. 

Multi-parameter Data Translated LF 

It is of wide interest to point out the manipulation of Box and Tiao to the same 

concept of "data translated LF" but within multi-parameter models. For illustration, 

consider the example of Normal linear model (NLM), i.e., Xθy =)(E , where 

)
21 n

y...y(y=′y  is a set of Normally independent distributed random variables having 

common known variance σ
2
, )...(

21 k
θθθ=′θ  is a k-vector of unknown parameters, 

and X is the design matrix of order (n×k). The LF can be expressed as: 

,)ˆ()ˆ(
2

1

2
exp),(
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θθXXθθyθ
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where θ̂  is the vector of least squares estimate of θ . In case of k=2, figure 2.4.3(a) 

shows the same shape of LF contours for different sets of data represented by different 

values of 
1

θ̂  and 
2

θ̂ . That is, data sets serve only to relocate the LF over 
1

θ  and 
2

θ  

space and leave it with the same spread. In such case, the LF is data translated and the 

noninformative prior for θ  would be taken as locally uniform. When this is not the 

case, a transformation will be needed such that, in terms of which the LF is data 

translated. Then the procedure of selecting a noninformative prior for the original 
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parameters will be applied according to the same argument that followed above. 

Practically it is difficult to find a transformation that fulfills such concept. Generally a 

transformation would be necessary only to produce LF regions of the same size, see 

figure 2.4.3(b). 

 

 

 

 

 

 

 

 

 

2.4.2. Derivation 

It should be emphasized, so far, that the main issue is how to select a 

noninformative prior, or a reference prior as Box and Tiao called it, which provides 

little information about the unknown parameter relative to what is expected to be 

provided by the projected experiment. 

In the light of the above discussion, the best procedure for Box and Tiao, is to 

recommend the locally uniform distribution as a noninformative prior provided that it 

satisfies the exact data-translated LF principle. That is because the locally uniform 

prior under this principle will produce posterior densities with the same form, except 

for their locations, for different samples. This feature of the locally uniform prior is 

what makes it noninformative. It is therefore convenient to devote this subsection to 

hold this concept, on which they based their derivation, in more details. 

(a) Single parameter case: 

Mathematically, according to Box and Tiao (1973), the LF is considered to be 

exactly data-translated if it may be written in the form 

Figure 2.4.3 

Likelihood contours relative to different sets of data 

θθθθ2 

θθθθ1 
(a) NLM: likelihood contours with 

same shape. 

φφφφ2 

φφφφ1 
(b) Likelihood regions with different 

shapes have the same size.  
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)]()([)( yy tgl −∝ θφθ     (2.4.2) 

where φ(θ) is a one-to-one transformation of θ, g(.) is a known function independent of 

y and t(y) is a function of y often expressing a sufficient statistic. If this is so, the 

noninformative prior of φ is taken to be locally uniform and the corresponding 

noninformative prior of θ is as follows 

θ

φ
θ

d

d
p

locally

∝)(       (2.4.3) 

Box and Tiao stated further that, a transformation that allows the LF to be expressed 

exactly in the form (2.4.2) is not generally available. Thus, for a moderate sized 

samples all what would be necessary to require is a transformation φ(θ) in terms of 

which the LF is approximately data translated. That is, the LF is nearly independent 

of the data y except for its locations. So Box and Tiao developed methods for 

obtaining parameter transformations in terms of which the LF is approximately data 

translated. These methods are based on approximation of the LF to a quadratic form 

that is approximately normally distributed. Then, the required transformations will be 

derived on the principle of variance-stabilizing parameterization, the principle that 

fulfills to the LF to be nearly data translated. The procedure introduced by Box and 

Tiao has slight differences according to the type of the p.d.f. as will be shown under 

the following two titles. 

 

I. )( θyp belongs to the exponential family: 

Consider )
21 n

y...y(y=′y  to be a random sample from a distribution )( θyp  that 

follows certain regularity conditions. If this distribution belongs to the exponential 

family, it could be written in the form 

)]()(exp[)()()( yyy ucwhp θθθ =    (2.4.4) 

then the metric φ(θ) in terms of which the LF is approximately data translated would 

be derived such that: 

∫
Θ

∝ ,)(
21

θθφ d
/

K      (2.4.5) 

where Θ is the parameter space on which θ is defined 
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and L is the logarithm of the LF, i.e., ,)(log)( yy θθ lL = and θ̂  is the maximum 

likelihood estimate (MLE) of θ. 

Applying Box and Tiao's procedure for selecting noninformative prior of θ  

involves taking the locally uniform prior distribution for φ as an approximately 

noninformative prior. This in turn implies that the corresponding noninformative prior 

for θ approximately follows the form: 

).()( 2/1
θ

θ

φ
θ K

d

d
p

locallylocally

∝∝    (2.4.7) 

 

II. )( θyp  does not belong to the exponential family (the general rule): 

Since )( θyp  is not often expressed in the form (2.4.2), Box and Tiao modified the 

above argument. Through this refinement, for large n, the quantity in (2.4.6) converges 

in probability to the expectation form as follow: 

,
)(log

)(
2

2













∂

∂

−=

θ

θ

θζ
θ

y

y

p
E    (2.4.8) 

which is the fisher's measure of information about θ in the sample )
21 n

y...y(y=′y , 

which is generally defined as: 
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    (2.4.9) 

while in case if y is a random sample, such a form would be expressed as:  

)()( θζθζ n
n

=     (2.4.10) 

Consequently, arguing as before, the metric φ(θ) for which the locally uniform is 

approximately noninformative and that makes the LF be approximately data translated 

will be, in this case, as follow: 

∫
Θ

∝ .)(
21

θθζφ d
/     (2.4.11) 

Hence the corresponding noninformative prior for θ is approximately distributed as: 
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which is the same as derived by Jeffreys (1961), on grounds of invariance, and that is 

discussed in (§2.3). It could easily be shown that, when the distribution )( θyp  is of 

the form (2.4.4), the forms in (2.4.6) and (2.4.8) are equivalent, i.e., )()( θζθ ≡J . 

Whence the prior distribution in (2.4.7) is identical to the prior in (2.4.12) and the 

latter form can be used generally. 

 

(b) Multi-parameter case: 

Box and Tiao extended their argument to include the multi-parameter problems, and 

discriminate between two cases. First, when a transformation that produces data 

translated LF is available in a sense introduced from the multi-parameter point of view. 

Second, when such transformation is unavailable, a rule is needed to at least produce 

LF regions of same size as shown by figure 2.4.3(b). 

For further illustration, consider the distribution of data y, )( θyp , involves k 

parameters )...(
21 k

θθθ=′θ , the required noninformative prior for θ  could be found 

through one of the following rules: 

I. A rule fulfills data translation LF: 

Transformation produces LF, as in figure 2.4.3(a), could be available. In this case, 

the data translated LF in terms of this transformation must be written in the form: 

)],()([)( yfθyθ −∝ φφφφgl                 (2.4.13) 

where g(.) is a known function independent of y, )...(
21 k

φφφ=′φφφφ , is a one-to-one 

transformation of θ , and )](...)()([])([
21

yyyyf
k
fff=′ is a vector of k functions of y. 

The locally uniform distribution is taken as a noninformative prior for φφφφ . The 

corresponding noninformative prior of θ  is then 

,)( Jp ∝θ                  (2.4.14) 

where  
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So the matter now is to find a transformation φφφφ  that produces LF form in (2.4.13) 

that is data translated, but this is not generally available. In the location-scale models, 

for example, the transformation that leads to LF form in (2.4.13) will not lead to LF 

contours as in figure 2.4.3(a). That is because, the existence of the scale parameter 

leads to a transformation that magnifies the volume of the LF, as a proportion of the 

scale parameter, along the location parameter space, which will be illustrated through 

examples (2.4.4, figure(2.4.4)). 

II. A rule implies LF regions of same size: 

If the previous case is not available, Box and Tiao provide another less satisfactory 

method, as described by them, to obtain transformation that produces instead LF 

regions of same size. Such method depends on approximating the LF to the Normal 

distribution in a quadratic form and leads eventually to the following noninformative 

prior for θ : 
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information matrix about θ  associated with the sample. Therefor the prior form in 

(2.4.15) is identical to that obtained by Jeffreys' general rule in (2.3.6), but the later is 

derived on grounds of invariance. Box and Tiao have some interested remarks about 

applying this rule in some certain problems. 

 

Comments on Jeffreys' general rule: 

The preceding discussion has exposed to obstacles encounter application of 

Jeffreys' general rule. However, it is of interest to state here the difficulties of the 

application of the multi-parameter version of Jeffreys' rule which were introduced by 

Box and Tiao. They considered that this rule corresponds to less stringent and less 
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convincing transformation requirement on the LF than data translation. And under 

approximate Normality assumption, as well, the rule seeks a transformation that 

produces LF regions of the same size. 

They further deem another difficulty associated with the application of this rule to 

the location-scale models where parameters of different types are considered 

simultaneously. Where applying this rule to these problems leads to inappropriate 

priors such as in (2.3.9) and (2.3.11). Therefore, in such problems, seeking 

transformations that produce LF regions of same size has not been appropriate. Thus 

they agree with Jeffreys in his assumption of independence between location and scale 

parameters. In this respects they said "Any prior idea one might have about the location of a 

distribution would usually not be much influenced by one's idea about the value of its scale 

parameter". Even though, they considered some problems whereas such assumption is 

inappropriate. In such cases they recommended applying some manipulation to data to 

assume independence. 
 

It is of interest, to mention briefly the modification of Box and Tiao's methodology 

introduced by Kass (1990). He modified their procedure to cover more general 

location families. Kass extended their work to become group-theoretic. He also 

modified the concept of "approximate data translated LF" to produce a sharper local 

approximation. 

 

2.4.3. Examples: 

Box and Tiao's procedure will be illustrated in this subsection for the same models 

discussed earlier in §2.3. 

Example 2.4.1:  Binomial (θ ) 

According to this distribution an observation y (the number of success within n 

fixed number of trials) will be distributed as 

( ) .,...,1,0],1,0[,)1()( nyyp yny

y
n

=∈−=
−

θθθθ  

It is evident that this density could be written in the form of (2.4.4) as follows: 
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 Box and Tiao's procedure for selecting noninformative prior for θ  will be applied 

for this problem. Start by finding 
θ

θ

θ
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K , which can easily be proved to 

equal: 
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Secondly, find the transformation )(θφ that produces approximately data translated 

LF through equation (2.4.5) as follow 

( ) θθθφ dK∫∝

1

0

2

1

)( . 

It can easily be proved that, 

θθφ
1sin)( −

∝ , 

Then the locally uniform prior is taken as an approximate noninformative prior for 

)(θφ . The corresponding approximate noninformative prior for θ , as shown in (2.4.7), 

is  

( ),)( 2
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θθ Kp
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then 
2/12/1 )1()( −−

−∝ θθθp . 

This is the same prior derived for the same problem using Jeffreys' rule in §2.3. It 

could easily be proved to get the same result but using the general rule in (2.4.12), as 

long as the sample density is expressible in the form of the exponential family. 

Example 2.4.2:  Normal (θ ) 

The sample distribution of such problem is expressed through the form 
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which can be written in the form in (2.4.4), so both procedures of Box and Tiao in 

single space parameters will lead to the same result. So the general rule, (2.4.12), will 

be applied and leads to the result 
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Then, by assuming that y is a random sample the quantity )(θζ is calculated through 

forms (2.4.9) and (2.4.10) as follow 

constant.)(
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Then, through form (2.4.11), the metric )(θφ  that leads to LF which is approximately 

data translated is θθφ =)( , which has the locally uniform distribution as an 

approximate noninformative prior. The corresponding noninformative prior of θ , 

through form (2.4.12) is approximately 

)()( 2/1
θζθ ∝

locally

p . 

Then, 

.Consatant)( ∝
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p θ  

This is again the same result derived by Jeffreys' for the same model, see §2.3. 

Example 2.4.3:  Normal (σ ) 

The random sample that is generated from this distribution has a density in the form 
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This distribution belongs also to the exponential family, so the procedure of the 

general rule could be applied and leads to the result 
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Then, the quantity )(σζ is calculated through forms (2.4.9) and (2.4.10) as follow 
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Then, again through form (2.4.11), the metric )(σφ  that leads to LF that is 

approximately data translated is  

∫
∞

∝

0

21 )( σσζφ d/  

.log)( σσφ ∝  

The corresponding noninformative prior of σ , through form (2.4.12) is approximately 
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then 
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This is again the same prior derived by Jeffreys for the same model, see §2.3, but on 

grounds of invariance. 

Example 2.4.4:  Normal ( σθ , ) 

This is a type of location-scale distribution, where the random sample is generated 

from distribution of the form 
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The methodology of Box and Tiao for multi-parameter case that leads to the prior in 

(2.4.14) will be applied to this problem. In such method a transformation is sought 

such that the LF, in terms of which, could be written in the form in (2.4.13). The 

matter now is trying to rewrite the LF of this model in the form (2.4.13), and the 

required transformation could be hence automatically reached. 

The LF is expressed by 
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Multiplying the last form by ns , where multiplication of LF by constant leaves it 

unchanged, then 
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which can be written as 
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Eventually, the LF can be given by the following form: 
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This last form could be considered as a translation to the form in (2.4.13) such that 
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noninformative prior for φφφφ  and according to the form (2.4.14) the corresponding 

noninformative prior for both θ  and σ will be  

,)( Jp ∝σθ,  

then 

.),( 1−
∝ σσθp  

The same result could be reached if one applies Jeffreys' general rule but under 

assuming independence between location and scale parameters, in the sense as 

mentioned in §2.3. However, Jeffreys' general rule when independence assumption is 

not incorporated, will lead to the inappropriate result 

2),( −
∝ σσθp . 

As mentioned earlier for the location-scale models the transformation leads to LF 

form in (2.4.13) will not lead to LF contours as in figure 2.4.3(a). Figure (2.4.4) shows 

the contours of LF of the transformation taken through the preceding methodology. 

It is evident that this transformation leads to a bit magnification to the volume of the 

LF, as a proportion of the scale parameter, along the location parameter space. 

Example 2.4.5:  k-Normal ( σ,θ ) 

For another example to the multi-parameter problem, the distribution of k 

independent normal population has been provided. Assuming for simplicity that the 

random samples are same sized, say r, the LF of the k-vector of random samples will 

be in the form: 

Figure 2.4.4 

Normal ( σθ , ): contours of LF  

of )log,( σθ  for different data sets 

θ  

σlog
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Similarly as shown in the previous example, one could derive the noninformative 

prior of θ and σ according to Box and Tiao methodology. Again the idea is trying to 

rewrite the LF of this model in the form (2.4.13), hence the required transformation 

could be reached automatically. 

The preceding LF could be expressed as 
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where 
i
y  is the arithmetic mean within the sample i, where i=1,2,…,k.  

Multiplying the last form of the LF by ns  

( ) ( ) ( ) ,exp),(
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which can easily be rewritten as 
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Once again, this last form corresponds to the one in (2.4.13) such that 







∝

σlog

θ
φφφφ and 









∝

slog
)(

y
yf . Then, the locally uniform distribution will be taken as a noninformative 

prior for φφφφ  and according to the form (2.4.14) the corresponding noninformative prior 

for θ  will be  

,)( Jp ∝σ,θ  

then 

.),( 1−
∝ σσθp  
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Remember that, Jeffreys reaches the same result but under independence 

assumption between location and scale parameters, in the sense mentioned in §2.3. 

However, Jeffreys' general rule when independence assumption is not involved, will 

lead to an inappropriate result, presented previously by equation (2.3.12). 

 

2.5.   Maximal Data Information Prior(MDIP) 

2.5.1.  Introduction 

Zellner (1971) sustained using "locally uniform" proper priors when an investigator 

knows something about parameters such as their range, the experimental design and 

properties of LF. Information of this sort may be available in a perspective that was 

demonstrated in §2.4. This is usually not the situation in practice. Therefore, when 

such information is not available, Zellner emphasized that it usually makes very little 

practical difference whether locally uniform prior or Jeffreys' improper prior is used. 

In these regards, Zellner (1971) developed a framework that is based upon 

informational considerations, to derive a noninformative prior that formulates the case 

of "knowing little" or "ignorance".  

Since learning from data and experience is an important activity in science, 

Zellner's main idea was to reach a prior that leads to a posterior distribution reflecting 

mainly the information in a given sample or adds little information to the sample 

information. Thus, his objective was to obtain a prior that maximizes the difference 

between the average information in the LF, and the information in the prior. A solution 

to this optimization problem is a "Maximal Data Information Prior (MDIP)" or a 

"Minimal Information Prior", as Zellner (1971) called it. 

Definitions 

Single parameter case  

In order to illustrate this concept in case of one parameter, say θ , notice that, the 

basic idea underlying MDIPs is that they maximize the gain in the information resulted 

from the sample. Zellner (1971) introduced the following quantity as a powerful 

criterion of such gain 
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∫−=

θ

θθθ

R
y

dppIG )(ln)( ,    (2.5.1) 

where )(θp  is the required prior distribution of θ  which is defined on the parameter 

space 
θ

R . Whereas, 
y

I  is called the prior average information associated with an 

observation y and calculated as 

,)()( θθθ

θ

dpII
R

yy ∫=     (2.5.2) 

where )(θ
y

I  is defined to be a measure of information in the sample p.d.f. )( θyp , and 

computed as 

,)(ln)()( dyypypI

yR
y

θθθ ∫=    (2.5.3) 

such that yR  is the sample space on which the sample p.d.f. is defined. 

As seen through above relations G is just the difference between two information 

measures. The first relating the data and the second relating the prior. 

Zellner (1971) hence defined MDIP or the minimal information prior to be the one 

that maximize G for a given )( θyp . 

Multi-parameter case: 

For data p.d.f.'s involving more than one parameter, say a vector of k parameters 

)...(
21 k

θθθ=′θ , which is defined on the parameter space 
θ

R , G will be defined as 

follows, 

,)(ln)(∫−=

θ

θθθ
R

y
dppIG     (2.5.4) 

where, 

,)()( θθθ

θ

dpII
R

yy ∫=  

and 

.)(ln)()( dyypypI

yR
y

θθθ ∫=      (2.5.5) 

Moreover, the same definition could be introduced for a random vector of 

observations )...(
21 n

yyy=′y  of order n with j.p.d.f. )( θyp  where θ is the k-vector of 

parameters. 
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Zellner admits using another definition of a minimal information prior by 

employing any other measures of information. Much work has been done to derive 

priors by maximizing the information provided by an experiment, see e.g., Good 

(1956), Lindley (1956) and Soofi (1994), via calculus of variations techniques and 

getting no clear-cut analytical result because they provide intractable solutions. 

Zellner, however, altered the criterion to the form of G in (2.5.1), which is considered 

to be relatively easy to produce, Zellner (1996). 

Zellner (1977) provides the same procedure with further application to many 

problems. Many MDIPs have been developed and further properties to this procedure 

have been established in many papers in literature such as Sinha and Zellner (1990), 

Zellner (1991) and Zellner and Min (1993). 

 

2.5.2. Derivation 

The optimization of G in (2.5.1) with respect to the choice of )(θp  subject to side 

conditions is apparently just a standard calculus of variations problem. Zellner (1971) 

considered the side condition is that the prior )(θp  is proper. That is 

.1)( =∫
θ

θθ

R

dp      (2.5.6) 

Zellner regarded this side condition provided that 
θ

R , the region on which θ  is 

defined, may be, very large but it must be at least a compact region. 

The solution to the problem of maximizing (2.5.1) subject to (2.5.6), denoted by 

)(* θp , has been derived by Zellner (1977) to be 

{ }
θ

θθθ RIp
y

⊂∝ ,)(exp)(* ,   (2.5.7) 

such that )(θ
y

I , given in (2.5.3), is the information in the data density )( θyp . 

Zellner (1996) noticed that if )(θ
y

I  is constant, independent of θ , then the MDIP 

p.d.f. is the uniform distribution. He also pointed out that the rule in (2.5.7) is 

implemented relatively easily for many problems. 

Similarly, expressions as in (2.5.7) could easily be produced for multi-parameter 

problems. In this respects, the MDIP that maximizes the functional criterion G in 

(2.5.4), as shown by Zellner (1977), has the following form 
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{ }
θ

θθθ RIp
y

⊂∝ ,)(exp)(* , 

where the terms θ , θ)(
y

I , and 
θ

R are defined above. The same result could be 

obtained for models that contain random vector of observations, for further details see 

Zellner (1977). 

