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Abstract

Prior selection is considered as a crucial difficulty that have ever encountered Bayesian
framework for many applications, since prior specification is the prime step to perform a
Bayesian analysis to the unknown parameters for the decision making. Bayesian machine
updates the prior information available about parameters through the prior distribution in the
light of information provided by the likelihood function to get finally the so-called posterior
distribution. This last distribution contains all possible information about parameters. Thus, it

is used for making inference about the parameters.

That essential rule of prior selection in the structure of Bayesian analysis explains the
vast literature in prior selection problem. This selection can be done using one of two main
approaches, noninformative prior and informative prior according to the existence of prior

information about the parameters in the model of interest.

Noninformative prior approaches are used when no or few information are available
about parameters. These approaches are widely accepted in literature since they do not require
subjective determinations. Besides, they introduce automatic consecutive steps to derive the
posterior results. One of the most well-known noninformative prior is the Jeffreys' prior. Such
prior has gained widespread acceptance in many fields due to its simplicity. One of its main
features is the invariance property. However, Jeffreys’ prior can not be applied in some cases
when there are different types of parameters or when no regularity conditions are available.
That motivates authors to develop some other noninformative prior distributions. These
approaches differ in their philosophies. One of those outstanding approaches is the locally
uniform prior proposed by Box and Tiao (1973) that is based on the concept of the data
translated likelihood. Another one developed by Zellner (1977), is the maximal data
information prior that is based on maximizing the data provided by the sample. That last

approach requires developing some informational criteria.



On the other hand, the informative prior distributions are used when information are
available about the unknown parameters. Many approaches were developed in literature to
quantify such information in a form of probability distribution. The progress in computing
facilities motivates authors to develop more accepted informative prior distributions. One of
the most famous informative prior approaches is the natural conjugate prior developed by
Raiffa and Schlaifer (1961). This prior is chosen such that it has the same functional form as
the likelihood function when the last is expressed as a function of the parameters. The only
difficulty encounters that type is the specification of hyperparameters. However, there are
many methods developed in the literature to solve such a problem. Another type of
informative priors is the g-prior introduced by Zellner (1986) to formulate the Bayesian
analysis of the general linear model. This type of informative prior is a special case of the
natural conjugate one but with less effort required to assess the hyperparameters, since it only
requires estimating the location hyperparameters of the coefficient parameters while the

variance-covariance matrix is estimated using the design matrix.

Since the study aims to investigate the different types of noninformative and informative
prior distributions, a complete perspective over both approaches is displayed and applications
to these approaches have been introduced to produce the posterior analysis of the general
linear model (GLM) and the AR(1) models. A comparative study is also demonstrated
through simulation devices to investigate the efficiency of the different prior approaches to
produce the posterior analysis of AR(1) models. All priors are demonstrated by some real life

time series data sets to compare the performance of the candidate priors.

From all what have been introduced in the thesis, the current thesis emphasizes the great
importance of the prior selection according to the characteristics of the model of interest and
to the sample size as well. Thus, caution must be given to the different situations that may be
encountered and it is recommended to examine the appropriate prior since no clear-cut

method tells the investigator which is the best prior to be used.
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Chapter 1

Introduction

In Bayesian analysis for a parametric statistics problem, it will be inevitable to
specify a prior for the unknown parameters. Bayesian analysis makes inference about
parameters by assessing a prior distribution and then deriving the posterior distribution
via Bayes' theorem. Thus, the Bayesian framework allows one to incorporate prior
information into statistical models for decision-making. This prior information is
combined with information from the data using the axioms of probability to yield
posterior distribution for parameters of interest. This is done using the Bayes' rule

which says the posterior is proportional to the likelihood times the prior (Hahn, 2006).

Accordingly, due to the crucial rule of prior selection in Bayesian analysis,
various approaches have been developed in literature to assess prior distribution. A
prior distribution which is "automatically" specified by the given model, is called a
noninformative prior since no other entries are required to derive such a prior.
Alternative names are given to these kinds of priors such as "default", "vague",
"reference", "ignorance", "weak", "inner", "invariant", "objective", "flat ", or "diffuse"
priors (Ye, 1990). Such approach of determining priors is termed as "objective" and
has long been attractive in practice since it involves numerous methodological

advantages (Yang, 1994).

However, subjective determination of the prior density has been the foremost
philosophical foundation for Bayesian analysis, though it is often criticized. That sort
of determination are named as informative priors since one has a certain "degree of
beliefs" and the Bayesian algorithm is followed to study how the data change these
beliefs. Probability theories have been developed in the literature to measure these

beliefs numerically (Lindley, 1965a and 1965b).

In this chapter, a brief discussion to the perspective and motivation for the prior

information are presented, followed by a discussion of difficulties in prior selection.
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Then, the most recent approaches to develop prior distributions will be briefly

reviewed. Finally, the objectives and the structure of the thesis will be sketched.

1.1. Perspective on Prior Information

In many practical applications, the decision maker usually has additional
information about the parameters of interest more than those found in current or
observed data. For example, a manager may know perfectly that another competitor’s
factory has burnt down. What should he do? Does he ignore the information or try to
make use of it? A trading company knows well that a new legislation will appear in the
short coming period (approximately 15% increasing in the tax rate). Will the company
make changes in its production activity, such as increasing or decreasing production or
ignore the information? Such knowledge is a further form of relevant information that
would be desired to combine with the observed data to make a more refined estimation
of the parameter of interest (Barnett, 1973). Information of such sort is derived from
outside the current situation and termed as a "priori" or "prior information". Prior
information is generally of various types, usually one of the following sources or a
mixture of them,

1. Information of previous data and studies.
2. Theoretical information.

3. Casual observation.

Methods have been set up to quantify a priori. Generally, the expected effect of
such measures is probabilistic. A probability distribution for that expected effect is
decidedly required to characterize its uncertainty. A powerful tool to do this task is the
so-called "prior distribution". The reader may refer to (Barnett 1973) and (Berger,
1985) for an inclusive discussion to variety of methods of probabilistic determination
of prior information. This probability distribution is used to represent the degree of
reasonable belief that may be available about the parameter and is always conditional
on our state of information. Consequently, this probability distribution is revisable
against variation in such state of knowledge. Furthermore, this process of revising
probability associated with the priori in the face of new information is the essence of

learning form experiment. Incorporating new information made by the use of Bayes'

1.1. Prespectiv on Prior Information
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theorem that is considered as an essential part of Bayesian approach. It is known in
literature as "principle of inverse probability", since information from data are used to

infer what random process generates them (Zellner, 1971).

A fundamental feature of Bayesian analysis is the use of prior information as well
as the observed data in the final analysis. Bayesian mechanism combines information
from sample through “likelihood function” with the prior information through “prior
distribution” to get the so-called “posterior distribution”, according to Bayes’ rule, that
18,

Posterior distribution o Prior distribution X Likelihood function

In this prospect, prior distribution embodies the probability density function based
on our initial belief about the parameter. Whereas the posterior density function
incorporates our initial information as represented by the prior distribution and our
sample information as represented by the likelihood function. Zellner (1971) declared

some remarkable characteristics of the posterior distribution are:

1. As the sample information grows, it will more dominate the posterior distribution

which will become more concentrated about the true value of the parameter.

2. The posterior distribution will be the same in the case when there are different
prior distributions as long as they are combined with common large sample

information.

However, Bayesian results could be sensitive to different assumptions on the prior
distribution. This is studied in literature under the so called "sensitivity analysis" or

"Bayesian robustness".

Nevertheless, in the Bayesian approach, the prior information about parameters of
a given model is represented by a chosen probability density function (p.d.f.). That
distribution must be adequate in representing prior or initial information about
parameters otherwise another prior p.d.f. have to be chosen to represent adequately the
prior information. This fact guides us to a very crucial question "How one could be
able to assign a prior p.d.f. to represent a state of knowledge about the parameter of the
given model? Are the information about parameters always available? These questions

will be replied through the following section.

1.1. Prespectiv on Prior Information
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1.2. Difficulties of Prior Selection

Bayesian analysis of a statistical problem consists of three stages, namely the
prior, posterior and predictive distributions. The prior distributions reflect the expert’s
beliefs about the parameters, and the posterior distribution is considered as a
modification of the prior information in the light of the observed sample. Therefore,
the posterior distribution construction is affected by the selection of the prior
distributions. Hence, careful specification of the prior distribution is of great

importance, since using bad prior will lead to bad posterior results.

Choosing the prior distribution is considered the hardest part in applying the

Bayesian framework. Prior selection faces two main problems.

e How to express the case of “knowing nothing” or “knowing little” about the
parameters in a probability distribution representation. (For more details about this
problem, one may refer to Zellner (1971), Box and Tiao (1973), Berger (1985), and Ye
(1990)).

e How to express the information about the parameters, if exist, in a satisfying

probability distribution representation. (For more details see Berger (1985)).

Many essays are developed in the Bayesian literature to discuss the above

problems and introduce various solutions to overcome them.