 

2.5.3. Properties 

The use of MDIP approach provides an explicit tool for the problem of selecting 

noninformative prior distributions. This approach is easy to implement since no 

asymptotic approximations are involved. Zellner (1996) appends several comparison 

results provided by alternative procedures for producing noninformative priors, 

indicates that MDIPs are relatively easy to produce. Besides that, they have reasonable 

properties which make them helpful to researchers and decision-makers in formulating 

priors. In this regard, Zellner (1996) epitomized these properties when he said "The 

MDIP approach allows one to derive diffuse and informative priors that are invariant with respect 

to relevant transformations is indeed fortunate.". Each of these features mentioned in the 

above citation shall be considered in details. 

 

Informational considerations 

Zellner provides an illuminating discussion of information processing rules. These 

rules derived by optimizing some informational criterion, are 100% efficient (Golan, 

2002). This optimization process resulted in MDIPs. Thus it is intuitive to review some 

general informational features of the MDIP approach.  

1. Entropy measure view: 

Zellner deemed that there is no way to answer the question about the form of a 

distribution to express the ignorance without using a measure of information. 

Therefore, he suggested a measure that is used by many others including Shannon 

(1948) which is the negative entropy, denoted by -H. This measure is used to express 

the information in a p.d.f. For example the negative entropy of the prior distribution 

)(θp , relative to a uniform measure, is given by, 

.)(ln)(∫=−

θ

θθθ

R

dppH     (2.5.8) 
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This last expression is just the second term of the quantity in (2.5.1). Zellner (1971), 

however, started with this concept to construct his functional criterion G. He used the 

entropy measure to signify the information in the joint density ),( θyp  which is defined 

as follow, 

.),(ln),(∫ ∫=−

yR R

dydypypH

θ

θθθ    (2.5.9) 

On using )()(),( θθθ pypyp = , the last equation could be passed through the 

following relations, 

[ ] ,)()(ln)()(∫ ∫=−

yR R

dydpyppypH

θ

θθθθθ  

[ ] ,)(ln)(ln)()(∫ ∫ +=

yR R

dydpyppyp

θ

θθθθθ  

.)()(ln)()(ln)()( θθθθθθθθ

θθ

ddyypppdydypypp
R RR R yy

∫ ∫∫ ∫ +=  

By substituting from both equations (2.5.2) and (2.5.3) in the last quantity, it could 

be written as 

.)(ln)(∫+=−

θ

θθθ

R
y

dppIH    (2.5.10) 

As seen from (2.5.10), which makes up the total information in the joint density 

),( θyp , that it breaks up into two parts. The first is the prior average information in the 

data density and the second is the information in the prior density. 

According to that, Zellner conveniently chooses G to be equivalent to the difference 

of the two terms on the R.H.S.of (2.5.10). 

Zellner suggested using another informational measurements to express the 

criterion G rather than the negative entropy based on uniform measure, as mentioned 

by (2.5.8) or (2.5.9). In this respect he recommended employing the negative entropy 

defined on other measures rather than the uniform measure to construct G, see Zellner 

(1996) for further details. 

Another interpretation of MDIPs according to their entropy view, is mentioned by 

Jaynes (1982), is that MDIPs are the p.d.f.'s that maximize the entropy associated with 
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a prior distribution subject to the side condition that the average entropy in the data 

p.d.f., )( θyp , be constant. 

2. The average log-ratio of LF to the prior view: 

A second interpretation of the criterion G from the informational point of view is 

given in Zellner (1977). This interpretation could be attained through the following 

steps: 

Substituting from equations (2.5.2) and (2.5.3) in (2.5.1), G could be written as  

 

,)(ln)()(ln)()( θθθθθθθ

θθ

dppdydypyppG
RR Ry

∫∫ ∫ −=  

It can be proved that 

G [ ] .),()(ln)(ln θθθθ

θ

ddyyppyp
R Ry

∫ ∫ −=  

Since )()( θθ ypyl ≡  is the likelihood function (LF) and given the last form, G can be 

expressed as 

.),(ln
)(

)(
θθ

θ

θ

θ

ddyypG
R Ry

p

yl
∫ ∫ 








=  

According to this last view of G, it can be interpreted as the average log-ratio of the 

LF to the prior p.d.f. Hence, by maximizing G by choice of )(θp , the average log-ratio 

of the LF to the prior will be made as large as possible. 

Given also this view, the forms of the MDIPs will depend on properties of the LF's 

or on the design of an experiment. This seems natural, since the purpose of the MDIPs 

is to allow the information provided by an experiment to be featured (Zellner, 1977). 

At last, having the LF featured in this fashion is an important aspect of the MDIP 

approach for selecting noninformative priors  (Zellner, 1996). 

Invariance considerations 

Zellner (1977) proposed two important theorems that provides some confining 

invariance properties of the MDIPs that are relating only to linear transformation of the 

parameters. According to these theorems: 
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1. MDIPs are invariant with respect to changes in the unit of measurements. 

This property of invariance is particularly termed as S-labeling invariance, 

see subsection 2.3.3. for more discussion to such property. 

2. MDIPs are generally invariant with respect to linear transformations of the 

parameters and observations. 

Kass and Wasserman (1996) pointed out that MDIPs are not generally 

parameterization invariant, specifically they are not Ω-labeling invariante as Hartigan 

(1964) called it. However, Zellner (1991) argued that invariance under specific classes 

of re-parameterization can be achieved by adding the appropriate constraints. That is to 

introduce the invariance conditions as side conditions in the optimization process of 

the functional criterion G.  

For more clarification to such a point, consider the case of m one-to-one 

transformations mih
ii

,...,2,1),( == θη . Zellner (1991) suggested obtaining MDIP by 

maximizing instead the following quantity 

,)(ln)()()()(ln)(
1
∑ ∫∫∫
= 















−+−=

m

i R
iii

R
iiy

R
y

ii

dppdIpdppIG

ηηθ

ηηηηηθθθθ  

where dyypypI
i

R
iiy

y

)(ln)()( ηηη ∫= . 

The optimization process for such quantity will be hold subject to  

.,...,2,1,)()( midpdp
ii

=∀= ηηθθ  

The solution of this optimization problem has been produced by Zellner (1991) and 

given by 














+= ∑

=
+

′
m

i
y m

ih
Ip

1

*
1

)(ln
)(exp)(

θ

θθ . 

This resulted prior then has the desired invariance properties over the given 

transformations. Some of interesting examples to such transformations are the 

reciprocal and power transformations. It is noteworthy that imposition of invariance 

conditions changes MDIPs that don’t incorporate them (Zellner, 1996). 
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By deeming the above algorithm, Zellner avoids being restricted by broad 

invariance conditions of the so-called Ω-labeling invariance. As mentioned by Zellner 

(1977), the objective of having a posterior distribution that reflects mainly the 

information in the data distribution can be achieved, but, for a particular 

parameterization. In other words, different investigators will obtain the same posterior 

distributions given that they use the MDIP procedure to generate priors for any given 

parameterization. 

The problem of achieving invariance to a wide class of re-parameterizations is a 

problematic issue that has received considerable attention in the literature and must be 

considered. On this respect Berger (1985) comments "The major problem with invariance 

concerns the amount of invariance that can be used.". Rao (1987), however, discussed 

degrees of invariance and states that the choice of metric naturally depends on a 

particular problem under investigation and invariance may or may not be relevant. 

 

A tool to produce "Informative priors" 

The MDIP approach is designed specifically to provide rules for selecting 

noninformative priors. One of the greatest contributions of MDIP approach to 

Bayesian inference is that it can further be employed to produce informative prior 

distributions. 

This can be done by incorporating the available prior information as side conditions 

in the process of optimizing G in (2.5.1). The prior distribution resulted from this 

maximization process is informative. For instance, as shown in Zellner (1996), the side 

condition may include the prior to be proper, that is, in (2.5.6), besides the additional 

moment conditions with the sm
i
'  given by 

.,...,2,1,)( midpm
R

i
i

== ∫ θθθ

θ

   (2.5.11) 

Zellner showed that the prior that maximizes G in (2.5.1) subject to (2.5.6) and 

(2.5.11) is given by 

{ }q
qy

Ip θλθλθλθθ ++++= ...)(exp)(
2

21
*

, 
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where s
i
'λ  are Lagrange multipliers. A reader may refer to Zellner and Highfield 

(1988) for a procedure for computing values of these multipliers. 

Another type of information could be embodied, as a side condition, may be 

restricted on the ranges of the parameters. Moreover, Zellner (1996) extended his 

technique to involve prior information related to prior fractiles. He involved it as a side 

condition in his algorithm and derived informative priors. 

 

Affinities with Jeffreys' general rule: 

As most of researches within noninformative prior selection could possibly be 

traced back directly or indirectly to Jeffreys' prior, it seems natural to inquire about the 

existence of some affinities between MDIP approach and Jeffreys' prior. 

Zellner (1971) considered the asymptotic form of the criterion G as follow 

,)(ln)(Infln)( θθθθθ

θθ

θ
dppdnpG

RR
a

∫∫ −=  

where n is the number of independent drawings from )( θyp  and 
θ

Inf  is the Fisher 

information matrix defined in (2.3.7). By maximizing 
a

G  subject to (2.5.6) Zellner 

obtained the following prior 

2
1

Inf)(
θ

θ =p , 

which is just Jeffreys' invariant prior given by his general rule in (2.3.6). 

Thus from the asymptotic form of G, Jeffreys' prior is MDIP. In this respect, it must 

be recognized, however, that Jeffreys' prior is not always minimal information prior 

since it does not always maximize G. It is convenient to notice some situations in 

which 
a

G  is not maximized by Jeffreys' prior. This is so when one considers models 

such as location-scale models where parameters of different types are involved 

simultaneously, and models of high dimension as well. 

At the other extreme, minimal information priors do not have generally the 

invariance property of Jeffreys' prior as just mentioned above. Zellner (1991) refined 

his approach to derive MDIP that meets the invariance requirement, but for particular 

relevant parameterization. Zellner (1971), however, deemed that investigators using 
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different parameterizations can get compatible (or consistent) results if they adopt the 

convention of using MDIPs for any given parameterization when they know little 

about the values of the parameters. That is, the invariance property has not yet been 

considered as an urgent necessity against getting MDIP. 

 

2.5.4. Examples 

MDIP approach is applicable to a very wide range of data densities, as shown in 

Zellner (1977), where many MDIPs for a number of univariate and multivariate data 

densities are presented. He pointed out, e.g., that for location-scale data densities, the 

resulted MDIPs are in accordance with usual prescriptions for diffuse or 

noninformative priors that are in widespread use. Zellner (1996), moreover, discussed 

deriving MDIPs for parameters of several frequently employed models such as linear 

models, e.g., General Linear Model (GLM) and Autoregressive Models (AR). He also 

applied his technique for hierarchical models hyperparameters and for common 

parameters in different data densities as well. 

Throughout this subsection, applications of MDIP approach will be demonstrated 

for those densities presented in sections 2.3 and 2.4. 

 

Example 2.5.1:  Binomial(θ ) 

The well-known Binomial process will be considered but for a single observation, 

for simplicity, that is the Bernoulli process. The probability mass function of such a 

process, )( θyp , is in the form 

1,0and10,)1()( 1
=≤≤−=

− yyp yy
θθθθ  

where y is the number successes and θ  is the probability of success.  

Evolving the MDIP in (2.5.7) for the binomial parameter θ  requires computing the 

quantity )(θ
y

I  in (2.5.3), which represent the information in the data mass function 

)( θyp . This term can be computed as follows 

,)(ln)()(
1

0
∑
=

=
yy

ypypI θθθ    

[ ],)1ln()1(ln)1(
1

0

1
∑
=

−

−−+−=
y

yy yy θθθθ  
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),1ln()1(ln θθθθ −−+=  

[ ].)1(ln )1( θθ
θθ

−
−=  

Thus the MDIP for θ , by using (2.5.7), is  

10,)1()( )1(*
≤≤−∝

−
θθθθ

θθp    (2.5.12) 

This prior density contrasts sharply with Jeffreys' prior for Binomial parameter that 

is in (2.3.8), which is the Beta ),( 2
1

2
1 . An interesting comparison between these two 

prior densities will be provided at the end of this chapter. 

 

Example 2.5.2:  Normal (θ ) 

When the data density belongs to the normal distribution with known variance 2
σ , 

noted to belong to ),0( ∞ . Such distribution is a type of location densities and has the 

form 

),(,)(
2

22

1 )(

2

1
∞−∞∈=

−
−

yyp
y

e
θ

σπ

σθ  

where θ  is the unknown location parameter that is defined on the parameter space 

),( ∞−∞ . 

The data density information measure )(θ
y

I , according to (2.5.3), is given by 
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θ
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θ

σπσπ

σσ θ     (2.5.13) 

Since the integral in the first term on the right side of (2.5.13) is an integral all over the 

space of the normal p.d.f., it will hence give unity. Whereas, integral in the second 

term is just 2)( θ−yE , which gives the variance 2
σ . Hence the form in (2.5.13) can be 

reduced to 

( ) ( ))(ln)( 2

2

1

2

1
2

σθ
σσπ

−
+=yI . 

( )
2
1ln2ln −−−= σπ  

Finally the measure )(θ
y

I  will be given by 

( )[ ] σπθ ln12ln)(
2
1

−+−=yI     (2.5.14) 
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It can obviously be seen that the right side of (2.5.14) is constant, independent of θ , 

then the data density information measure of the normal distribution with unknown 

mean is as follow 

constant)( =θ
y

I . 

Then the MDIP of the mean parameter θ  can be produced using (2.5.7) to be as 

follows 

constant.)(* ∝θp  

This prior distribution is in accordance with the Jeffreys' prior of θ  for the same 

problem, that is, Jeffreys' first rule in (2.3.1). 

 

Example 2.5.3:  Normal (σ ) 

Regarding the normal distribution with unknown variance 2
σ , the form of the p.d.f. 

is given by, 

),(,)(
2

22

1 )(

2

1
∞−∞∈=

−
−

yyp
y

e
θ

σπ

σσ  

where θ  and σ  are defined through the previous example. 

To illustrate the derivation of the MDIP of σ  in such problem, the measure of the 

information in the density )( σyp , which is )(σ
y

I should be calculated using (2.5.3). 

This can be done easily by following up the previous steps of computing )(θ
y

I  that 

have been shown in example 2.5.2. Eventually, the measure )(σ
y

I  can easily be 

proved to have the same form as in (2.5.14). That is it will be given by, 

( )[ ] ,ln12ln)(
2
1

σπσ −+−=yI  

which is equivalent to, 

σσ lnconstant)( −=
y

I .    (2.5.15) 

Thus, the MDIP of σ , based on (2.5.7), will be given by 

{ })(exp)(* σσ
y

Ip = , 

{ }1lnconstantexp −
+= σ , 

Then, the MDIP of σ , finally, has the form 
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.)( 1* −
∝ σσp  

Again this prior distribution is equivalent to Jeffreys' prior of the normal standard 

deviation σ , which is Jeffreys' second rule that given by (2.3.3). 

 

Example 2.5.4:  Normal ( σθ , ) 

It is essential to provide a data density that belongs to location-scale densities. 

Therefore, the normal distribution with mean and variance are both unknown is 

considered. The form of the p.d.f. is given by, 

),(,),(
2

22

1 )(

2

1
∞−∞∈=

−
−

yyp
y

e
θ

σπ

σσθ , 

where, the parameter space is the same as mentioned in the above two examples. 

The information in this density, measured by ),( σθ
y

I  using (2.5.5), can be shown 

to be equivalent to the right side of (2.5.14). It can be accordingly reduced to the same 

form as in (2.5.15). That is 

σσθ lnconstant),( −=
y

I . 

As shown throughout the previous example, the prior yielded by MDIP approach has 

consequently the following form 

.),( 1* −
∝ σσθp      (2.5.16) 

This result corresponds to Box-Tiao "data translation" rule for producing 

noninformative prior presented in §2.4, both in form and being defined over a finite 

range of parameter space and, thus, being proper density. But this MDIP is in contrast 

with Jeffreys' general rule, in (2.3.6), which produced the prior form in (2.3.9) that 

deemed by Jeffreys to be unsatisfactory because it involves adding unwanted 

information. Jeffreys modified that prior by assuming independence between the 

location and scale parameters and applying his general rule separately to each 

parameter and eventually reach the prior in (2.3.10), the prior he employed in practice, 

which corresponds the form in (2.5.16). 
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Example 2.5.5:  k-Normal ( σ,θ ) 

Another example for a multi-parameter case with larger dimension is the 

distribution of k-normal independent populations with k-vector of unknown means 

)
21 κ

θθθ=′ ............(θ  defined on the parameter space kR∈Ω , and unknown common 

standard deviation σ  defined over ),0( ∞ , will be presented here. In such distribution 

there are k independent random samples y
i
's , each of size r  defined over the sample 

space rRS ⊂  and each also generated from Normal( σθ ,
i

), where  ki ,...,2,1= . The 

j.p.d.f. of the k-vector of random samples )y...yy(
21 k

=′y will be in the form, 
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The information in the data density, measured by ),( σθ
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I , are given by 
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The right side of the last equation can easily be simplified to the following form, 
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and ),( lmS  is an indicator function is defined as 
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It can be seen, for the first term of the right side of last form of ),( σθ
y

I , that each 

integral within the n multiplied terms is unity. Whereas, the amount of the second 

term, is a summation of n terms each is a multiplication of n terms of integral. To 

evaluate this amount, consider for example the first term in the summation where 1=l  

that is given by, 
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This result could be achieved for all the remaining (n-1) summed terms. Then, the 

information measure ),( σθ
y

I  can be eventually reduced to, 
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Using the generalized form of (2.5.7) in multidimensional case, the prior yielded by 

MDIP approach has consequently the following form 

.),( np −
∝ σσθ  

It is of quite interest to consider such example as it was previously concerned in 

section 2.3 (see example 2.3.5). The purpose is to compare the results when applying 

MDIP to the k-Normal distribution with those obtained when applying Jeffreys' prior. 

In such case, the sample p.d.f. is in the form, 
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Again, obtaining the MDIP involves evaluating the quantity ),( σθ
y

I  that represents 

the information in the data, 
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Since the random sample s
i
'y  are independent and each has Normal ( σ,

i
θ ), then the 

right hand side of the above equation could be simplified to 
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(2.5.17) 

The integral of the first term in the right side of the above equation is unity. On the 

other hand, the amount between brackets in the second term is a summation of k terms 

each is a multiple integral. To evaluate each term, consider for instance the first term 

as follows: 
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Evaluating the integral of each of the other (k-1) terms will lead to the same result.  

Eventually, the equation (2.5.17) simplified to 
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The MDIP can be obtained by substituting in the generalized form of (2.5.7) in the 

multiparameter case. Then, the MDIP of such problem is given by 

kp −

∝ σσ ),θ( .    (2.5.18)
1 
 

                                                           

1
  It is of great interest to notify that the result in (2.5.18) is different from the one derived by Zellner 

(1971, p. 53). We contacted professor Zellner to discuss such issue. Professor Zellner confirmed that our 

proof is correct and there was a typing error in his book. 
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2.6.  Concluding Remarks 

In summary, the noninformative priors derived through the previous examples are 

presented in the following table. 

Table 2.1: Noninformative priors for some selected sampling distributions 

Jeffreys ' Prior 
Sampling 

Distributions General Rule 
Independence 

Rule 

Locally Uniform 

Prior 
MDIP 

Binomial (θ ) 2
1

2
1

)1()(
−−

−∝ θθθp
 

 2
1

2
1

)1()(
−−

−∝ θθθp  

)1()1()( θθ
θθθ

−
−∝p  

Normal (θ ) constant)( ∝θp   constant)( ∝θp  constant)( ∝θp  

Normal (σ ) 
1)( −

∝ σσp   
1)( −

∝ σσp  1)( −
∝ σσp  

Normal (θ ,σ ) 
2),( −

∝ σσθp  
1),( −

∝ σσθp  1),( −
∝ σσθp  1),( −

∝ σσθp  

k-Normal (θ ,σ ) 
)1(),( +−

∝
kp σσθ  1),( −

∝ σσθp  1),( −
∝ σσθp  kp −

∝ σσθ ),(
 

Regarding the results displayed in the previous table, one may notify some 

outstanding remarks. First, the different noninformative prior approaches may lead to 

the same prior p.d.f.. In further details, the noninformative prior p.d.f. of the binomial 

parameter has the same form that meets both the invariant principle and data translated 

likelihood concept, however, considering the principle of MDIP leads to a different 

form, which is the beta form. Zellner (1977) discussed the main properties of those two 

forms with respect to the uniform prior ( 1)( =θp ). Hence, he pointed that both Jeffreys' 

prior and MDIP are proper p.d.f.s, while the MDIP is symmetric around ½ and lies 

between the Jeffreys' prior and the uniform prior. Moreover, MDIP tends to 1 as θ tends 

to 0 or 1. However, Jeffreys' prior tends to ∞ as θ tends to 0 or 1. On the other hand, the 

three approaches lead to the same prior distribution in case of sampling from Normal(θ) 

and from Normal(σ). Nevertheless, when sampling from Location-Scale-Normal 

distribution Normal(θ, σ), the Locally uniform prior is the best  noninformative 

approach to be used, since it leads to an accepted noninformative prior form. While 

Jeffreys' discards his general rule by assuming independence to lead to the same form 

attained by using the data translated likelihood without assuming independence. 

Furthermore, adapting the principle of MDIP leads to a different form that contains 

higher information that is considered by Jeffreys' as dissatisfying information. 
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Informative prior distributionsInformative prior distributionsInformative prior distributionsInformative prior distributions 

3.1. Perspective on informative priors 

Bayesian scheme allows one to incorporate prior information into statistical 

models, before observing data, for decision-making. It then works for producing the 

posterior distribution by the aid of Bayes' rule. Inference problems concerning the 

parameters of interest will mainly depend on this distribution since it summarizes all the 

available information about the parameters, both prior information and sample 

information. One motivation to incorporate such information is that in certain problems, 

taking into account cogent information that are not contained in the sampling 

distribution, can improve the accuracy and the reliability of conclusions (Litterman, 

1980). Thus, prior information is a crucial element in Bayesian framework so it attracts 

numerous statisticians to develop approaches to coin such information. These prior 

information or beliefs about parameter may be available, usually subjectively, in terms 

of historical information or expert judgment. It was stated that a convenient way to 

quantify such prior information is in terms of an appropriate probability density 

function of the parameter of interest (Berger, 1985). This chosen p.d.f. has to be 

adequate in representing the prior information otherwise another prior p.d.f. has to be 

chosen by the investigator to do the same function (Zellner, 1971). Such a prior p.d.f. is 

the so-called informative prior distribution.  

It is worth stressing that, in practice of Bayesian statistics, noninformative prior 

distributions are used for cases in which expert judgment is unavailable or not of 

interest. However, it is appealing to incorporate any available information about the 

parameter as an informative prior to the analysis. Ignoring this information, just for the 

sake of objectivity, is not recommended. Thus, quantifying prior information is often 

corresponding to subjective Bayesian system. Prior distributions, in this context, attempt 

to model the unavoidable ambiguity in life and nature (Pericchi, 1998).  
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Subjective beliefs are usually available in scientific inference. For example, a 

scientist decides to do a particular experiment in order to confirm some hypothesis 

about the parameter (Press, 1989). 

3.1.2. Interpretations for informative priors 

Pericchi (1998) introduced two interesting different broad interpretations for 

informative prior distributions as follows: 

I. Sensitivity analysis 

This is also often called "Bayesian robustness" or "collection of individual priors". 

Bayesian robustness aims to establish a neighborhood around a sensible subjective 

prior. Two intrinsic characteristics of such interpretation are 

1. Classes of priors are composed of priors individually judged to be reasonable and 

compatible with the partial available information. 

2. Each prior is consistent with actual prior beliefs but it is recognized that prior beliefs 

are imprecise.  

II. Collective prior 

In such interpretation the properties and the features of the whole class is the main 

concern. On the other hand, the practical features of individual priors are unimportant. 

Both interpretations are similar in mathematical manipulation but different in 

assessment strategies. Also problems addressed by each type are different.  

Informative prior distribution is commonly used in small samples where there is 

insufficient data to form a convenient conclusion. A probability distribution is needed to 

represent these subjective beliefs.  

Reviewing the development elicitation methodologies for informative priors 

recommends the following broad principles that guide beneficially these efforts (see 

Hahn, 2006): 

[1]. Elicitation methodologies have to be flexible enough in the form in the sense that 

they would generate a wide range of distributions expressing a wide range of 

propositions deemed by the experts. 
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[2]. Probabilistic judgments coined by distributions generated by these methods have to 

be simple and consistent. However, in case of complex ones, it is beneficial to 

break them down into a series of more straightforward ones.  

[3]. Methods have to minimize the computational efforts of statistician. That is, these 

methods have to be easy to implement. 

[4]. Methodologies for prior elicitation have to be applicable to a wide range of models 

or scenarios. That is, it is more desirable to have more broad methodologies that 

could be used in various settings. For example, a unified approach is desired to be 

applied to real-valued parameters, strictly positive parameters and parameters that 

exist on unit interval could save development work.  

Before overviewing methodologies for prior elicitation, it is important to recognize 

possible types of prior information that might be quantified by prior distribution. 

 

3.1.2. Types of prior information 

Zellner (1971) discussed a considerable broad classification of prior information. 

He distinguished between what is called data-based prior (DB) and non data-based 

prior (NDB). Moreover, Berger (1985) introduced an extensive summary for many 

other types of NDB priors. 

I. Data-based prior (DB) 

In this type, the prior p.d.f. represents information contained in a sample of past 

data that have been generated in a scientific manner. There is an inherent disapproval of 

such a prior because of its practical dependence on data since the idealized Bayesian 

view is that the prior does not depend anyway on the data. Berger (1985) described this 

view as not very realistic for some of the following reasons: 

1. The model that describes data is often chosen after examining the data and one goes 

on then to define the parameter. 

2. Even when the parameter is well defined outside of the experiment, yet specifying 

subjective prior information becomes a very sophisticated serious task in multivariate 

situations, particularly when the parameters have dependent coordinates. On the 

contrary, one should peek at the data in order to find out where prior elicitation 
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efforts should be concentrated. That is, to ignore the components of parameter vector 

that are well assessed by the data. 

3. It is noticeable that even methods for developing noninformative priors mostly yield 

priors dependent on the model. Therefore, noninformative priors are not pure. 

It must be recognized that when other reasonable choices of the prior that are not 

DB yield the same conclusion as the DB prior does, then the details of the prior 

development will not be of much concern. On the other hand, Bayesian robustness or 

sensitivity analysis plays a concrete role in alleviating criticism of DB priors. 

Another considerable remark is that it is possible that two investigators working 

with the same model and DB prior information can arrive to different posterior beliefs if 

they base their prior information on different bodies of past data. The results could be 

brought into agreement by pooling their past samples to produce the same DB prior 

information (see Zellner, 1971) 

II. Non data-based prior (NDB) 

In this type, the prior p.d.f. quantifies personal or subjective information about the 

parameters of the model. These subjective beliefs about parameters may be arising from 

introspection or theoretical considerations. Thus, such a type is relevant to the 

subjective view of probability. The main idea of subjective view is to let the probability 

of an event reflect the personal beliefs about the chance of the occurrence of the event. 

For more details about subjective probability in comparison with other probability 

views and for knowledge about methods to assess such type of probability, see Barnett 

(1973) and Berger (1985). 

Berger (1985) proposed an interesting discussion to various sorts of subjective 

information that could be available about the parameters, particularly for parameters of 

continuous type, and that be beneficial in elicitation of an appropriate prior p.d.f. 

The Histogram approach 

In such sort of information, the space of the parameter is divided into intervals. 

Subjective information about parameter could be available in a form of subjective 

probabilities assigned to each interval. In the sake of constructing an appropriate prior 
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p.d.f., plot the probability histogram. Then, smoothing this histogram will lead to the 

prior density. This technique for developing informative prior is known as the histogram 

approach. There are some difficulties in applying this approach. Since, there is no clear-

cut rule to control number of intervals. Moreover, it is hard to be applied in infinite 

intervals (with tails). 

The Relative likelihood approach 

Here again, the parameter space, say Θ  is a subset of real line, is divided into 

intervals. Subjective probabilities could be assigned to the relative "likelihoods" or 

"odds" ratios of various pairs of points in the space. A direct sketching to these points 

could bring a prior density. It is evident that such a method involves comparing a vast 

pairs of points to produce an accurate sketch. 

There are several advantages to the relative odds ratio prior methodology. First, the task 

is straightforward to the expert. Second, it is quite general and applicable for many 

parameter cases. Third, it is easy to be used to produce graphical output that can be used 

to provide additional feedback to the expert. However, a difficulty is encountered when 

using such methodology with unbounded Θ  where tails may not be included in such 

algorithm, since it is applicable in finite region. A possible reply to such problem is that 

the expert is free to continue adding intervals to the p.d.f. until it has been sufficiently 

well specified. A comprehensive discussion to such problem is covered in Berger 

(1985). 

A recent work by Hahn (2006) has refined this approach to be implemented with 

Markov Chain Mont Carlo (MCMC) methods. In that work, Θ  is divided into k 

intervals. Denote the i
th
 interval as iθ . Subjective information are assigned in a form of 

a series of expert's judgments indicating the relative likelihoods or odds of iθ  compared 

to jθ  where i, j=1,2,…,k and i < j. This process is repeated by eliciting relative odds 

ratios for all iθ  and jθ , which requires )1(
2
1

−kk  judgments from the expert that can be 

incorporated in a matrix. The resulted matrix is termed as the matrix of judgments. 

Hahn used the principle of Kullback-Leibler divergence to derive the prior p.d.f. The 

resulted informative prior p.d.f. has the interpretation of being the best estimate of the 

expert's underlying distribution that generates his judgments, for more details see Hahn 

(2006). 
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The cumulative distribution function approach (CDF) 

Subjective information may also be available for several α-fractiles. Then, the CDF 

of the parameter of interest, say Z(α), could be constructed for each α. The prior p.d.f. 

could hence be assessed by plotting and smoothing the curve joining the points (α,Z(α)) 

for all α. 

Information match a given functional form 

The preceding types of subjective information has so far been discussed are of 

nonparametric nature. However, another parametric type of information is useful by 

assuming that the prior density is of a given functional form, which may belong to a 

standard density function. It is evident that this given distribution will be a function of 

another, frequently unknown, parameters. Those parameters are called the 

hyperparameters, therefore, this technique is described as parametric (Berger, 1985). 

 

3.2. Literature Review 

Overview of the literature on developing elicitation methodologies for informative 

priors shows a vast history with several controversies that are still not entirely resolved 

(Jaynes, 1985). On the late 1940's, the prior information idea was strongly instructed, 

however written work on such issue does not appear at all, possibly, since prior 

knowledge was hard to document. 

Representing the prior information by a proper distribution has been widely 

covered in statistical literature. A statistician may represent his subjective prior beliefs 

using “some functional form” without any restrictions. This approach usually requires an 

application of numerical integration methods to get the posterior distribution.  

Another well known and widely used approach is the so-called “conjugate priors”, 

discussed by Raiffa and Schlaifer (1961), DeGroot (1970) and Berger (1985). These 

priors are chosen such that they have the same functional form as the likelihood when the 

last is expressed as a function of the parameters. These priors have many useful 

properties that will be discussed later. A recent work for Packiorek (2006) discussed a 

certain type of conjugate prior for the normal linear model that is called the unit 

information prior.  
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Zellner (1986) presented “g-prior” as an informative prior in the Bayesian 

regression analysis. 

Another type of informative priors, introduced by Kadane (1980), Kadane et al. 

(1980), Geisser (1990), Winkler (1967 and 1980) and West et al. (1994), are called 

predictive distribution priors. This type of prior involves assessment of the expert’s 

beliefs based on the sample from the process under interest. Thus, this approach 

suggests using the marginal distribution of the observed sample to determine the prior 

distribution. 

The ML-II (the type II maximum likelihood prior) is another powerful technique 

to select an informative prior distribution. This approach is developed and applied by 

many authors such as Good (1983a) and Berger and Berliner (1983). Such technique 

involves assuming that the prior p.d.f. belongs to a given functional form then 

determine the prior parameters, the hyperparameters, using the maximum likelihood 

approach. A similar approach discussed by Berger (1985) is the moment approach that 

is to determine the hyperparameters using the sample moments. 

Lindley and Smith (1972) and Good (1983b) and a recent work for Berger and 

Strawderman (1993) developed another important approach of informative priors that is 

called "hierarchical priors". Such approach is used when one has more than one type of 

prior information at the same time. Hierarchical approach involves modeling these 

information in stages. 

 

3.3. Natural Conjugate Priors 

A class Π  of prior distributions is called conjugate class for the class of density 

functions F , if the resulted posterior density )( xθπ  belongs to the same class Π  for 

any prior distribution Π∈)(θπ , and any density function F)( ∈θxf , see Berger 

(1985). Some illustrative applications for the use of the natural conjugate prior will be 

introduced through the following two sections. The most important type in conjugate 

class is the so-called natural conjugate (NC) prior. It is constructed by choosing the 
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conjugate family class having the same functional form (kernel) of the likelihood 

function. Natural conjugate prior is also called “convenience prior”. 

 

3.3.1. Properties 

Raiffa and Schlaifer (1961) proposed to generate the family Π  so that it satisfies 

the following properties: 

1. Closure property: Conjugate priors allow one to begin with a certain family of 

distributions and end up with a posterior distribution of the same family, but with 

parameters updated by the sample information. Therefore, conjugate priors are 

called "closed under sampling" or "closed under multiplication". 

2. Property of tractability: The conjugate priors are analytically tractable so that they 

ease the computations of the posterior distribution given a certain sample. This 

property is the main reason of their popularity in time series analysis. They are 

frequently used in time series analysis such as Broemeling (1985). 

3. Richness property: The conjugate family of priors is very rich. It contains many 

members from well-known standard forms that are able to express the prior 

information in various situations. 

4. Interpretable property: The conjugate family, Π , should be parameterized in a 

manner which can be interpreted so that it will be easy to verify that the chosen 

member of the family is really in close agreement with the decision-maker's prior 

judgments about θ . 

 

3.3.2 Derivation 

Raiffa and Schlaifer (1961) have developed a class of distributions that attains the 

above properties. However, they confined the development to the case where the sample 

observations are independent and admit sufficient statistics of fixed dimensionality. 

Their main idea to develop the natural conjugate class is to use the sample kernel as a 

prior kernel. 

Definition: 

Consider the i.i.d. random sample 
n

XXX ,...,,
21

 such that for any n and any 

sample (
n
xxx ,...,,

21
), there exist a sufficient statistic  )...(),...,,(~

2121 snn
yyyyxxxy ==  
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where sy
i
'  are real numbers in the range Y and the dimensionality s does not depend 

on n. Then, the LF is give by )(),...,,(
21

θθ ykxxxl
n

∝ . In such representation of the LF, 

k is called the sample kernel. The natural conjugate prior with parameter y ′  in the range 

Y can then be given by 

YyykP
NC

∈′′∝ ),()( θθ     (4.1) 

Then, the posterior distribution of θ  will be given by 

)()()( θθθ ykykyP ′∝    (4.2) 

Raiffa and Schlaifer (1961, p.53) illustrated some considerable examples for some 

data-generating processes. It is of quite interest to show some of them through the 

following table: 

Table3.1: Some Natural Conjugate prior distributions 

Data Generate 

from: 

Bernoulli Process Poisson Process 

(Exponential 

distribution
2
) 

Normal Process 
(Both Mean and precision 

unknown) 

Sample Mass / 

Density Fun. 10,1,0 where

,)1()(
1

<<=

−=
−

θ

θθθ

x

xf
xx

 

0,0where

,)(

>≥

=
−

λ

λλ
λ

x

exf
x

 

( )
( )

0,, where

,2),(
2

22
1

2
1

>∞<<∞−

=

−−
−

τµ

τπτµ

µ
τ

x

exf
x

 

Likelihood Fun. rnr
n

xxxl
−

−∝ )1(),..,,(
21

θθθ  

rennxxxl λ
λλ

−
∝),...,2,1(

 ( )
2

2

1

2

1

2

2

1

2),,...,,(
21

µτ

τν

τ

ττµ

ν

−−

−

×

∝

m

s

n

e

exxxl
 

Sufficient Statistics ),( rny =  where ∑= xr  ),( rny =   where        ∑= xr  

),,( smy ν=   where   1−= nν , 

in
xm ∑=

1
  and  

( )22
∑ −= mxs

i
ν  

Natural Conjugate 

(NC) Prior Dist. is: 

NC prior p.d.f. 

 

Beta 

1)1(1),( −′−′
−

−′
∝′′

rnrnrp θθθ
 

 

Gamma-I 

rentnp
′−−′

∝′′ λ
λλ

1),(  

 

Normal Gamma-I 

( )
2

2

1

2

1

2

2

1

2
12 ),,,(

µτ

τν

τ

τντµ

ν

−′−

′′−−

×

∝′′′

′

m

s

e

esmp
 

 

                                                           
2
 x is a random variable denoting the time between two successive occurrences of a random event. Such 

an event is generated from Poisson distribution, hence x is exponentially distributed. 
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3.3.3.  Difficulties in assessment of Natural Conjugate Priors 

The main problem in using a conjugate class is that one must estimate the 

parameters of the prior distribution, namely, the hyperparameters. There is no ideal 

method to give a general rule by which the hyperparameters can be estimated. However, 

there are some ways to estimate the hyperparameters, as follows: 

 

1. Historical relative frequency distribution method 

In some applications, there are previously available relative frequency 

distributions for the values of the prior parameters. It is reasonable to match the 

parameters of the current prior distribution with the historical frequency distribution of 

their values. Then, choose the prior distribution that gives the closest form to the 

historical distribution (see Raiffa and Schlaifer, 1961). 

 

2. Moment method 

If there are available information about the prior moments, then the 

hyperparameters can be estimated by expressing them as functions of these moments. 

This method is not recommended in the case of skewed prior distributions because of 

their drastic effect on their moments, see Berger (1985). 

 

3. Fractiles method 

Another method for assessing prior parameters starts by a subjective determination 

of the prior median and some other odd fractiles such as odd quartiles and odd octiles. 

Then, choose the parameters of the given prior distribution to obtain a density that 

matches these fractiles as closely as possible, see (Berger, 1985). This method depends 

on little trail-and-error calculations, and is also called “subjective betting odds”. For 

more details, one may refer to (Raiffa and Schlaifer, 1961) and (Lempers, 1971). 

 

4. Predictive method 

The prior parameters can be estimated also in terms of the predictive density of the 

observations. This approach is sometimes called “the device of imaginary results” 

(Berger, 1985) and (Broemeling, 1985).  

Consider a prior distribution depends on the hyperparameter Α∈α , then the 

predictive density depends on α  through the prior can be as follows: 
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( ) ( ) ( ) Α∈∈= ∫
Ω

αθαθπθα ,, SXdxfxp    (4.3) 

where ( )θxf  is the data density function defined on the sample space S for given 

values of Ω∈∈∈∈θ , whereas ( )αθπ  is the prior distribution of θ  given the unknown 

hyperparameter α that requires to be estimated. One can observe values nxxx ,...,, 21 , 

imaginary future or past values, from the density in (4.3) and choose α  that is 

compatible with this predictive density. That means to use this predictive density 

incorporated with the future or past observed values to estimate α  with the standard 

known methods of estimation such as moment or maximum likelihood methods. 

Broemeling (1985) preferred this method for estimating the prior parameters because of 

its property to think about θ  as an observed random variable rather than as an 

unobserved parameter. 

 

5. Training Sample method 

Another helpful approach to estimate the hyperparameters is the training sample 

approach. Such a method has been widely applied in the area of the objective Bayesian 

analysis. Since the training sample admits utilization of improper objective priors 

(noninformative priors) to a subset of the observed data to obtain a proper posterior 

distribution. This last distribution is used to estimate the hyperparameters.  Then the 

Bayesian structure is applied to the rest of the sample as if it was the actual sample to 

obtain the posterior analysis. Various Bayesian applications used such approach in 

literature such as Broemling (1985) and Ismail (1994). A recent work to develop a 

variety of methods of choosing training samples is due to the work of Berger and 

Pericchi (1996), Pérez and Berger (2002) and Berger and Pericchi (2004). Berger and 

Pericchi (2004) developed some new definition of training samples that can overcome a 

wide range of problems in Bayesian analysis. However, they deemed that it is unable to 

define any type of "optimal" training sample. According to the revision of many training 

sample techniques discussed in literature, a training sample could be chosen to be as 

small as possible and that convert improper objective prior into a proper distribution. 