As a solution for the first problem, one may use the so-called noninformative
prior. That is termed as "weak informative prior" as well since few information is the
merely available about parameters. Moreover, noninformative priors are described as
"objective" because prior elicitation does not require assigning any personal or
subjective consideration. A noticeable remark is that Bayesian statistics are termed as
"objective", due to the use of noninformative prior distributions. The outstanding
motivation for noninformative priors is that they are considered as a remedy of the
often disapproval of "subjectivity" that most Bayesians rely on when quantifying prior
distribution through personal judgments. Thus, noninformative priors achieve a
conventional agreement as it retains the prevailing preconception that the science must
be objective. Moreover, noninformative prior distributions are more practical since

they have no population basis and play a minimal role in the posterior distribution. The

1.2. Difficulities of Prior Selection
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idea behind the use of noninformative prior distributions is to make inferences that are
not greatly affected by external information or when external information is not

available.

The variety of the approaches to develop noninformative prior distributions in
Bayesian analysis is vast and complex. Many philosophies are available in the
literature to choose a noninformative prior. The most famous types are Jeffreys’ prior,

locally uniform prior, maximal data information prior and reference prior.

To solve the second problem, one may use the so-called informative prior.
Informative prior distributions are used when there is information, usually subjective,
about the parameters available before assessing the data. Ignorance of this information,
just for the sake of objectivity, is not recommended. Subjective beliefs are usually
available in scientific inference. For example, a scientist decides to do a particular
experiment in order to confirm some hypothesis about the parameter, see Press (1989).

A probability distribution is needed to represent these subjective beliefs.

On the other hand, informative priors have a stronger influence on the posterior
distribution. The influence of the prior distribution on the posterior is related to the
sample size of the data and the form of the prior. Generally speaking, large sample
sizes are required to modify strong priors, where weak priors are overwhelmed by even

relatively small sample sizes.

Informative priors are typically obtained from past data and are commonly used in

small samples where there is insufficient data to form a convenient conclusion.

Nonetheless, in developing strategies for specifying informative priors,
researchers have recognized the importance of carefully eliciting an expert's judgments
so that the translation from belief to a probability distribution is as accurate as
possible. As a result, a wide variety of procedures for eliciting informative priors have
been developed (Hahn, 2006). A brief review of informative prior approaches provides
an indication of the extent in this area of research, as represented in a later chapter.
Representing the prior information by a proper distribution has been widely covered in
statistical literature. Such procedures are available to select informative prior such as

conjugate prior, g-prior, predictive density approach and ML-II prior.

1.2. Difficulities of Prior Selection
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Approaches that are widely followed in literature to select both noninformative

and informative priors will be discussed in details in subsequent chapters.

1.3. Objectives and structure of the thesis

The main objective of the thesis is reviewing the best-known approaches of
selecting informative and noninformative prior distributions. The philosophy,
derivation, and properties of each type will be studies and demonstrated by some

theoretical examples and by real and simulated time series data sets as well.

In more details, the objectives of the current study can be summarized as

follows:

1. The study reviews the best-known approaches of selecting noninformative prior
distributions, such as Jeffreys’ prior, locally uniform prior and maximal data

information prior.

2. The study reviews the best-known approaches of selecting informative prior

distribution, such as natural conjugate prior, and g-prior.

3. The philosophy, procedure for derivation and properties of each type are
explained. In addition, the difficulties in the construction of each prior are
discussed. Moreover, relations between priors are verified. Finally, some selected

examples are devoted to illustrate the derivation techniques of each type.

4. Posterior analysis of the general linear model (GLM) is established using

informative priors; natural conjugate prior and g-prior.

5. Posterior analysis of the well known time series model, the autoregressive model
of order one (AR(1)), is demonstrated using the noninformative and informative

prior distributions.

6. Numerical examples are introduced, based on simulation studies for AR(1) model,
to compare the performance of the studied priors using some criteria. Comparative
study is implemented concerning the general case of AR(1) process when the

stationarity assumption is ignored.

7. All priors are demonstrated by some real time series data sets to illustrate the

behavior of the candidate priors.

1.3. Objectives and structure of the Thesis
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The thesis is structured as follows:

In chapter 2, a comprehensive discussion of noninformative priors is considered
involving definitions, motivations and importance of noninformative priors. Various
approaches to develop noninformative priors are introduced. Particular attention is
given to certain noninformative priors such as Jeffreys’ prior, locally uniform prior and

maximal data information prior.

Chapter 3 throws light on the methodologies of informative priors' elicitation as
introduced in the literature. Types of prior information that may be available about
parameters of a given model are reviewed as well. A specific interest is focused on the

natural conjugate prior and the g-prior.