This type of training samples is called "minimal training sample". It is of limited use 

particularly when the data set is small, see Berger and Pericchi (2004). Another solution 

reviewed in Ismail (1994) is the "overlap training sample". This technique suggests 
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using the whole data set including the training sample that is used to estimate the 

hyperparameters. That is the actual data overlaps the training sample. A more 

generalized view to select a training sample is discussed in Berger and Pericchi (2004), 

where they introduced what is called "randomized and weighted training samples" that 

chooses a training sample according to sampling mechanism, they also discussed the 

"imaginary training samples". In such type, training samples are not obtained from the 

real data, but from some specified distribution. 

 

3.3.4. Examples 

DeGroot (1970) presented several types of the natural conjugate priors for samples 

from various distributions. Table 3.2, in addition to table 3.1, summarize some of the 

natural conjugate priors that correspond to different populations. 

Table 3.2  Some Natural Conjugate prior distributions 

Sampling distributions Natural conjugate prior distributions 

1. Bernolli 

2. Binomial 

3. Negative binomial 

4. Poisson 

5. Uniform ),( 21 κκ  

6. Exponential with mean 
1−−−−

λ  

7. Normal with 
2

σ is known 

8. Normal with µ is known 

9. Normal with µ  and 
2

σ  are 

unknown  

Success probability is Beta 

Success probability is Beta 

Success probability is Beta 

Mean is Gamma 

),( 21 κκ has joint bilateral bivariate Pareto 

λ  is Gamma 

Mean is Normal 

Variance is Inverted Gamma 

),(
2

σµ  has joint Normal-Gamma 

The Normal-Gamma conjugate prior is widely used in Bayesian literature, 

especially in time series field, since sampling from normal distribution is the most 

common case. 
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3.4.  G-Prior 

3.4.1. Introduction 

As shown in the previous section, the natural conjugate prior technique is an 

appealing one for assessing informative prior distributions that lead to relatively 

simple posterior results. Zellner (1985) considered the class of natural conjugate prior 

distributions as a very useful class of "reference informative priors (RIPs)". However, 

that technique encounters a serious pitfall in evaluating the prior covariates of the 

parameters. That motivates Zellner(in 1983 and 1986) to seek another prior, belonging 

to the same class, that figures out this problem and has the same attractive properties as 

the natural conjugate priors. Zellner's main concern was with simplifying the Bayesian 

results for one of the most well known models in econometrics, the general linear 

model (GLM), therefore he confined his work to the derivation of RIPs for the 

regression parameters. Such work leads to what is called g-priors, the class of priors 

that provides a middle ground of sorts between an informative natural conjugate prior 

and a diffuse prior, see Karlsson (2001). The main feature of g-prior is that it allows 

the investigator to introduce information about the location of the regression 

parameters without having to think about the most difficult aspects of prior 

specification, which is the prior covariates structure of the regression parameters. 

Zellner's g-prior has later been extensively utilized for many problems in 

econometrics. For instance, Zellner (1985) applied the g-prior for a simple-structural 

econometric model. Moreover, g-prior has become a standard choice for the regression 

coefficients in the field of Bayesian model averaging (BMA) for several practical 

reasons, See, e.g., Fernández, et. al. (1998), Jörnsten and Yu (2002), Clyd (2003), and 

Koop and Potter (2003). 

In this section, a standard GLM will be considered for an n×1 vector of 

observations on the dependent variable y, wherein y is generated through the following 

model: 

uXy += ββββ     (3.4.1) 
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where X is an n×k non-stochastic design matrix of rank k, β is a k×1 regression 

parameter vector and the error vector u is assumed to be a ),( 2
nN Iσ0000 , where 2

σ is 

finite unknown value. The likelihood function (LF) for the GLM is given by 

{ }22)()(exp),,( / σσσ XβyXβyXy −′−−∝
−nl ββββ   (3.4.2a) 

It is desirable to rewrite the quadratic quantity in the exponent of (3.4.2a) in terms of 

the least squares estimates β̂ ,  where yXXXβ ′′=
−1)(ˆ , as follows: 

XβXβyXβXβyyyXβyXβy ′′+′′−′−′=−′− )()(  

Now completing the square in the right side of the last quantity with respect to β 

implies to 

( ) yXXXXyyXXXβXXyXXXβyyXβyXβy --1 ′′′−′′−′′′′−+′=−′−
−11 )())(())(()()(  

βXyββXXββyy ˆ)ˆ()ˆ( ′−−′′−+′=  

then completing the square with respect to y leads to 

)ˆ()ˆ(ˆˆˆ)ˆ()ˆ()()( ββXXβββXXβyXββXyβXyXβyXβy −′′−+′′−′′+−′−=−′−  

Since yXβyXXXXXββXXβ ′′=′′′′=′′ − ˆ)(ˆˆˆ 1 , the form of the LF, in (3.4.2a), can be 

eventually written as 

{ }22 2)]ˆ()ˆ([exp),,( / σνσσ ββXXββXy −′′−+−∝
− sl n

ββββ   (3.4.2b) 

where )ˆ()ˆ(2 βXyβXy −′−=sν  and .kn −=ν  

Procedures for assessing informative prior distributions for the GLM's parameters 

have been used by many authors such as Winkler (1967, and 1977), Kadane et. al. 

(1980) and Zellner (1985). In what follows, the derivation of the g-prior distribution 

for the GLM parameters will be illustrated. In a next chapter, The posterior results 

based on the g-prior will be displayed and compared with those based on the natural 

conjugate approach. 

3.4.2.  Derivation 

Zellner (1983 and 1986) innovates an approach to derive a reference informative 

prior (RIP) distribution, as he called, as the joint g-prior distribution of β and σ  

through the following steps: 
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1. Before observing y, consider another imaginary or conceptual sample 0y  assumed to 

be generated by 

00 uXy += ββββ     (3.4.3) 

where X is the same design matrix defined by (3.4.1), but 0u  is assumed to be 

),(
2

0 nI0 σN , where 
2

0
2

σσ g= , and 0uu g= , where g is assumed to be initially given. 

2. Assume the Jeffreys’ independent rule for the joint prior p.d.f. of  β and σ. Then 

1),( −

σασββββp . Let 0S  denotes the conceptual sample information in (3.4.3), then the 

posterior p.d.f. ),(
0

Sp σββββ  can be evaluated by combining the LF of the model in 

(3.4.3) and the Jeffreys' prior p.d.f. ),( σββββp . Then the posterior p.d.f. of β and σ will 

have the following form: 

{ }22

0

)1(

0
2)]ˆ()ˆ([exp),( / σνσσ

00
ββXXββ −′′−+−∝

+− sSp g
n

ββββ  (3.4.4a) 

where 00 yXXXβ ′′=
−1)(ˆ , )ˆ()ˆ(

2
0 0000 βXyβXy −′−=sν  and .kn −=ν  

It can be seen that the posterior p.d.f. in (3.4.4a) is a normal inverted-gamma 

distribution given by 

{ } { }222
0

)1(
0 2)]ˆ()ˆ[(exp2exp),( // σσσνσσ

ν

00 ββXXββ −′′−−×−∝
−+− gsgSp k

ββββ   (3.4.4b) 

where the first part of (3.4.4b) is the inverted-gamma(I Г) of type II. Raiffa and 

Schlaifer (1961) have represented diifferent forms of gamma and inverted gamma 

distributions. It is worthwhile to shed further light on some of these distributions in a 

separate appendix (see appendix-I). 

Hence, the marginal posterior p.d.f. for β is obtained by integrating the form in 

(3.4.4a) with respect to σ, which gives the kernel of I Г–II distribution with parameters 

( ))]ˆ()ˆ([,
2
0

2
00 ββXXββ −′′−+== sgrnr νλ , which turns out, as shown in distribution IV 

in appendix-I that  

2

)(

2
0

0

)ˆ()ˆ(
1)(

k

s
Sp

+−











 −′′−

+∝

ν

ν

00 ββXXββ
ββββ    (3.4.5a) 

which is obviously the k-variate t distribution with ν degrees of freedom, mean vector 

0β̂ , and  a dispersion matrix proportional to ).2()( /20
1

−′ ννs-XX  
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Similarly, the marginal p.d.f. for σ can be obtained from (3.4.4b) by integration with 

respect to β, that is integrating the k-variate normal part in (3.4.4b) which gives 

constant. Hence the marginal posterior p.d.f. for σ is  

{ }2
2

0
)1(

0 2exp)( / σσσ ν
ν sSp g−∝

+−     (3.4.5b) 

which, through the form IV in appendix-I, is I Г–II distribution with parameters 

( )20
2, gsr == λν . 

3. Zellner suggests using anticipated values for β and 2
σ  denoted by 2and aa σββββ  

respectively. Zellner applied the Muth's (1961) rational expectations hypothesis that is 

taking them respectively equal to )(and)(
0

2
0 SESE σββββ , the posterior means derived 

based on (3.4.5a) and (3.4.5b). Thus 0ββa
ˆ)( 0 == SE ββββ  and 

2)( /200

22
−== ννσσ gsSEa . 

4. Zellner recommends using the joint g-prior distribution as given by 

{ }22)1(

0
2)]()([exp),( / σσνσασ

aaa

n

g
gp ββββββββββββββββθθθθββββ −′′−+−

+−
XX              (3.4.6) 

which is still the form of the normal inverted-gamma, where ),,,(
2

0 νσ gaaββββθθθθ ′=′  is the 

vector of hyperparameters, νσνσ /22
0

2 )2( aa gs −== and kn −=ν . It is evident that, this 

prior form is the same as in (3.4.4a) and (3.4.4b) but the first is in terms of the 

anticipated values 2and aa σββββ . It can also be seen, as shown above in (3.4.5a) and 

(3.4.5b), that the marginal g-prior p.d.f. of σ  is the I Г-II ( )22, ar σλν == , which takes 

the following form, 

{ }22)1(2 2exp),( / σσσσνσ ν
ν

aagp −∝
+−    (3.4.7a) 

So it is seen that 222 )2()( / aaE σνσνσ =−= . Where the marginal g-prior for ββββ  is of the 

following form, 

2

)(

2

2 )ˆ()ˆ(
1),,,(

k

a

ag ggp

+−











 −′′−

+∝

ν

σν

σν
00 ββXXββ

aββββββββ   (3.4.7b) 

which is the multivariate t distribution with ν degrees of freedom, mean vector aβ , and 

a precision matrix proportional to 2/)( ag σXX ′ , hence the dispersion matrix is 

proportional to ga )2()( /21
−′ νσν

-XX = ga /
21)( σ

-XX ′ . 
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3.4.3.  Properties 

Zellner discussed some properties of the g-prior in (3.4.6) which can be summarized 

as follow: 

1. When g value is unknown, a prior p.d.f. for g, noninformative or informative, 

can be introduced and g-prior can be integrated out. 

2. When g is unknown, it could be taken as a function of the sample size, )(ngg = , 

say 
n

g 1
=  or 

n

n
g

log
= . In such assumption, g controls the dependence of the prior 

precision on the sample size, so an appropriate choice of this function can allow 

prior precision to grow with n and if desired at a rate less than the rate at which 

the sample precision grows. Other potential values for g are investigated in 

literature and will be exhibited in next subsection. 

3. In case when another design matrix, say 0X , is given, the form of the regression 

model is the same for both design matrices 0X  and X . That is (3.4.3) can be 

rewritten as 000 uXy += ββββ , with 00 u y nda  each of dimension 10 ×n  and 0X  of 

dimension kn ×0  and same approach, discussed above to derive the g-prior for 

the regression parameters, can be proceeded. 

 

3.4.4. Potential values for g 

The choice of the unknown hyperparameter g is crucial for obtaining sensible 

results. Therefore, several methods are followed to assign the value of g.  

 

Information criteria methods 

Fernández, et. al. (1998) investigated the properties for many choices for the 

unknown scalar g. That work shows that some of these choices yield posterior results 

that have properties similar to commonly used information criteria. They concluded 

that g-prior could possibly be assigned as a function of the sample size or the number 

of regressors in the data set. So based on simulation studies, they analyze the 

consequences of using many different choices of g-prior. It is of interest to introduce 

herein some of them. 
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[1]. 
n

g
1

=  

This prior corresponds to assigning the same amount of information, the same 

weights, to the conditional prior of β as contained in one observation. This comes 

up with the spirit of the "unit information prior" of Kass and Wesserman (1995). 

[2]. 
n

k
g =  

Here more information are assigned as many regressors have been entered in 

the model. That involves more shrinkage induced in β to the prior mean β  as the 

number of regressors grows, see equation (4.1.3b) in the next section. 

[3]. 
n

g
1

=  

The value of g using this prior behaves asymptotically like Schwarz criterion. 

[4]. 
n

k
g =  

As in prior [2], more shrinkage induced as number of regressors increases. 

[5]. 
( )

3
ln

1

n
g =  

[6]. 
( )

n

k
g

ln

1ln +
=  

The priors given in [5] and [6] behave asymptotically like Hnnan-Quinn 

criterion. 

[7]. 
2

1

k
g =  

Using this prior implies the Risk Inflation Criterion (RIC) of Foster and 

George (1994). 

Fernández, et. al. (1998) concluded, on the ground of consistency, that it is better to 

suggest making g-prior as a decreasing function of the sample size n. Moreover, they 

deduced using simulation that the most reasonable choices of g-prior are 
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� 2

2
for,

1
kn

k
g ≤= . 

� .for,
1 2

kn
n

g >=  

In addition to such choices for g listed above, there is another method to assign 

values for g and in a data-based manner. This is the so called empirical Bayesian 

methodology, which was first coined by Robbins (1956). 

 

Empirical Bayesian methods 

In the context of this approach, the Bayesian estimation structural is used with a 

pre-assigned prior distribution to obtain the Bayes estimator. However, the parameters 

of the prior distribution, or the hyperparameters, are not assessed subjectively, rather 

they are estimated through the current data. Often the hyperparameters are estimated 

by maximizing the marginal likelihood, to get the maximum likelihood (ML), or by 

sample moments. Nevertheless, empirical Bayesian methodology can be criticized 

because allowing a prior to depend on data violates the rules of conditional probability, 

the Bayes' rule that requires the prior distribution depend only on its parameter not on 

the data set. However, the empirical Bayesian methods are popular for many practical 

econometricians. For more details about empirical Bayesian approach, see Press 

(1989) and O'Hagan (1994). Koop and Potter (2003) adopt such approach to estimate 

the value of a single prior hyperparameter that is g-prior here, using the maximum 

likelihood estimate (MLE). They adopt this methodology in the application of 

forecasting dynamic factor model using Bayesian model averaging. 
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The g-prior is often described as a less informative prior, and has numerous terms in 

literature, where it is called as "objective", "benchmark", "shrinkage", and at last as 

"reference informative" prior. Furthermore, Fernández, et. al. (1998) considered the g-

prior as a slightly "noninformative prior" that is related to a natural conjugate structure 

with g-prior specification to the hyperparameters. In addition, they considered such 

prior specification as a one that lead to sensible results in the sense that data 

information dominates prior assumptions. That is because such prior does not require 

substantive amounts of subjective prior election by the researcher except for the scalar 

parameter g, however the choice of g may be determined subjectively. Nevertheless, 

some objective methods to specify g are discussed in literature. Therefore, the affinity 

of the g-prior of the regression parameters with the natural conjugate prior must be 

emphasized. This difference will be clarified through the posterior analysis of the 

GLM. 

4.1.   Based on the g-prior distribution 

Zellner(1986) introduced the following particular g-prior to derive the posterior 

distribution for β and σ , 

),()(),( gpppg σσσ β×∝ββββ    (4.1.1) 

where σσ /1)( ∝p , and ]2)()(exp[),( 2/ σσσ ββXXβββ −′′−−∝
− ggp k , then combining 

this prior distribution with the LF in (3.4.2a) will lead to the following joint posterior 

distribution: 

{ }2)1( 2)]()()()[(exp),( / σσσ ββXXββXβyXβy −′′−+−′−−∝
++− gSp kn

ββββ        (4.1.2a) 
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where S denotes the sample and prior information. Some simplifications will be 

considered now to the term in the square brackets in the exponent, say Q, in the right 

side of (4.1.2a), where Q can be proved to equal, 

]([)][][(][ βXXXXββXXyXββXXβXyβXXβyy )gg()ggQ ′+′′+′+′′−′′+′−′′+′=  

If the two matrices ( )Xβyw ′′′=′ 2/1gM  and ( )XXW ′′=′ 2/1gM  are considered then Q can 

be expressed as, 

βWWβwWββWwww ′′+′′−′−′=Q  

Similar simplification made previously in (3.4.2b) will be applied herein. Thus, 

through completing the square with respect to β, Q can be rewritten as, 

βWwββWWββww

wWWWWwwWWWβWWwWWWβww

′−−′′−+′=

′′′−′′−′′′′−+′=
−−−

)()(

)(])([])([ 111Q
 

where wWWWβ ′′=
−1)( , then completing the square, in the right side of the last form of 

Q, with respect to w implies: 

)()()()(

)()()()(

ββWWβββWwβWw

ββWWβββWWβwWββWwβWw

−′′−+−′−=

−′′−+′

′

−′

′

+−′−=Q
 

where wWβwWWWWWββWWβ ′

′

=′′′′=′

′
−1)(ˆ , thus (4.1.2a) can be finally expressed as 

{ }2)1( 2)]()()()[(exp),( / σσσ ββWWβββWwβWw −′′−+−′−−∝
++− knSp ββββ       (4.1.2b) 

It is evident that the joint distribution in (4.1.2b) is in the normal inverted gamma 

form, where the marginal posterior distribution of β is obtained from it by integrating 

with respect to σ to get the kernel of I Г–II distribution with parameters 








−′′−+−′−=+= )()()()(, 2 ββWWβββWwβWwλrknr , that eventually implies the 

following form: 

2

)(

)()(

)()(
1)(

kn

Sp

+−















−′−

−′′−
+∝

βWwβWw

ββWWββ
ββββ   (4.1.3a) 
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which is simply the k-variate t distribution with n degrees of freedom, posterior mean 

β , and variance covariance matrix 
)2(

)()(
1

)(
)(

−

−′−
−

′

=

n
SV

βWwβWwWW
β . It is important  

to notice that,  

wWWWβ ′′=
−1)(  

( ) ( )βyXXX gg +′′+=
−− 11
)(1  

Where, the matrices  w and W are defined above. Then, the posterior mean β  is finally 

given by 

( )

g

g

+

+
=

1

ˆ ββ
β      (4.1.3b) 

However, the posterior dispersion matrix of β, as shown above, is 

),1()()()( /2121 gaaSV +′=′=
−−

XXWWβ  where, 

)()()() (

)()()2(
2

β βXXβ ββXy βXy

βWwβWw

−′′−+−′−=

−′−=−

g

an
 

then, at last  

)1()()()()()()2()( /11 ggnSV +












−′′−+−′−′−=
−− β βXXβ ββXy βXy XXβ        (4.1.3c) 

Similarly, the marginal posterior p.d.f. of σ can be evaluated by integrating the k-

multivariate normal part in (4.1.2b) which gives the distribution of the form 

{ }2)1( 2)()(exp)( / σσσ βWwβWw −′−−∝
+− nSp   (4.1.4a) 

which is the I Г–II distribution with parameters 






−′−== )()(, 2 βWwβWwλrnr . Thus, 

as shown in distribution IV in appendix-I, the posterior mean of 2
σ  is 

)()()2()( 122 βWwβWw −′−−==
−naSE σ . This quantity can be simplified to the 

following form, as shown above to give (4.1.3c) 







−′′−+−′−−=
− )()()()()2()( 12 β βXXβ ββXy βXy gnSE σ   (4.1.4b) 
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4.2.  Based on the Natural Conjugate Prior 

Zellner (1986) has discussed assessing another prior distribution to the GLM 

parameters which is the natural conjugate prior developed by Raiffa and Schlaifer 

(1961). This approach, using a certain prior p.d.f. of such class, will lead to a posterior 

p.d.f. belongs to the same class.  This family of distribution involves herein 

representing the prior information to the GLM using the normal gamma joint prior 

distribution for the parameters β and τ, where τ is the precision parameter and 

21
στ =

− . That is the joint prior distribution, ),( τββββNGp  is given by 

)()(),( τττ ββββββββ NGNG ppp ×∝    (4.2.1a) 

with 

{ })()(exp)(
2

2 ββAββ −′−−∝
τ

ττ
k

Np ββββ   (4.2.1b) 

and 

{ }τττ bp a
G −∝

− exp)( 1     (4.2.1c) 

where )( τββββNp  is a k-variate normal distribution for β given τ, with prior mean vector 

β  and prior precision matrix τA, whereas )(τGp   is the marginal prior distribution of τ 

which is the gamma distribution with parameters a and b.  

Expressing the LF of (3.4.1) in terms of τ will give 

 { })()(exp),,(
2

2 XβyXβyXy −′−−∝
τ

ττ
n

l ββββ   (4.2.2) 

Now, joining the joint prior distribution in (4.2.1) with the LF in (4.2.2) will give 

the following joint posterior distribution 

[ ]{ })()()()(2exp),(
2

1
2

2

ββAββXβyXβy −′−+−′−+−∝
−

++

bSl
kan

τ
ττββββ     (4.2.3a) 

this is again in the normal gamma form. To focus more on the posterior results, 

consider the quantity in the exponent, except for the 2b term, say Q that is 

βAββAXXβββAyXβAyXβyy

βAβAβββAβAββXβXβyXβXβyyy

ββAββXβyXβy

′++′′+′+′−+′′−′=

′+′−′−′+′′+′′−′−′=

−′−+−′−=

)()()(

)()()()(Q

  

completing the square with respect to β in the right side of Q will give 

( ) ( )

βAββAyXAXXβAyX

βAyXAXXβAXXβAyXAXXβyy

′++′+′′+′−

+′+′−+′
′

+′+′−+′=

−

−−








)()()(

)()()()()(

1

11
Q
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then the posterior p.d.f. in (4.2.3a) can be rewritten as 

[ ]{ }

( ) ( )








−×

+−∝

+′+′−+′
′

+′+′−

′++′+′′+′−′

−−

−−
+

)()()()()(

)()()(

11

2

1

2

1

exp

2exp),(

2

2

2

(4.2.3b)

βAyXAXXβAXXβAyXAXXβ

βAββAyXAXXβAyXyy

τ

τ

τ

ττ

k

an

bSp ββββ

Obtaining the marginal posterior distribution of β is obtained by integrating the form in 

(4.2.3b) with respect to τ, that gives the kernel of the gamma distribution with 

parameters 
2
2 kanr ++

=  and 

.
2

(1 











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−

+′−+′

′

+′
−

+′−+′++′
−

+′′+′−′

+=

)βAyX(1A)XX(βA)XX()βAyX(1A)XX(ββAβ)βAyXA)XX()βAyX(yy

bλ

Thus, the marginal posterior distribution of β will be of the form 

( )
2

)2(
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
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
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+

βAββAyXAXXβAyXyy

βAyXAXXβAXXβAyXAXXβ
β (4.2.4a) 

which is the k-variate t distribution with n+2a degrees of freedom and a posterior 

mean vector )()( 1 βAyXAXXβ +′+′=
−  , It can be shown that 

( ) ( )βAAXXβAAXXβ

βAyXAXXβ

11

1

)(Iˆ)(I

)()(

−−

−

+′−−+′−+=

+′+′=

 

then at last, the posterior mean of β is expressed as 

( )ββAAXXIββ −
−

+′−+= 




 ˆ1

)(    (4.2.4b) 

Whereas, the posterior dispersion matrix of β is given by 

( ) 111
)()()()(2)22()( −−−

+′′++′+′′+′−′+−+= AXXβAββAyXAXXβAyXyyβ banSV     (4.2.4c) 

which is proportional to 1
)(

−
+′ AXX . 

Similarly, the marginal posterior p.d.f. of τ will be derived by integration on the 

multivariate k-normal distribution part in (4.2.3b) with respect to β that gives a 

constant. It eventually leads to 

[ ]{ }βAββAyXAXXβAyXyy ′++′+′′+′−′
−−

+−∝

+

)()()(
1

2

1

2exp)(
2

2

bSp
an

τ
ττ     (4.2.5a) 
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that is the gamma distribution with
2
2anr +

= and 
2

)()()( 1 βAββAyXAXXβAyXyy ′++′+′′+′−′ −

+= bλ . 

As shown in distribution III in appendix-I, the posterior mean of 
21

στ =
−

 is given by 

( )βAββAyXAXXβAyXyy ′++′+′′+′−′+−+==
−−−

)()()(2)22()()(
1121

banSESE στ     (4.2.5b) 

whereas, the posterior variance is 

( )
21122

)()()(2)42()22()( βAββAyXAXXβAyXyy ′++′+′′+′−′+−+−+=
−−−

bananSV σ    (4.2.5c) 

 

4.3. Concluding Remarks 

From the above discussion, it is important to summarize some remarkable notes for 

the consequence of using the g-prior technique versus the natural conjugate one to 

assess the RIPs for the GLM parameters. 

First, it is evident that, using the g-prior leads to a posterior covariance matrix of β  

proportional to 
1

)(
−

′XX . This is the main property that motivated Zellner to investigate 

an approach that lead to a natural conjugate prior distribution with prior precision 

proportional to XX ′ , so it is simple to be assessed. Since all what is required, to assess 

such a prior in (3.4.6); a prior mean vector aβ , a prior mean for the error term variance 

2

aσ , and a choice of the value of g. The value g in this case, measures the amount of 

information in the prior relative to the sample, that is, setting g=0.1 gives the prior the 

same weight as 10% of the sample. Whereas, using the natural conjugate prior 

approach leads to posterior covariance matrix of β  proportional to 1
)(

−

+′ AXX , see 

(4.2.4c). The posterior covariate structure is thus completely determined by the prior, 

by evaluating the elements of the matrix A, and the design matrix. 

Second, one can notice that the g-prior distribution is a special case of the natural 

conjugate prior one. Where the joint g-prior in (3.4.6) is in the natural conjugate form 

(4.2.1) with aββ = , XXA ′= g , ν=a , and 
2

2 ab σν= . Thus, using g-prior reduces the 

choice of the k×k prior covariance matrix A to a single scalar hyperparameter g. 

Third, the posterior mean β , produced by using the g-prior, form (4.1.3b) is just a 

simple average of β̂ , the least squares estimate, and β , the prior mean vector, with the 
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parameter g involved in the weights. Another noticeable remark on (4.1.3b) that as g 

getting small ββ ˆ
≈ , the LS quantity, while as g is large ββ ≈ , the prior mean vector. 

On the other hand, following the natural conjugate technique leads to a posterior mean 

β , in (4.2.4b), that can be viewed as a "shrinkage" estimate. Shrinkage phenomenon 

arises naturally in many Bayesian analysis, in the sense that, the influence of the prior 

distribution is to "pull" the likelihood towards the prior, and hence the posterior 

estimate can often be seen in terms of a classical estimate being pulled towards the 

prior estimate. The shrinkage phenomenon is not only a property of estimates such a 

posterior mean but also it affects many other posterior aspects. Shrinkage is also 

common in hierarchical models, for more details see O'Hagan (1994) 

Shrinkage also obtained through the "ridge regression", where the ridge estimator is 

given by yXXXIb ′′+=
−1
)()( kk  will be identical to the posterior mean β given by 

(4.2.4b) by setting IA k=  and 0=β . So on the algebraic level there is a close 

similarity between Bayesian analysis to the GLM using the natural conjugate prior and 

the ridge regression. However, in contrast to ridge regression where shrinkage is 

toward zero, the Bayes estimate shrinks toward the prior mean, Karlsson (2001). See 

Birkes and Dodge (1993) for more details about ridge regression. 
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5.1. Introduction 

A time series is a sequence of numerical data in which each item is associated with 

a particular time. Univariate time series is a single sequence of data such as monthly 

unemployment and daily closing prices of stock indices. Whereas, multivariate time 

series consists of several sets of data for the same sequence of period, such as, monthly 

unemployment, price levels, and monthly income that are considered over a certain 

period. One broad technique of analyzing time series is the "time-domain" methods, 

where they are based on direct modeling of the lagged relationships between a series 

and its past. Such a modeling technique, theoretically, views a time series as a stochastic 

process and regards an observed series as a particular or single "realization" of that 

process.   

On a further clarification, suppose the stochastic process { }tY  of T-dimension is a 

set of autocorrelated random variables. A sample of size 1 of each random variable is 

hence drawn to form an observed time series. Thus, the observed time series is regarded 

as a realization of a stochastic process and there is no way to have another observation 

of each variable that is why it is called "single". These two features, dependence and 

lack of replication, enforce statisticians to specify some restrictive models for the 

statistical structure of that type of stochastic process (Maddala, 1988).  Stochastic 

process can be described generally by a T-dimensional probability distribution 

),...,,( 21 Tyyyp , so that the relationship between a realization and a stochastic process 

is parallel to that between the sample and population in classical approach (Mills, 1990). 

Instead of capturing a complete form of probability distribution to identify the 

stochastic process that generate the time series, one can concentrate on the two moments 

beside the covariance statistics of that distribution.  
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Classical approach undertakes the same view to analyze time series. According to 

classical prospect, statistical inference about parameters is explained using repeated 

sample concept under the same conditions. Practitioners usually do not accept this 

concept especially in fields such as economic, engineering and environment, whereas it 

is impossible to obtain another realization at the same time points as just mentioned 

previously. Hence, a non-classical approach that overcomes the need to repetition and 

avoids learning the large number of sample theory techniques as well, is required in 

time series analysis. Such approach is exactly the Bayesian technique, which gives an 

acceptable interpretation for point estimation, confidence intervals construction, tests of 

hypothesis, and predictions that are requested by many researchers in various fields. 

In general, reasons of involving Bayesian approach in time series analysis are as 

follows: 

1. This approach can assimilate new information different from that one used in the 

original analysis, so results can always be updated. 

2. This approach can successfully give logical interpretation for statistical inferences 

in time series analysis, especially for constructing confidence intervals.  

3. Experience plays an important role as a source of information in economic time 

series and other fields. 

Nevertheless, adopting such an approach encounters some obstacles due to the 

adherent complicated nature of most of time series models, since the likelihood function 

is analytically intractable for the majority of ARMA models. That is, due to its 

nonlinearity which leads to problems with complicated posterior computations. 

For simplicity, the current work will mainly focus on the linear autoregressive time 

series models, where the likelihood function will produce analytically tractable posterior 

distributions. Hence, a complete Bayesian analysis is possible.  

Section 5.2 will focus on representing some basic concepts of the first-order 

autoregressive time series model, AR(1). Whereas section 5.3 is devoted to develop the 

posterior analysis of AR(1) model using some noninformative and informative priors 

that have been represented in the preceding two chapters. 
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A remarkable comparative study is introduced through section 5.4 to investigate the 

performance of the studied prior distributions based on simulation tools for the AR(1) 

process. Section 5.5 presents the posterior analysis of some real time series data sets for 

AR(1) model. 

5.2. AR(1) models: Basic concepts 

Suppose the discrete stochastic process { }tY  that is given by 

ttt yy εφ +=
−1      (5.2.1) 

where { }tε  is the white noise process, which is purely random process that is a sequence 

of mutually independent identically (i.i.d.) normally distributed with zero mean and 

common variance 2
σ , i.e., 
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The model (5.2.1) is called autoregressive model of order one. A main 

characteristic of that model, by using the Wold's decomposition, that it can be expressed 

as a "linear filter" of a sequence of white noise process. That can be shown as follows: 
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Finally, the process { }tY  can be written as 

...,2,1 where,
0

==
−

∞

=

∑ jy
jtj

j

t
εφ      (5.2.2) 

The last infinite series in (5.2.2) is also called the "infinite moving average 

process" and is denoted by MA(∞). Using this transformation, taking into consideration 

of the information about the white noise process, leads to the following derivation of the 

first two moments of AR(1) 
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While the variance of the process { }tY , 0γ , is give by: 
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Similarly, the covariance function at lag k, 
k

γ  is given by 
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Consequently, the autocorrelation function at lag k can be given by 
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Since 2 σ  is a non-zero positive quantity, then, 
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                                            (5.2.5)  

It is quite important to notice that the sequences of s'ε  for 
t

y  as shown in (5.2.2) 

will accumulate rather than die out if ∞→∑ || j
φ , which is equivalent to 1|| ≥φ . 

Consequently, all the moments of 
t

y  given through (5.2.3) to (5.2.5) will not exist.  
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However, in the case when ∞<∑ || j
φ  and hence 1|| <φ  that is the weights 

converge absolutely. That condition is equivalent to assuming that the stochastic 

process { }tY  is covariance stationary, which guarantees that all moments exist and are 

independent of time, particularly, the variance 0γ  is finite. Moreover, under that 

condition, the covariance between 
t

y  and 
kt

y
−

 depends only on the lag k, the length of 

the time separating observations and not on the time itself (Mills, 1990). Thus, for any 

stationary covariance stationary process 
jj −

= γγ  for all integer j. That is called weak 

stationarity. Furthermore, the covariance stationary Gaussian AR(1) process is strictly 

stationary, since the latter definition requires that all joint distributions of any subset of 

the time series are unaffected by a change of time origin , however, they just depend on 

the lags. According to the AR(1) process, only the first two moments are needed to 

identify the distribution completely. That is why for such a process weak stationarity is 

equivalent to strict stationarity. 

Given the assumption of stationarity the equations through (5.2.3) to (5.2.5) can be 

simplified as follows 
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The right hand side of the above equation is an infinite geometric series with base 

1|| <φ , so the variance of stationary AR(1) process is given by 

2
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=      (5.2.6) 

Similarly, the covariance function can be derived as follows 

,
0

22

0

22

∑

∑

∞

=

∞

=

+

=

=

j

jk

j

kj

k

φσφ

φσγ

  

then, 
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     (5.2.7) 

Similarly, the autocorrelation function is given by 

k
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=

=
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      (5.2.8) 

Stationary time series is also called non-explosive time series, whereas, non-

stationary time series is described as explosive. 

Techniques of time series analysis are not confined to the analysis of stationary or 

non-explosive time series. Pragmatically, most of the time series encountered are 

nonstationary. However, some transformations could be applied to achieve stationarity 

such as taking difference of successive orders until achieving stationarity. Stationarity is 

beneficial in reducing the number of parameters of the investigated model. However, 

the current study will focus on the posterior analysis of AR(1) when stationarity is not 

assumed as will be discussed below. 

 

5.3. Posterior Analysis of AR(1) Models 

Autoregressive (AR) models are regularly used for the analysis of time series data. 

Bayesian analysis of AR models began with the early work of Zellner and Tiao (1964) 

who considered the AR(1) process. Bayesian analysis of higher order of AR model are 

given in Zellner (1971). Lahiff (1980) developed a numerical algorithm to produce 

posterior and predictive analysis for AR(1) process. Diaz and Farah (1981) devoted a 

Bayesian technique for computing posterior analysis of AR process with an arbitrary 

order. Broemling (1985) adapt many types of AR models discussed in literature in a 

very general framework. Philips (1991) discussed the use of different prior distribution 

to develop the posterior analysis of AR models with fitted trend with no stationarity 
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assumption assumed. Koop et al. (1995) investigated the effect of the prior distribution 

choices on the prediction particularly when stationarity condition is imposed. Ghosh 

and Heo (2000) introduced a comparative study to some selected noninformative priors 

for the AR(1) models. 

In this section, the posterior analysis to the AR(1) model, in (5.2.1), is developed 

using some of selected noninformative and informative priors that have been introduced 

in the current thesis. Such development will be carried out only for the general case 

when no attention to the stationarity condition, this case would be applicable for 

stationary or nonstationary time series.  

 

5.3.1. Based on Noninformative Priors 

The AR(1) process is generated using the formula in (5.2.1) that is  

Ttyy
ttt
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where ),0( i.i.d.~ 2
σε N

t
 for all t=1,2,3,…,T. the parameters φ and σ are unknown 

parameters such that ∞<<∞− φ  and ∞<<
20 σ . In addition, 

0
y  is an initial 

observation assumed to be known constant. Note that there is no restriction for the 

autoregressive coefficient φ  to be within the stationary interval -1 and +1. The 

probability density function of 
t
y  is given by 
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The likelihood function of the parameters φ  and σ  given the observations is given by 
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   (5.3.2) 

Consider )( σφ=′θ  is the vector of parameters and )....(
21 T

yyy=′y  is the vector of 

observed data of length T. The issue now is to derive the noninformative priors 

according to the techniques introduced in chapter 2 that would be as follows: 

Jeffreys’ Prior 

Applying Jeffreys’ general rule given by (2.3.5) and (2.3.7) but in terms of the 

likelihood function will lead to the following results 
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The logarithm of the likelihood function is given by 
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, then the Fisher's information 

matrix could be simplified to 
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Jeffreys' prior, hence, using the formula |Inf
,

|),(
σφ

σφ ∝p , will be in the form 

4),( −
∝ σσφp , 

then  

2),( −
∝ σσφp  

This prior distribution is refused by Jeffreys as mentioned before in §2.3, therefore, 

Jeffreys assumed independence between the autoregressive coefficient φ  and the scale 

parameter σ . This assumption leads to the independence rule given by (3.2.8). Hence, 

the Jeffreys' prior distribution of φ  and σ  is given by 

1),( −
∝ σσφp       (5.3.3) 
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Locally Uniform Prior 

Box and Taio (1973) considered the locally uniform prior based on the data 

translated likelihood concept. As discussed earlier in §2.4, the data translated likelihood 

is the one takes the form in (2.4.11) that is 

)],(f)([)( yθηyθ −∝ gl  

where g(.) is a known function independent of y, )(
21

ηη=′η , is a vector of order 2 that 

is one-to-one transformation of θ , where )( σφ=′θ , and )]()([])([
21
yyy ff=′f is a 

vector of 2 functions of y. The locally uniform distribution is taken as a noninformative 

prior for η , then the corresponding noninformative prior of θ  is given by 
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The concern now is to try to rewrite the likelihood function, in (5.3.2), in the form of 

translated likelihood function given by (2.4.11). Thus, it will be helpful to consider the 

following quantity 
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Multiplying the last form by Ts , where multiplication of likelihood by constant leaves it 

unchanged, then 
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Eventually, the likelihood function can be given by the following form: 
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This last form could be considered as a translation to the form in (2.4.11) such that 
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t
yη  and ]log[])(f[ sy=′y . Then, one may take the locally uniform 

distribution as a noninformative prior for η , hence the corresponding joint 

noninformative prior distribution for θ  and σ  is given by  
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This entirely agrees with the form of Jeffreys’ prior given by (5.3.3). 

Maximal Data Information Prior 

Referring to §2.5, the MDIP for the parameters of AR(1) process could be given 

using the multiparameter version of equation (2.5.7), since the MDIP of )( σφ=′θ  

depends on the quantity )(θ
y
I  computed by (2.5.5). Then, it can be proved that, 
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Eventually, the MDIP, using the above measure of information in the sample and 

the form in (2.5.7), will be given as follows: 
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Then, finally the joint MDIP of φ and σ is in the following form 
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1* ),( −
∝ σσφP , 

 which is yet again the Jeffreys’ prior given by (5.3.3). Thus, all approaches of 

noninformative priors studied by the current work have unanimity the form of Jeffreys’ 

prior in case when no restriction assumed to the stationarity of AR(1) process. That 

result emphasizes the outstanding substance of Jeffreys’ prior to be wide applicable. 

Moreover, different philosophies to noninformative elicitation in literature end up with 

the Jeffreys’ prior.  

Posterior Analysis of AR(1) 

The joint posterior distribution of φ and σ will be obtained by combining the prior 

distribution with the likelihood function. First, it will be helpful to simplify the quantity 
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yy φ , in the exponent of the likelihood function, by completing the square 
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β , which is the ordinary least square (OLS) estimate for the simple 

linear regression model since 
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y  is viewed as a regressor for the dependent variable 
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y . The above equation will be reduced to 
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yyq βν , where 1−= Tν , the likelihood function in (5.3.2) could be 

written as 
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Combining the likelihood function in (5.3.4) with the joint prior distribution in 

(5.3.3) will lead to the following joint posterior distribution of φ and σ  
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The above form is just the normal inverted-gamma distribution, which can also be 

written as 
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Thus, to obtain the marginal posterior distribution of φ , (5.3.5a) is integrated with 

respect to σ  gives the inverse of the kernel of Ι Γ-ΙΙ (Inverted Gamma-2) distribution 

with parameters ( ) 

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

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t
yrTr q βφλ ν . See Appendix-I for more details about 

that distribution. Eventually, the posterior p.d.f. of φ  is given by 
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 which is obviously the univariate t distribution with ν degrees of freedom. The 

posterior mean is given by β̂  and the posterior variance equals to 
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 . 

Similarly, the marginal posterior p.d.f. of σ  can be obtained by integrating (5.3.5b) 

with respect to φ , that is integrating the normal distribution part in (5.3.5b) which gives 

constant. Hence, the marginal distribution of σ  is given by 
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 is the Ι Γ-ΙΙ distribution with parameters 
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posterior variance of σ  are given by 
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respectively, where .2>ν  

A considerable note that, the posterior analysis introduced above for AR(1) model, 

without restriction to stationarity, is identical to that of simple linear regression model. 

 

5.3.2. Based on Informative Priors 

In this section, the posterior analysis to the AR(1) model will be developed using 

the informative priors introduced in chapter 3. These informative priors are the Natural 

Conjugate prior and g-prior. The development will also be confined to the general case 

where no stationarity assumption is imposed. The posterior analysis here is similar to 

that introduced in chapter 4 to the GLM, however matrix representation will not be used 

and the derivations will be executed in terms of the standard deviation σ  not in terms of 

the precision 
2

1

σ

τ = .  
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1. Posterior Analysis of AR(1) Using Natural Conjugate Prior 

This approach involves starting with a model p.d.f., then selecting a prior 

distribution from a class leading to a posterior distribution belonging to the same class. 

The likelihood function of the AR(1) process which has been presented in (5.3.4) which 

could also be expressed by 
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This distribution belongs to the normal inverted-gamma class. Accordingly, the natural 

conjugate prior of the parameters φ  and σ  is supposed to belong to the same class 

defined by 
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is the Inverted Gamma of type II with parameters r  and λ , as shown in Appendix-I, 
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is the Normal distribution with parameters µ  and 22 −hσ . Hence, the joint prior 

distribution of φ  and σ given by 
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Combining that joint prior distribution with the likelihood function, in (5.3.2), implies 

the following posterior distribution,  
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Consider the quadratic form in the second exponent of the above distribution denoted by 

Q, which can be simplified to 
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Then, the joint posterior distribution could finally be simplified to 
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 That can also be represented by 
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This is again, the normal inverted-gamma distribution. Obtaining the marginal 

distribution of φ  requires integrating (5.3.8a) with respect to σ . That is integrating an 

Inverted-Gamma distribution of type II with parameters r  and λ  such that 
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marginal posterior distribution of φ  is given by 

( ) ( )
,,

ˆ

1),(

2

)1(

2

22

1

2

0
∞<<∞−















 ∑ +−

+∝

+
−

−
φ

ν

φφ

φ

ν

w

hy
yp ty   (5.3.9a) 

which is the univariate t distribution with ν  degrees of freedom where 
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 and rT +=ν . Then, the posterior mean of φ  is 

given by φ̂ , whereas, the posterior variance is given by ( )
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However, the marginal posterior distribution of σ could be obtained by integrating 

the second part of (5.3.8b). Consequently, the marginal posterior distribution of 

σ represented by the following form: 
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 It is the inverted-gamma distribution with parameters ( )22, wr == λν . Hence, the 

posterior mean is given by 
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2. Posterior Analysis of AR(1) Using g-Prior 

As previously explained in §4.1., the posterior analysis AR(1) using g-prior could be 

developed analogous to the GLM. The joint g-prior distribution of φ  and σ suggested 

by Zellner is given by the following relation 
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σσφ . That is to take the prior 

distribution of σ as the Jeffreys’ prior assigned by rule given by (2.3.3). Whereas, the 

conditional prior of φ  given σ  is taking to be Normal distribution with prior mean µ  

and prior dispersion proportional to ( )∑
−

2

1t
yg . This prior variance is simply a product of 

unknown scalar g and quadratic known value that is based on the observations. It is 

noticeable remark that, this quadratic term is considered as a main component of the 

variance of the OLS estimate. This is obviously the main motivation to the g-prior in 

comparison with the natural conjugate one. This motivation is more evident in 

multiparameter case (see §3.4, for the use of the g-prior in such a case). Accordingly, 

the joint g-prior of φ  and σ is given by the following form 
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Combining this prior distribution with the likelihood function in (5.3.2) implies the 

following joint posterior distribution: 
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Consider the quadratic quantity Q between the braces in the exponent of the above 

form. Then , it can be proved that, 
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Then, the joint posterior distribution is given by 
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That could be written as 
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This is again, the normal inverted-gamma distribution. Hence, the marginal posterior 

distribution of φ  is given by: 
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which is the univariate t distribution with ν  degrees of freedom where 
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However, the marginal posterior distribution of σ could be obtained by integrating 

the second part of (5.3.8b). Consequently, the marginal posterior distribution of σ  is 

represented by the following form: 

0,exp),(
22

2
)1(

0
>








−∝

+−
σσσ

σ

νν w
yp y ,   (5.3.12b) 

 



CHAPTER5: Bayesian Time Series: AR(1) Models 

5.4. Comparative Study 

109 

which is the Inverted-Gamma distribution with parameters ( )22, wr == λν . Hence, the 

posterior mean is given by 
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One of the main objectives of the thesis is to compare the efficiency of the studied 

prior distributions for AR(1) process. So far, the study presents three candidate priors, 

which can be summarized throughout the following table:  

Table 5.1: Candidate Prior distributions for the AR(1) Process 

Prior Name Prior Distribution Form 

Jeffreys' Prior RandP
J

∈>∝ φσ
σ

σφ 0,1),(  

Natural Conjugate 
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5.4. Comparative Study 

This section is devoted to investigate and compare the performance of the prior 

distributions introduced in table 5.1 that have been selected to implement the posterior 

analysis for the AR(1) process. Furthermore, the sensitivity of the posterior distribution 

to the change in the prior used is studied. The comparative study is implemented via 

some selected criteria.  

A Computer program, using Matlab (version 7.1) software, is designed to figure out 

these results. A script that does such a task is presented in Appendix-II. The graphical 

and table presentation are done using Excel program. 
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5.4.1. Simulation Algorithm 

The current study follows the simulation techniques used by Ismail (1994) and 

Soliman (1999). The current simulation study deals with data generated from the model 

AR(1) represented by (5.2.1). Ten cases of AR(1) model are considered, for which, the 

values of the parameter φ were ±0.2, ±0.5, ±0.8, ±1 and ±1.5 respectively. The current 

work aims to assign different values of the autoregressive parameter on a wide range 

within and outside the stationarity domain of the AR(1) model. For each model 500 

samples were generated each of length 700. For each sample, the first 200 observations 

were dropped to eliminate the effect of the initial values. Five different time series 

lengths have been chosen to study the influence of the series length on the performance 

of different prior distributions. These lengths are 30, 50,100, 200 and 500. The 

comparative study depends on some criteria as will be shown in the following section: 

 

5.4.2. Tools of Comparison 

Various frequentist criteria are helpful to compare among prior distributions. The 

basic idea is to use the prior distribution to generate a posterior distribution, and 

investigate the frequentist properties of such resulted distribution. If the posterior 

outcomes resulted from one prior has substantially better properties than that resulting 

from another prior, then the latter prior is suspected (Yang, 1994).  

An interesting tool was used to determine the reasonable prior distribution. It is just 

a percentage measure for the number of samples that satisfy some condition. The 

current study considers the following criterion: 

95% Highest Posterior Density Region (HPDR) that is defined as the region under the 

posterior density over the interval centered at the posterior mean with probability 95%. 

For each simulation, n* is defined to be the number of samples where the 95%HPDR 

contains the true value of the parameter. Then, the percentage P
*
 is evaluated such that: 

100
500

*
*

×=
n

P     (5.4.1) 
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The performance of a prior is evaluated according to the value of P
*
. That is, for a given 

prior, the greater percentage indicates a higher performance of the prior to guide to a 

posterior that presents powerfully the parameter. 

 

5.4.3. Results and Discussion 

Regarding the general case of AR(1) models, there is no restriction on the values of 

the autoregressive coefficient φ. Thus, the posterior outputs of all of the proposed ten 

AR(1) models will be studied using the three prior distributions given in the first row of 

table 5.1 which are Jeffreys' prior, g-prior and the Natural Conjugate (NC) prior since φ 

may take any value over the real line. The algorithm of the comparative analysis was 

implemented according to the following outlines. For each of the 500 samples; the first 

30 observations used to evaluate the posterior distribution of the parameter φ via the 

three candidate priors. The posterior mean and the posterior variance of φ were 

computed given each prior. Tracing the criterion mentioned above, an interval centered 

at the posterior mean with probability 0.95 was evaluated (this is simply the 95% 

HPDRs of φ). For each model, the percentage of samples for which the actual parameter 

exists within the indicated interval was computed (as shown by (5.4.1)). This process is 

repeated for the first 50 observations (including the first 30). Similarly, the process is 

repeated for the first 100, 200 and, finally, for the 500 observations. A script written by 

Matlab program was designed to accomplish the task shown above. Such script is 

attached in Appendix-II.  

The results for each of the ten models are summarized throughout ten figures; each 

figure consists of a table and a bar graph. These tables and graphs represent the 

percentage P
*
 defined by (5.4.1) for each n*. Each table consists of five rows and four 

columns. The first column represents the time series length, while each other column 

matches the used prior distribution. The values in the cells of the table denote the 

percentages P
*
. The graph attached to each table describes a bar graph summary to the 

content of the table. 
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Figure 5.1  Figure 5.2 

φφφφ=0.2

n Jeff. Prior g-Prior NC Prior
30 94.4 95.4 97.2

50 94.4 94.4 95.6

100 93.8 94.0 94.4

200 96.0 95.8 95.8

500 95.6 94.4 94.2
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φφφφ=-0.2

n Jeff. Prior g-Prior NC Prior
30 94.8 94.4 97.6

50 95.2 94.8 97.2

100 94.0 94.8 95.2

200 97.0 96.8 96.8

500 95.4 95.4 95.2

0 10 20 30 40 50 60 70 80 90 100

30

50

100

200

500

T
S

 L
e
n

g
th

Percentage

Jeff. Prior g-Prior NC Prior

 

 

Figure 5.3 Figure 5.4 

φφφφ=0.5

n Jeff. Prior g-Prior NC Prior
30 94.2 94.6 97.6

50 94.8 94.6 95.2

100 94.6 95.0 95.0

200 95.2 96.0 95.8

500 93.6 94.4 93.8
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φφφφ=-0.5

n Jeff. Prior g-Prior NC Prior
30 95.2 94.6 97.4

50 96.2 96.0 96.8

100 95.2 94.0 94.2

200 95.8 96.8 96.4

500 96.0 95.4 95.2
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Figure 5.5 Figure 5.6 

φφφφ=0.8

n Jeff. Prior g-Prior NC Prior
30 95.6 94.8 98.4

50 94.2 94.0 95.8

100 94.2 95.6 95.0

200 92.8 94.2 93.6

500 93.8 97.2 95.4
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φφφφ=-0.8

n Jeff. Prior g-Prior NC Prior
30 95.6 95.8 97.8

50 94.4 95.6 96.8

100 94.6 94.8 94.6

200 95.4 96.2 95.8

500 96.8 98.2 97.0
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Figure 5.7 Figure 5.8 

φφφφ=1

n Jeff. Prior g-Prior NC Prior
30 90.4 91.0 98.0

50 92.2 98.8 94.6

100 92.4 99.6 93.8

200 92.8 99.4 94.6

500 94.4 100.0 93.8
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φφφφ=-1

n Jeff. Prior g-Prior NC Prior

30 95.6 96.0 99.4

50 94.4 99.6 96.8

100 95.4 99.6 96.4

200 97.2 99.6 96.2

500 95.6 100.0 95.6
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Figure 5.9 Figure 5.10 

φφφφ=1.5

n Jeff. Prior g-Prior NC Prior

30 51.8 90.6 95.6

50 46.6 98.8 96.2

100 47.8 94.2 94.2

200 50.6 100.0 95.0

500 49.2 99.0 93.6

0 10 20 30 40 50 60 70 80 90 100

30

50

100

200

500

T
S

 L
e

n
g

th

Percentage

Jeff. Prior g-Prior NC Prior
 

φφφφ=-1.5

n Jeff. Prior g-Prior NC Prior

30 51.8 91.8 96.4

50 48.8 99.0 96.8

100 51.6 93.8 93.8

200 47.4 100.0 94.8

500 47.8 99.8 94.8
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Regarding the above tables and graphs, we achieve the following conclusion:  

1. Apart from the case φ = ±1.5, all priors lead to consistent posterior, in the sense 

that the HPDR includes the parameter value in more than 90% of the cases at all 

time series lengths. There is no observable difference between the priors at each 

time series length. 

2. For case φ = ±1.5, the informative priors are highly better than the Jeffreys' 

prior which appears to be less consistent at all time series lengths. 

3. The goodness of each prior is not sensitive to the increase of the time series 

length. 

The above results support the use of Jeffreys' prior if there is an evident that φ≤1, 

since it has approximately the same efficiency as informative priors and it avoids the 

problem of estimating the hyperparameters as well. 

Nevertheless, if there is an evident that φ>1, it would be appropriate to select an 

informative prior because the lack of efficiency of the Jeffreys' prior. The NC appears to 

be a good choice for time series length below 50. However, the g-prior is better for 

longer time series. 
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5.5. Case Study 

To illustrate the achieved results of the simulation study in section 5.4, three real 

life time series examples are considered. The data sets are the stock prices for some 

different firms. A graphical representation using Minitab package is enclosed to 

describe these data through a descriptive summary and time plot for each example. 

Moreover, the ACF and the PACF plot are displayed to check the possibility of 

modeling these data sets by AR(1) processes. 

Csae Study-I: Weekly Average Closing Prices of Al-Watany Bank of Egypt from 

1/1/1995 to 25/5/1997 

Csae Study-II: Weekly Average Closing Prices of CIB from 1/1/1995 to 25/5/1997 

Csae Study-III: Weekly Average Closing Prices of Kabo Company for Clothes from   

1/2/1995 to 21/5/1997 

Figure 5.11  
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Figure 5.12  
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Figure 5.13  
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Figure 5.14  
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Figure 5.15  
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Figure 5.16  
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Figure 5.18  
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Figure 5.19  
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Figure 5.20  
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Figure 5.22  
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Regarding above figures, the time series plot for all the data sets shows that none of 

them is stationary. Such result is confirmed, as well, by the ACF charts, since the ACF 

for all data sets is decaying slowly. Moreover, it is entirely evident as shown by figures 

5.14, 5.18 and 5.22 that the PACF's of all data sets are cutting off after the first lag. This 

result emphasizes that all data can be modeled by AR(1) processes, according to Box-

Jenkins criteria. 

The concern now is to demonstrate the results of the previous section, §5.4, via 

these three examples. Thus, following the procedure of section 5.4, the posterior 

analysis was accomplished and compared over the three candidate priors; Jeffreys' prior, 

g-prior and NC prior. For each data set, the posterior mean, the posterior variance and 

the 95% highest posterior density region (HPDR) centered at the posterior mean are 

evaluated with respect to the three proposed prior distributions. The results of such 

posterior analysis are summarized through the following table (table 5.2). A matlab 

script is designed to employ such calculations. It is attached in Appendix-III. 
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Table 5.2 

Posterior Mean, Posterior Variance of φφφφ and the 95% HPDRs centered at the 

posterior mean by Prior Distribution for Different Data Sets 

Prior Postrior Mean Posterior Variance 95% HPDRs

Jeffreys' Prior 1.0026 0.0000 [ 0.9920 , 1.0131]

g-Prior 1.0029 0.0000 [ 0.9814 , 1.0143]

NC Prior 1.0029 0.0000 [ 0.9914 , 1.0144]

Prior Postrior Mean Posterior Variance 95% HPDRs

Jeffreys' Prior 1.0016 0.0000 [ 0.9919 , 1.0113]

g-Prior 1.0007 0.0000 [ 0.9904 , 1.0111]

NC Prior 1.0111 0.0001 [ 0.9830 , 1.0182]

Prior Postrior Mean Posterior Variance 95% HPDRs

Jeffreys' Prior 0.9989 0.0000 [ 0.9898 , 1.0080]

g-Prior 0.9990 0.0000 [ 0.9887 , 1.0094]

NC Prior 0.9991 0.0000 [ 0.9887 , 1.0094]

[a] Case Study-I:  Weekly Average Closing Prices of Al-Watany Bank of Egypt (n=126)

[b] Case Study-II:  Weekly Average Closing Prices of CIB (n=126)

 [c] Case Study-III:  Weekly Average Closing Prices of Kabo Company for Clothes (n=121)

 
 

Examining the above results shows similar conclusions for the posterior analysis. 

The performance of the three priors is almost the same since they all lead to the same 

posterior mean values with very small posterior variance. The unique difference is 

shown through the 95% HPDRs that supposed to give a probability 0.95 with shortest 

interval. Therefore, the length of the computed interval is taken as a powerful tool to 

compare the performance of the priors.  

Regarding case study-I, table 5.2a shows that Jeffreys' prior and the NC prior gave 

the shortest interval with length 0.02. In addition, g-prior leads to a bit similar value 

with length 0.03. Concerning the posterior analysis of case-II, table 5.2b shows similar 

outcomes, since both g-prior and Jeffreys' prior guide to 95% HPDRs with shortest 

length, 0.02. However, NC prior leads to posterior interval with length 0.04. On the 

other hand, case-III gives entirely similar results, since all priors guide to interval with 

length 0.02 (see table 5.2c). 
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Chapter 6Chapter 6Chapter 6Chapter 6    

Conclusion and Future WorkConclusion and Future WorkConclusion and Future WorkConclusion and Future Work    

This study is interested in the problem of prior selection in Bayesian analysis. To 

achieve the goals of the study, several well known priors in the literature were discussed 

and explained. The priors were divided according to their nature into informative priors 

and noninformative priors. 

Among noninformative priors the study considered, the Jeffreys' prior, the locally 

uniform prior and the maximal data information prior. Whereas, among informative 

priors, the study was interested in the natural conjugate prior and the g-prior. 

For each prior, the basic idea was explained, the derivation was given, the main 

properties were discussed and some theoretical examples were shown. 

Some applications of the problem of prior selection were given. The posterior 

analysis of the general linear model was employed using informative priors. 

A comprehensive application to, the well known time series model, AR(1) was 

done. The posterior analysis of AR(1) was employed. The three noninformative 

techniques implied the same form except for Jeffreys' prior where it assumed the 

independence rule. While, posterior analysis of AR(1), using informative approaches, 

showed same results as for the GLM since AR(1) is often considered as a special case 

of the GLM. 

Simulation was used to check the efficiency of the priors to achieve a consistent 

posterior distribution for the coefficient φ of the AR(1) models. Several simulation 

studies were employed assuming different values for φ and different time series lengths. 

Some criteria were used to indicate the goodness of the priors. 

In the simulation study, for φ takes values within the stationary limits, all the priors 

lead to consistent posterior. Nevertheless, for φ takes values outside the stationary 
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limits, the informative priors only were efficient. Furthermore, a recommendation was 

given for the g-prior for long time series. 

Finally, the study considered some real time series examples to illustrate the 

process of prior selection in the posterior analysis in real life. All the time series 

considered follow the AR(1) processes. Posterior analysis of the real data examples 

showed similar results for all priors. 

Future Work 

This study can be extended in different aspects to enclose further points of future 

research. In further details, the following points are some examples of future research: 

1. The study can be extended to involve many other types of prior distributions that 

may be informative or noninformative priors. 

2. Moreover, the application of the prior selection problem can be extended to 

further models such as; multivariate GLM, bivariate AR(1), bivariate 

autoregressive models, multivariate AR(1) and multivariate autoregressive 

models. 
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Forms for some standard distribution used in the thesis 

I. Gamma-I: (Raiffa and Schlaifer, 1961, Part III, CH. 7,  pp. 225)  

A continuous random variable X is said to have a Gamma of type I distribution 

with parameters (r,λ) if the p.d.f. of X is defined by: 
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II. Gamma-II: (Raiffa and Schlaifer, 1961, Part III, CH. 7,  pp. 226)  

A continuous random variable X is said to have a Gamma of type II distribution 

with parameters (r,λ) if the p.d.f. of X is defined by: 
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III. Inverted-Gamma-I: (Raiffa and Schlaifer, 1961, Part III, CH. 7,  pp. 227)  

If a continuous random variable X has a Gamma-I distribution with parameters 

(r,λ), then the inverse transformation 1
XY

−

=  is said to have an Inverted-Gamma of 

type I distribution with p.d.f. is defined by: 
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IV. Inverted-Gamma-II: (Raiffa and Schlaifer, 1961, Part III, CH. 7, pp. 228)  

A continuous random variable X is said to have an Inverted Gamma of type II 

distribution with parameters (r,λ) if the p.d.f. of X is defined by: 
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V. Univariate t Distribution: (Raiffa and Schlaifer, 1961, Part III, CH. 7, pp. 232)  

A continuous random variable X is said to have a t distribution, with ν  degrees of 

freedom, location µ  and precision p , if the p.d.f. of X is defined by: 
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where µ is the location. 

VI. Multivariate t Distribution: (Raiffa and Schlaifer, 1961, Part III, CH. 7, pp. 256)  

Let X be a k×1 real random vector, then X is said to have a multivariate t 

distribution, with ν  degrees of freedom, location k-vector µ  and positive definite 

precision matrix P, if the p.d.f. of X is defined by: 
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VII. Normal Gamma-I: (Broamling, 1980, App., pp. 442) 

Let X be a real random variable and Y a positive random variable, then X and Y 

are said to have a Normal Gamma of type I if the density of X and Y is: 
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VIII. Normal Inverted-Gamma-II: 

Let X be a real random variable and Y a positive random variable, then X and Y 

are said to have a Normal Inverted Gamma of type II if the density of X and Y is: 
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A Matlab script to simulate from AR(1) for eliciting a reasonable 

prior distribution 

 

% --------------------------------------------------------- + 

% Script M-file for the application part of MS.c.           | 

% Thesis Title: On the Prior Selection in Bayesian Analysis | 

% Created By: Niveen El-Zayat                               | 

% First Created Date: 28 Jan. 2007 - 9:00 pm                | 

% Last Updated Date:  17 April 2007 - 10:15 am               | 

% --------------------------------------------------------- + 

cd('D:\Yarab\Thesis Work\Computer Part') 

clear 

clc 

close all 

% -------------------------------------------------+  

% [1]-Setting the Parameters Values of AR(1) Model | 

% -------------------------------------------------+ 

prompt={'Enter the Sample Size (T):','Enter the Number of Simulated Samples 

(N):',... 

    'Enter White Noise Variance (Sigma^2):','Enter AR(1) Coefficient (Phi):',... 

    'Set the initial value of y0 as:'}; 

   name='Input for Parameters of AR(1) Model'; 

   numlines=1; 

   defaultanswer={'700','500','1','.5','0'}; 

   Entry1=inputdlg(prompt,name,numlines,defaultanswer); 

% 

T=str2num(Entry1{1}); 

N=str2num(Entry1{2}); 

Sigm_Sq=str2num(Entry1{3}); 

phi=str2num(Entry1{4}); 

y0=str2num(Entry1{5}); 

% 

smpl_length={'30','50','100','200','500'}; 

Entry2=listdlg('name','Input for Sample Lengths','promptstring',... 

          'Enter Sample Length Values','liststring',smpl_length); 

for i=1:length(Entry2) 

    n_length(i)=str2num(smpl_length{Entry2(i)}); 

end 

% TrSmpl=[.2 .2 .3 .2 .1]; 

TrSmpl=[.1 .1 .1 .1 .1]; 
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% ----------------------------------------+  

% [2]- Data Generation from AR(1) Process | 

% ----------------------------------------+ 

% state the initial seed of simulation from Normal dist. 

randn('state',0);  

e=sqrt(Sigm_Sq)*wgn(T,N,2); 

%  

% set the 1st raw of data equal to the initial values 

y(1,:)=y0*ones(1,N); 

% shift the white noise matrix 1 raw down that correspond the initial values 

e=[zeros(1,N);e];    

% Generating the AR(1) Process 

for i=1:T 

    y(i+1,:)=phi*y(i,:)+e(i+1,:); 

end  

% Defining the intial values to be the first valye of y's(to be used in 

% posterior analysis for stationary AR(1) 

Y0=y(2,:);  

% supressing the first 200 values to eliminate initial assumption 

y(1:200,:)=[];  

% ------------------------------------------------------------+ 

% [3]- Posterior Analysis to AR(1)- Using NonInformative Prior| 

% -------------------------------------+----------------------+ 

% [3-1]- General Case (Jeffreys' Prior)| 

% -------------------------------------+ 

for i=1:length(n_length) 

    

B_J(i,:)=(sum(y(1:n_length(i),:).*y(2:n_length(i)+1,:)))./sum(y(1:n_length(i),:).^2

); 

    B_rep=repmat(B_J(i,:),n_length(i),1); 

    VB_J(i,:)=(sum((y(2:n_length(i)+1,:)-

B_rep.*y(1:n_length(i),:)).^2))./((n_length(i)-3)... 

                                                         

*sum(y(1:n_length(i),:).^2)); 

end 

if n_length<=30 % tabulated value for t-dist 

    BU=B_J+2.045*sqrt(abs(VB_J)); 

    BL=B_J-2.045*sqrt(abs(VB_J)); 

else           % tabulated value for Normal-dist 

    BU=B_J+1.96*sqrt(VB_J); 

    BL=B_J-1.96*sqrt(VB_J); 

end 

Jeff=double(phi>=BL&phi<=BU); 

Jeff=100*sum(Jeff,2)/size(Jeff,2); 
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%  

% ------------------------------------------------------------+ 

% [2]- Posterior Analysis to AR(1)- Using Informative Prior   | 

% -------------------------------------+----------------------+ 

% [2-1]- General Case (g-Prior)        | 

% -------------------------------------+ 

% Estimation of Hyperparameters Using a Training Sample (35% of the Actual 

% Sample) 

for i=1:length(n_length) 

    n0(i)=floor(.1*n_length(i)); 

%     g0(i)=log(n_length(i)).^-3; 

%     g0(i)=(n_length(i)^(-1/2)); 

%     g0(i)=(n_length(i)^(-1)); 

    Mu0(i,:)=(sum(y(1:n0(i),:).*y(2:n0(i)+1,:)))./sum(y(1:n0(i),:).^2); 

%   Posterior analysis besed on the remaining sample (n-n0) 

    n_n0(i)=n_length(i)-n0(i); 

%     g0(i)=(n_n0(i)^(-1/2)); 

    g0(i)=(n_n0(i).^(-1)); 

%     g0(i)=log(n_n0(i))^-3 

    

B(i,:)=(sum(y(n0(i)+1:n_length(i),:).*y(n0(i)+2:n_length(i)+1,:)))./sum(y(n0(i)+1:n

_length(i),:).^2); 

    B_g(i,:)=(B(i,:)+(g0(i).*Mu0(i,:))).*((1+g0(i)).^-1); 

    s=((g0(i).*(Mu0(i,:).^2))-

(B_g(i,:).^2).*(1+g0(i))).*sum(y(n0(i)+1:n_length(i),:).^2)+sum(y(n0+2:n_length(i)+

1,:).^2); 

    gg=1+g0(i);  

    VB_g(i,:)=s./((n_n0(i)-2)*(gg.*sum(y(n0+1:n_length(i),:).^2))); 

end 

 

if n_n0<=30 % tabulated value for t-dist 

    BU=B_g+2.045*sqrt(VB_g); 

    BL=B_g-2.045*sqrt(VB_g); 

else           % tabulated value for Normal-dist 

    BU=B_g+1.96*sqrt(abs(VB_g)); 

    BL=B_g-1.96*sqrt(abs(VB_g)); 

end 

g_Prior=double(phi>=BL&phi<=BU); 

g_Prior=100*sum(g_Prior,2)/size(g_Prior,2); 

% ------------------------------------------------------------+ 

% [2]- Posterior Analysis to AR(1)- Using Informative Prior   | 

% ---------------------------------------------+--------------+ 

% [2-2]- General Case (Natural Conjugate Prior)| 

% ---------------------------------------------+ 

% Estimation of Hyperparameters Using a Training Sample (10% of the Actual 
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% Sample) 

for i=1:length(n_length) 

    n0(i)=floor(.1*n_length(i)); 

    aaa=mod(n0(i),2); 

    if aaa==1 

        n0(i)=n0(i)+1; 

    end 

    Mu0(i,:)=(sum(y(1:n0(i),:).*y(2:n0(i)+1,:)))./sum(y(1:n0(i),:).^2); 

    Mu0_rep=repmat(Mu0(i,:),n0(i),1); 

    V0(i,:)=(sum((y(2:n0(i)+1,:)-Mu0_rep.*y(1:n0(i),:)).^2))./((n0(i)-3)... 

                                                         *sum(y(1:n0(i),:).^2)); 

    s=sqrt((sum((y(2:n0(i)+1,:)-Mu0_rep.*y(1:n0(i),:)).^2))./(n0(i)-1)); 

    Esgm0=(s.*sqrt((n0(i)-1)./2).*factorial((n0(i)-1)/2-1.5))./(gamma((n0(i)-

1)./2)); 

    Vsgm0=((s.^2).*((n0(i)-1)./(n0(i)-3)))-Esgm0.^2; 

    r0=3; 

    Lmda0=sqrt((r0-2)./r0).*(Vsgm0+Esgm0.^2); 

%   Posterior analysis besed on the remaining sample (n-n0) 

    n_n0(i)=n_length(i)-n0(i); 

    

B_NC(i,:)=(sum(y(n0(i)+1:n_length(i),:).*y(n0(i)+2:n_length(i)+1,:))+Mu0(i,:).*V0(i

,:))./... 

                                                 

(sum(y(n0(i)+1:n_length(i),:).^2)+V0(i,:)); 

    VB_NC(i,:)=((r0.*Lmda0.^2)+sum(y(n0(i)+2:n_length(i)+1,:).^2)-... 

                (B_NC(i,:).^2).*(sum(y(n0(i)+1:n_length(i),:).^2)+V0(i,:))+... 

                ((Mu0(i,:).^2).*V0(i,:)))./((n_n0(i)-2).*... 

                (sum(y(n0(i)+1:n_length(i),:).^2)+V0(i,:))); 

end 

if n_n0<=30 % tabulated value for t-dist 

    BU=B_NC+2.045*sqrt(abs(VB_NC)); 

    BL=B_NC-2.045*sqrt(abs(VB_NC)); 

else           % tabulated value for Normal-dist 

    BU=B_NC+1.96*sqrt(abs(VB_NC)); 

    BL=B_NC-1.96*sqrt(abs(VB_NC)); 

end 

NC_Prior=double(phi>=BL&phi<=BU); 

NC_Prior=100*sum(NC_Prior,2)/size(NC_Prior,2);  

 

save Post_AR1 

phi 

Sigm_Sq 

Criterion1=[Jeff g_Prior NC_Prior] 
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AppendixAppendixAppendixAppendix----IIIIIIIIIIII 

 realA Matlab script for obtaining the posterior analysis for some 

models) 1(time series data sets fitted by AR 

 

cd('D:\Yarab\Thesis Work\Computer Part') 

clear 

clc 

close all 

 

% y=xlsread('KABO.xls','D2:D122'); 

% y=xlsread('CMRBNK.xls','D2:D127'); 

% y=xlsread('WATNY.xls','E2:E127'); 

 

% figure 

% subplot(2,1,1) 

% autocorr(y,40) 

% subplot(2,1,2) 

% parcorr(y,40) 

%  

y0=y(1); 

T=length(y)-1; % The 1st observation will be taken as y0 so the whole  

               % sample used as data is of size (T-1)   

v=T-1;  

% ------------------------------------------------------------+ 

% [1]- Posterior Analysis to AR(1)- Using NonInformative Prior| 

% -------------------------------------+----------------------+ 

% [1-1]- General Case (Jeffreys' Prior)| 

% -------------------------------------+ 

B_J=(sum(y(1:T).*y(2:T+1)))./sum(y(1:T).^2); 

B_rep=repmat(B_J,T,1); 

VB_J=(sum((y(2:T+1)-B_rep.*y(1:T)).^2))./((v-2)*sum(y(1:T).^2)); 

 

% The HDRs 

if T<=30 % tabulated value for t-dist 

    BU1=B_J+2.045*sqrt(VB_J); 

    BL1=B_J-2.045*sqrt(VB_J); 

else           % tabulated value for Normal-dist 

    BU1=B_J+1.96*sqrt(VB_J); 

    BL1=B_J-1.96*sqrt(VB_J); 

end 
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Jeff_pr=[B_J VB_J] 

DHRs_Jeff=[BL1 BU1] 

% ------------------------------------------------------------+ 

% [2]- Posterior Analysis to AR(1)- Using Informative Prior   | 

% -------------------------------------+----------------------+ 

% [2-1]-   General Case (g-Prior)      | 

% -------------------------------------+ 

% Estimation of Hyperparameters Using a Training Sample (10% of the Actual 

% Sample) 

n0=floor(.1*T); 

%     g0=log(n_length(i)).^-3; 

Mu0=(sum(y(1:n0).*y(2:n0+1)))./sum(y(1:n0).^2); 

%   Posterior analysis besed on the remaining sample (n-n0) 

n_n0=T-n0; 

% g0=(n_n0^(-1/2)); 

g0=n_n0^-1; 

% g0=log(n_n0)^-3 

B=(sum(y(n0+1:T).*y(n0+2:T+1)))./sum(y(n0+1:T).^2); 

B_g=(B+g0*Mu0).*((1+g0).^-1); 

s=((g0.*(Mu0.^2))-(B_g.^2).*(1+g0)).*sum(y(n0+1:T).^2)+sum(y(n0+2:T+1).^2); 

gg=1+g0;  

VB_g=s./((n_n0-2)*(gg.*sum(y(n0+1:T).^2))); 

 

% The HDRs 

if n_n0<=30 % tabulated value for t-dist 

    BU2=B_g+2.045*sqrt(abs(VB_g)); 

    BL2=B_g-2.045*sqrt(abs(VB_g)); 

else        % tabulated value for Normal-dist 

    BU2=B_g+1.96*sqrt(abs(VB_g)); 

    BL2=B_g-1.96*sqrt(abs(VB_g)); 

end 

g_pr=[B_g VB_g] 

DHRs_g=[BL2 BU2] 

 

% ------------------------------------------------------------+ 

% [2]- Posterior Analysis to AR(1)- Using Informative Prior   | 

% ---------------------------------------------+--------------+ 

% [2-2]- General Case (Natural Conjugate Prior)| 

% ---------------------------------------------+ 

% Estimation of Hyperparameters Using a Training Sample (10% of the Actual 

% Sample) 

 

% Estimation of Hyperparameters Using a Training Sample (10% of the Actual 
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% Sample) 

n0=floor(.1*T); 

aaa=mod(n0,2); 

if aaa==1 

    n0=n0+1; 

end 

Mu0=(sum(y(1:n0).*y(2:n0+1)))./sum(y(1:n0).^2); 

Mu0_rep=repmat(Mu0,n0,1); 

V0=(sum((y(2:n0+1)-Mu0_rep.*y(1:n0)).^2))./((n0-3)*sum(y(1:n0).^2)); 

s=sqrt((sum((y(2:n0+1)-Mu0_rep.*y(1:n0)).^2))./(n0-1)); 

Esgm0=(s.*sqrt((n0-1)./2).*factorial((n0-1)/2-1.5))./(gamma((n0-1)./2)); 

Vsgm0=((s.^2).*((n0-1)./(n0-3)))-Esgm0.^2; 

r0=3; 

Lmda0=sqrt((r0-2)./r0).*(Vsgm0+Esgm0.^2); 

%   Posterior analysisi besed on the remaining sample (n-n0) 

n_n0=T-n0; 

B_NC=(sum(y(n0+1:T).*y(n0+2:T+1))+Mu0.*V0)./(sum(y(n0+1:T).^2)+V0); 

VB_NC=((r0*Lmda0^2)+sum(y(n0+2:T+1).^2)-(B_NC.^2).*(sum(y(n0+1:T).^2)+V0)+... 

            ((Mu0^2)*V0))./((n_n0-2).*(sum(y(n0+1:T).^2)+V0)); 

 

% The HDRs 

if n_n0<=30 % tabulated value for t-dist 

    BU3=B_NC+2.045*sqrt(abs(VB_NC)); 

    BL3=B_NC-2.045*sqrt(abs(VB_NC)); 

else           % tabulated value for Normal-dist 

    BU3=B_NC+1.96*sqrt(abs(VB_NC)); 

    BL3=B_NC-1.96*sqrt(abs(VB_NC)); 

end 

NC_pr=[B_NC VB_NC] 

DHRs_NC=[BL3 BU3] 

 

save Post_AR1_CaseStudy 
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�م ا����س�� �   (���� ا��5ه�ة–وا��

�@� ا��ؤوف �@� ا��ح%L �@� . د.ا .2

  ا��اح�

��� ا�!�0رة G6 أس!�ذ ا�ح��ء– ����) 

�A/N  

��''� ا"�!''��د    ���& �S%�ن ا�Qی/P . د.ا .3G6 ����''%أس''!�ذ ا�ح''��ء ا�

�م ا����س�� �   (���� ا��5ه�ة –وا��

 



 

  ا�Qی�ت��& ن�L�C إ�6اه�� : ا'��

%���  ���ی�: ال&

   ا�Q�0ة– ا��0�زة – 3/9/1973: ت�ری1 و /% ال���د

  ��(��!�� )& ا�ح��ء: ال�ر %

  إح��ء: ال-345

  :ال��6�7ن

888� ال��888م �888
���ن . د         ��ن ال�ی��د ل�
� ��.ا����888د ال888�ی	 �

    

      ��رس ا�ح��ء        ا�%���� اس!�ذ ا�ح��ء

        ��� ا�ح��ء          ��� ا�ح��ء

�م ا����س����م ا����س��            آ��� ا"�!��د وا��� آ��� ا"�!��د وا��

  ح�ل اV!��ر ا�!�زی��ت ا�5@��� )& ا�!���U ا�@�Qى: ��,ان ال���ل%

��/'& ا��س'��� �6س'!��اض أه'� وأ6'�ز ا�A'�ق ا�%!@�'� )'& اWد�6'�ت �V!�'�ر ا�!�زی'B                      : م
35 ال���ل% 

 �� &��ذج ��'U ا��راس'� Z6'�ض إ('�اء ا�!���'U ا�@�'Qى              %����ا�5@%/�� ���اس!��['
 ا��راس'� أه'�     .  ا�0%\

�'''_ ا�A'''�ق وه'''& اWس'''���^ � �'''�����������'''�`�'''� ا�%�� 	'''�ح أ6'''�ز �/�و�'''
 ا��راس'''�. واWس'''���^ ا�%�

�''��C ا��dص''� U''G6  . ا�!�زی�'�ت ا�%��و)''� )''& اWد�6''�ت �L''� U'G اWس''���^ ا�''��b6 ذآ�ه''�  Cآ%'� أ6ُ''�زت ا�

�زیB وآ���C ا	!g��5 و�g5�@A آ%� �� س�د ��'�ب و�Qای'� آ'U ن'�ع �6"['�)� ا�'& إ6'�از أو('g ا�f!'Vف            �

�C''� إن وُ(''�!d%''�ت ا��زی�ت ا�5@��''� ا�!''& �/�و�!\''� ا��راس''� �''� �6 b''�@A�j'' ا�!�زی�''�. توا�!''.�L�''6 g6 ا�!

�Z6ض إ(�اء ا�!���U ا�@�'�ى �/%'�ذج ا�ن�'�ار ا�Ad'& ا��'�م وآ',�_ �/%'�ذج ا�ن�'�ار ا�',ا�& �'L ا���@'�             

�C'� )'& ا�!���'U       دراس�
��6[�)� إ�& ذ�_ �%  . اWو�&!d%ا� �'���@�'�ى �/%'�ذج   ا ��ى آ�Cءة ا�!�زی�'�ت ا�5@


 ا�'& ان'E�'� g ه/'�ك ��زی'� B�L�' ه'� اU'6 Uk'(W ا"V!�'�ر                  �ا�ن��ار ا�,ا�& �L ا���@� اWو�'&، و��ص'

  &�� m���� ا��Q/�'�  ی!�'��ل ا��N.   _'ذ� &'��C'� �('�اء ا�!���'f'�  �'5(        Uوة �!d%'�ت ا��زی� �'� �b'�@A ا�!

  .اWو�&ار ا�,ا�& �L ا���@�  ن%�ذج ا�ن��وا�!& �!@Bا�@��ى �@�j ا��fسU ا��Q/�� ا����5�5 



 

����������  

                  �� &'� %�'��� ��/& ا��س��� �6س!��اض أه� وأ6'�ز ا�A'�ق ا�%!@�'� )'& اWد�6'�ت �V!�'�ر ا�!�زی'B ا�5@

�ذج ��''U ا��راس''� Z6''�ض إ(''�اء ا�!���''U ا�@�''Qى''%/�� �''��اس!��[''
 ا��راس''� أه''� ��''_ ا�A''�ق . ا�0%\

������ وه& اWس���^   �������واWس���^ ا�`�� ا�%���/�و�
 ا��راس� 	'�ح أ6'�ز ا�!�زی�'�ت ا�%��و)'�     . %�

�زی'B وآ��C'� ا	'!g��5                . )& اWد��6ت �L'� UG اWس'���^ ا�'��b6 ذآ�ه'�          � U'G6 �'ص�dا� �C�'�Cآ%'� أ6ُ'�زت ا�

و�g5�@A آ%� �� س�د ���ب و�Qای� آU ن�ع �6"[�)� ا�& إ�6از أو(g ا�f!Vف وا�!'.�L�'6 g6 ا�!�زی�'�ت              

�C''� إن وُ(''!d%ت�ا� .     U''���''� �6 b''�@A�j'' ا�!�زی�''�ت ا�5@��''� ا�!''& �/�و�!\''� ا��راس''� Z6''�ض إ(''�اء ا�!�

��6[�)� إ�'& ذ�'_   . ا�@��ى �/%�ذج ا�ن��ار ا�Ad& ا���م وآ,�_ �/%�ذج ا�ن��ار ا�,ا�& �L ا���@� اWو�&  

%�
��C )& ا�!���'U           دراس� !d%ا� ���ا�',ا�& �'L ا���@'�     �@�'�ى �/%'�ذج ا�ن�'�ار       ا ��ى آ�Cءة ا�!�زی��ت ا�5@

                     m'��
 ا�& انE�� g ه/'�ك ��زی'� B�L�' ه'� اU'6 Uk'(W ا"V!�'�ر ی!��'&  اWو�&، و��ص�   ���'��ل ا��'N

�''�/�Qذ�''_. ا� &''��C''� �(''�اء ا�!���''U ا�@�''�ى �''@�j ا�''�fسf''��''5(    Uوة �!d%''�ت ا��زی� �''� �b''�@A ا�!

  .و�& ن%�ذج ا�ن��ار ا�,ا�& �L ا���@� اWوا�!& �!@Bا��Q/�� ا����5�5 

�����'�     ا�!�زی��ت ا�5@��'�   - ا�!�زیB ا�@��ى    – ا�!�زیB ا�5@�&    - ا�!���U ا�@�Qى    :ال:
��ت ال�ال% � -`�'� ا�%�

 Bزی��oی�C�Q&��@��ن'�ت    –  ا�!�زیB ا�%/!�p ا�%��& ا�5@�&- Invariance -  ا�5@� �'�� -دا�� ا���Gن ا�%�

�زی'B  ا�!�''p�%ا� �  &'���''�ت ا���/''� ا�5@������''�   ا�!�زی�''-%���زی'B  –�ت ا�5@��''� ا�%�� ''o &''��زی''B -& ا�5@� 

Natural Conjugate &''�  ن%''�ذج ا�ن�''�ار ا�'',ا�& �''L ا���@''�   -  ا��''�مذج ا�ن�''�ار ا�Ad''&  ن%''�- ا�5@

  .اWو�&

  : ال��6�7ن

888� ال��888م �888
���ن . د         د ل�
� ����ن ال�ی��.ا����888د ال888�ی	 �

    

  ء    ��رس ا�ح��        �%����اس!�ذ ا�ح��ء ا

        ��� ا�ح��ء          ��� ا�ح��ء

�م ا����س����م ا����س��            آ��� ا"�!��د وا��� آ��� ا"�!��د وا��



  �

�����������	
��   

��ر ا���ز�� ا����� ������� ا������� �� أ
�ز ا��
	��ت ا���    ���$( ا���$)ى &$�     "�اج$# ُ"�	 � ��� أ�
�$* ا���+" 

   �����$( ا���$)ى ح$�ل           . آ-�� �� ا����,ت ا��+��
��ر ا���ز�� ا����� �+�ة أ4�4�� 3ج$�اء ا���� ا������$� ��$���  ا�&6


�	ف ا":$�ذ ا��$�ار ا��7$4�8       .   <$�
$	�> ا������$�ت ا�����$� ا����ح$� ا����-�$� =$� ا���ز�$�              ح�
�$( ا���$)ى �
��$�م ا��


$����ز�� ا���$	ى       ���ن3دا�� اا����� &� @�ء ا�������ت ا��� "�&�ه�        ��C$� �$� �$ا� ,�$Dرا�4 و	ا� )
وا�$Fى   �

  )� �       �$G "�ا&�ه� ��ى      ا���$���   آ( ا�������ت ا���	م ا���ز�$� ا���$	:�C$� �$ا������$�، و�$� ث  
ا,4$�	,ل   K$�ض 

  .ح�L�M ������ ا������3ا

�( ا���)ى وهFا �� ��$�ر ث$�اء      �
8�� ا��
��ر ا���ز�� ا����� &� ����� NO�� *�4 ا�	ور ا,�4�4 ا�Fى ��-�# ا&


���	�	 �� ا,��4�7 وا�+�ق      Pا ��L�Mت ا,ح��
�$�ر ا���ز�$� ا����$�       د���$� اR�و"�C$�8  . ا��� Sُ$�رت 
�$	ف "
	�$	 آ

$$4Pا T$$�" 7 ا���ز��$$�ت���، ا��$$4G�$$م ا�$$� ن�$$G )� $$
 7����$$��$$�  ا����V ا��$$�"������Noninformative prior 

approaches ��  .Informative prior approaches، وأ��4�7 ا���ز���ت ا������ ا�������"

�� ا�������"��ا���ز���ت ا������    "�C:	مو V م "�&� او ا3&���ر ا�� ا������$�ت ا���	G ح��� �&     ���$�� �$G �$��

�$�ت ح�$> ان�$� , "�+�$7                     ا���8ذج
�$� &$� اPدG7 =�$�, إج�����4Pا iFه j=, 	=راء وk     ،<$ا���ح )$�= �$� ��M$:ش 


�3@�&� إ�� ان�� "�	م ���8     ً��L���" �ً 
����=�$� و�$� ث$� , �:��$n      ا���ز�� ا����� 
�8ءً G ��G	د �� ا�:+$�ات ا�   	�	 ��

 Pن$�اع ا��$�   �$� أ
$�ز ا  Jeffreys' priorو��$(  .  �$� ا&��@$�ا نp$R ا���ز�$� ا����$�      &� ا�oL��8 ا���	�$� اذا ا���ح-�ن

�$�ت ��$�              

$�S�C &$� ا,ش$���ق      "+���$# �$j=,�   �C ش��ةً وا�4:	ا�ً� أآ-$� ش$��ً, &$� اPد �$�   �$��$* وا���ن�+���  �$& 

�$* ��$               . ا��	�	 �� ا����,ت  �
" �$� ا�
$�Mل �G$�    وه$� invarianceأ ا�$ـ   	و�� أه� 4$��"# ا��$� أT$�" #$�+G اPه�

���V ا���8ذج 
	,�� دوال &� D �" �� اذا ��C�� ��	�
��"�ز���ت �D,ن  . ا������ ا�$& Tذ� �� �V���
 'Jeffreysو

prior  N�M� ,           ���$ى ا���	ت أو اذا آ$�ن �$�RMا� �Cن���� ��V ����� ��G ى��

�v ا����,ت ا��� " �& #���+" 

 )��C� ��V .   �&د ������$�   �ا��
> �G ا4 إ�� ا���ح-"������ �$�V ى��7   ��
	�$	 ا���ز�$� ا����$�   ��7 أ� و"�$T ا,��$4

 n��:"�& �$
 Locally uniform ا���ز�$� ا���y�$8 ا��
�$�    : "�$T اPن$�اع  ز ا��RC�R ا��� ����8ه� آ( أ��4ب و�� أ

prior   �+$4ا�

$�&� �G$�   ، و"�$�م &��"$# �G$� ا��$�د "�ز�$� =��$� �      Box and Taio (1973) وا�Fى "� ا=��اح$# 


$����ز��             . ��L�M دا�� ا,���ن   ��C$� �$� ت�$�
�����$�ت  ا���y$� � آT�F �� ا���ز���ت ا��� "� "+���ه$� &$� اPد

 �$$8� و"�$$�م &��"$$# �G$$� إ��$$�د Zellner (1977) وا�$$Fى ا=��ح$$#  Maximal data information priorا��


�ا�Fى  ا���ز�� ا�����   �*        ��C$8��
 �8��� ������ت ا��y�" أ	��          ���������$�ت ا�����$� ��$� د&�$# ��+$��� 
�$v ا���$��

��  . ا����� ����س ا�������ت ا���"�+� 
��ز�� اح����� ��

�	 ا��� &�ن ا���ز���ت ا������ ا�������"�$� ُ"$�C:	م &$� ح��$� "$�ا&� ��           �Mا� ��Gا���$���     و �$G �$����$�ت =��

�n ه$iF ا�����           jان�-�ا������� و�� ث�    $D��� $� ا�+$�ق� 	$�	و            ا�� �$�ن���$�  �$�ت ا�����$� &$� ش$�( "�ز��$�ت اح����

�      oا��

��4:	ام  ��
�C
 آ�ن$j  أن آ�Rءة "�T ا�+�ق ��� أدى إ�� =����$� 
�$	   ا�
�74 ا��� إر"j�R �+�ر ا�+�ق ا�



  �


�8C &� ا���@��C� ��Vز ا . ��&�@� و�
7 ��
	�$	 ا���ز��$�ت ا�����$� ا�������"�$�     Pو��( �� أ���4Natural 

Conjugate priors ى وFحاا���=# Raiffa and Schlaifer (1961) ،     ر�$���و"��م &��ة ه$Fا ا4P$��ب  �G$� ا

��L�M     ز"� pRن�� اح����� =��� �# ن��إ و��دى ا�� "�ز�� دا�� ا�3 �L�M$:ا� pR8
 �Oأ� �C�� ى	�
 .ح����� 


	�$	      ن هFا ا��8عإ, أ، ��+��*أو�C��� �4 هFا ا��8ع 
����S�C &� ا��
	�	 وإ���ن��  و" �$�R� ��اج# L�$G* وح�$	 ه$� آ


��ـ او"�	�� �����  ��C" �� ز�� ا����� وه���� hyperparameters.    ر�$S T$ذ� �$� �V�ا� ��Gو    	$�	ا��$�ح-�ن ا��

�$�ر      � 
�� "�	�� ����� ا���ز�� ا�����    ا�+�ق ا��� ���   ���� و���O:" ��8 �����رن� وا���$�رات ا��R$�ءة ح�$� ���$� ا

���O&ا��� "� "+���ه� و�� ا���ز��. أ ��
�اg-prior     �+$4أ��O �ت ا������ ا�������" i���$+" �$" ىF$وا� Zellner 

�( ا���)ى ����8+���
 وا�Fى =�م  (1986)�

K�ض أج�اء ا�� i      �$��
ذج ا3ن
	ار ا�:+� ا��$�م، وُ��$	 ه$Fا ا�8$�ع  آ

���D �� ا�ـ Natural Conjugate priors  ����� 	�	

$����آ)   &�$�  ا�:�D$� � ا�����ا���ز�و��� ��+�7 &�� " 

���K���
 �D�:ا������ ا� ��	��� ���Mا�� �&�RM� ام	��8 ����ح ا�4:�
.  

�$$�ت ����ز��$$�ت ا�����$$�         أه$$	افو��$$� آ$$�ن �$$�   
 ا�	را4$$� ا�����ح$$� ا��
$$> &$$� اPن$$�اع ا����و&$$� &$$� اPد

�� ا�������"�� ا�������"�� و V   از ا�
��ل 
�v ا��+����ت ا�y8��� ا����و&$� �-$( ن�$          3 �� إ �� ��8�
ذج ����&�ت 

آ�$$� ه$$	&j ا�$$� درا4$$� آR$$�ءة ه$$iF    .  اPو�$$� ا3ن
$$	ار ا�:+$$� ا�$$Fا"� �$$� ا��"�$$�  ون�$$�ذج ا,ن
$$	ار ا�:+$$� ا��$$�م 

�( ا���	ى ���8ذح ا3ن
	ار ا�:+� ا�Fا"� �� ا��"��     �
آ$T�F  . �ة ا��
�آ$ درا4$�ت �� ��ل . اPو��ا���ز���ت &� ا��


��v ا�4�C( ا�)�8��  ا�	راj�4ا���4ن ����ة ا��ا=�
�* هiF ا������ &� ا��+" ��R��N آ@��� �����
  . ا�


$$����ز�� اO$$&P( &$$� ا��+��$$* و�
�$$�ج ا,ون:�$� �$$� ه$$Fا ان$$# , ��ج$$	   ��C$$� �$$� �$$��" �$$&��� �$$ر ا��$$���

 � ا���8$� &+���$� ان ح�$� ا���8$� آ��$� آ�$�اً      �:�L�M ����� ا���8ذج �
( ا�	را4$� آ�$� ان$# ���=$n أ�$�G �O$� ح�$             


�C ا�4:	ام Pآ�&�� &�� اJeffreys' prior         �$��8�� ت�$&��� ح�> ان ا���ز��$�ت ا�����$� ا��:��R$� �$� "$�دى ا�$� ا

  .&� ن��oL ا���ز�� ا���	ى ا���G *-�8 آ( ���8

��� ���و=	 ان�j�y ا�	را�4& ��@���Cل ن�M& ��4 �& :  


��: ا	��� ا�ول��  

�$( ا���$)ى             و� ��( �G$� ا,S$�ر ا��$�م ��	را�$4          �
�$� ا����G �$& ��G�$@�� �$�
�,@$�&� إ�$� �
���$�ت    و�$	ى أه�

  .واه	اف ا�	را�4 ا���	��

� ا	������ت��ا	��ز���ت ا	����� : ا	��� ا	������  

  �$$��$$� ا�������"�$$�و��8$$�ول ه$$Fا ا�M$$R( ا4$$���اض �����R$$�ت ا���ز��$$�ت ا����V�&وا	وا,4$$ وأه$$� ا�$$ ��$$4�4Pب ا�� 

��تا���ز���ت آ�� "�8و���� اiF�   P  �  ا��	�	 �� اPن�اع   ,�4:	ا���، آ��C� T�F�ض  
"$� ا���آ�$) �G$� درا4$�        و=	  . د

�$�ت ه$   � أن$�اع ���و&$� ج�$	اً   ث�ث$ 
 �Jeffreys' prior, Locally uniform prior and Maximal &$� اPد

data information prior،	=آ(  و �RC�& اه$�        "� ا��4�اض )M$Rق ا,ش$���ق آ�$� ا4$���ض ا��$S T�Fن�ع وآ


�$$( ن$$�ع �G$$� ح$$	ة ا��)ا�$$� وأو �$$D�:ر ا��M$$ج$$# ا�� . j$$�" T�F$$ز��$$�ت وآ��� �$$��y8ا� �$$�-�Pا v��$$
ا,4$$���ن� 



  �

���� ا,ش���ق ا�y8�ى و"�      إح����R��N آ@��� �R��:� j        �$ن$�ع �$� ا,ن$�اع ا�� )$�
 �D�:ا� ���y8ا� oL��8رن� ا���� 

  .ا�4"�8و���� ا�	ر

  ا	��ز���ت ا	����� ا	������ت��: ا	��� ا	��	 

وأه$$� ا,4$$��ب 43$$�:	ا��� وا�����R$$�ت ا��$$�  "8$$�ول ه$$Fا ا�M$$R( نy$$�ة ش$$���� G$$� ا���ز��$$�ت ا�����$$� ا�������"�$$�   

��ت ا�:  
��ت ا�����
� ��+��� ان�اع ���$	دة            �"�8و���� اPد

��T ا���ز���ت، آ�� "�8ول أه� ا�د �D�  ا���ز��$�ت iF$� .


$ �( اآ-$� "���$ً�      Natural conjugate prior and g-priorو"�آ$)ت ا�	را4$� &$� ه$Fا ا��G )M$R$� "8$�ول        

��� �( "���n آ( ن�ع R�  . اش���=# و�ML�M#وآ

  ا	�'��� ا	��
ى 	+��ذج ا)�'
ار ا	%$� ا	��م: ا	��� ا	�اب!

�$$( ا���$$	ى ��$$�8�
� ا���ز��$$�ت ا�����$$� ا�������"�$$� ا��$$� "�8و��$$� ذج ا3ن
$$	ار ا�:+$$� ا��$$�م ا4$$��8داً إ�$$"$$� إج$$�اء ا��

*
�Cا� )MRا� )��
���
 . ���y8ا� oL��8�� وق�Rز ا��
  .ا����"�� ��G آ( ن�عو"� "�:�� أ

  ا�و	� 	+��ذج ا�4'
ار ا	3ات� �2 ا	�ت�� ا	��.ى 	�01/� ا	.�+�� ا	�'��� : ا	��� ا	%��-

      ��4�4Pا ���$(     اPو�$�  ���8ذج ا3ن
	ار ا�$Fا"� �$� ا��"�$�          "�8ول هFا ا�MR( ��	�� ح�ل ا���Rه�
، آ�$� "$� إج$�اء ا��

�$� ا�������"�$�   ا���	ى 
��4:	ام 
�v ا���ز��$�ت ا�����$� ا�������"�$� و         V �$ا��  �$"     ���M$Rرا4$� ا�	��
ا�-$�ن�   "�8و��$� 


�3@�&� إ�� ا����رن�    . وا�-��> �$��y8ا�  	ا��:�           &�$ �$��$( ا���$	ى      "$� أ���$�ر �$	ى آR$�ءة ا���ز��$�ت ا�����
�R$� &$� ا��


��4:	ام ا  ��8�AR(1)ذج     4�
�� ا���Rءة��4ب ا��
�آ�ة، و"�j ا����رن� ���� v�
آT�F "8$�ول ه$Fا ا�M$R(    . �:	ام 

               �$��$( ا���$	ى �$-�ث 4�4$( ز�8�
�* ا���ز��$�ت ا�����$� ا��:��R$� 3ج$�اء ا���+"  �$���6��D$�  ح�
   �$D4$��ر ا���ر

  ���Mا� �آ�ت ا�� v���.  وا��4�ض ا�       T�Fآ�ة وآ�
�(  ن��MR  oL( ن��oL درا�4 ا���
"   �$��$� ا�$)4�C ا�8�(���
 ا�


��v ا��	اول وا���4م ا��� G�4	ت &� "�:�� ن��oL ا�	را�4 ��	:�Cا��.  

   وا	
را/�ت ا	������1�ا	+��78: ا	��� ا	�1دس

> ا��$� ���$� "�8و��$� &$�     ، آ�� ُ� �ر &�# إ�$� 
�$v ن�$�ط ا��
$          ا�oL��8 ا��� "�j�D إ����   و  ا�	را�4 و���8ول ��:� 

������C� درا�4ت.  

  :ا	�0ح9

ا���$� ا�	را4$�   � أش$�رت  �$ اPول ��8$�ول G$�ض Pه$�  ا���ز��$�ت ا3ح�����$� ا�            :  ��ح$*  �-�ث$ 
 و��	 ذُ��$j ا�	را�$4    

 ا��:��R$� وآ$T�F "�ز�$$� ت   �$�  
6ن�ا�G و"�ز�$� ج��$� ا���$�C    ج��$$�وا��$�C:	�� &$� أ�V$7 ا,ش$���=�ت �-$( "�ز�$�      

�j8�O$" �$�8 ا���ح$* ا�-$�ن� وا�-��$> 
$�ا�o          . وأ��O "�ز�$� ج��$� ا����$�د و"�ز�$� ج��$� ا����$�د ا���$�C              ا����	د  


Matlab ض�$$K� j�	:�$$4ُآ$$�ة ا��$$� ا�
�$$( ا����ن$$�ت ا��ا=��$$�  أج$$�اء درا4$$� ا���
 &$$�  ا���$$�ن "$$� ا,ش$$�رة ا�$$���و"

*
�Cا� )MRا�.   
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