Chapter 4 shows the application of the natural conjugate prior and the g-prior to
the well known general linear model (GLM). These informative priors are used to

compare the posterior analysis of the GLM resulted from each prior.

Chapter 5 applies some of the preceding noninformative and informative priors to
the well known time series model, AR(1). Attention is restricted to the posterior
analysis of AR(1) using different priors concerning the general case of the process
when stationarity is not assumed. Moreover, a comparative study has been carried out
based on simulation to compare the efficiency of the studied priors. Some efficiency
criteria are provided to serve the comparative study. Finally, the posterior analysis of
some real time series data sets, that follows AR(1), is done. Most of the discussed prior
distributions are applied and the posterior analysis is produced using the candidate

priors.

Finally, the main results of the current work are summed-up in a concluding

chapter (chapter 6). Moreover, some points for future work are presented.

The simulation study and the computations concerning the posterior analysis of
the real examples are carried out using Matlab software (version 7.1). The scripts to do

such task are exhibited through Appendices II and III.

1.3. Objectives and structure of the Thesis



Chapter 2
Noninformative Prior Distributions

2.1. Definitions and motivations

A prior that is constructed by some formal rules or subsequent algorithms and that
is specified automatically by the given model is called ‘noninformative prior’. A

researcher does not need any other inputs to derive such prior (Ye, 1990).

Noninformative priors are mainly used when the information about the
parameters, to be provided by the prior, is little with respect to that from the data. The
literature contains many alternative names for this type of priors such as "objective
priors", "vague priors", "diffuse priors", "reference priors", and "invariant priors",

"default priors", "ignorance priors", "weak informative priors", "inner priors" or finally

"flat priors".

Since the use of noninformative priors has been considered as a routine in
Bayesian practice, it would be helpful to review the numerous motivations to
noninformative priors and the reasons of their importance to Bayesian analysis. These

motivations are briefly summarized by Berger and Yang (1996) as follows:

1. Utilizing noninformative priors avoids difficulties and criticisms that face Bayesian
analysis when using subjective prior distributions and being away from using of
objective inference. Also in the case of large amount of data, there is no need to do
more effort by using subjective prior distributions. Therefore, Bayesian analysis

with noninformative priors is the most preferred objective inference that is possible.

2. Moreover, elicitation of subjective prior distribution is difficult, because of cost or
time constraint. On the other hand, in particular circumstances, a simple and fast
approximation is always needed regarding the complexity and high dimensionality

of various modern Bayesian models, such as, Bayesian time series models.
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Automatic or default prior distributions are then needed since they provide good

approximation at much less effort than a full Bayesian analysis.

3. In high dimensional problems, subjective prior elicitations are desirable for
"interesting" parameters whereas noninformative priors can be given to the
unimportant or "nuisance" parameters. Therefore, in multiparameter statistical
problems, using a noninformative prior may be the best method for diminishing

nuisance parameters (Ye, 1990).

4. Subjective determination to the prior information may easily result in "poor" prior
distributions because of the inherent elicitation bias, where that elicitation typically
yields only a few feature of the specified prior (such as its functional form) in
addition to some other characteristics that are convenient but inappropriate.
Therefore, it is important to compare outputs from a subjective analysis with those
from noninformative prior analysis. It is important to check that the expected

substantial differences are due to the features of the prior that are trusted.

5. In addition, noninformative priors could be considered as a starting point for
investigating the effect of any other suggested subjective priors by comparing the

Bayesian analysis using these two approaches.

6. Another motivation to noninformative priors is due to their simplicity in the
Bayesian analysis particularly in Bayesian time series analysis. That is because of
the difficulties that face posterior computations using other subjective prior
distributions. Furthermore, applying such priors in Bayesian time series analysis
does not face any problems in dealing with usual presence of constrains on the
parameters in time series models, such as stationarity and invertiblity (Ismail,

1994).

On the other hand, there are some difficulties and problems in selecting such
priors. The main difficulty is that there is no clear-cut method for saying which
noninformative prior should be used. Besides most of noninformative priors are

improper, which makes interpretation about posterior results unclear (Berger, 1985).

2.1. Definitions and motivations
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2.2. Literature Review

There has been a tremendous amount in the statistical literature of noninformative
priors. Procedures for deriving such priors vary according to the philosophy of each
type. Furthermore, several books and articles have been concerned with discussing or
comparing different approaches in developing noninformative priors, see (Kass and
Wasserman, 1996) and (Berger and Yang, 1996). The last reference is considered as a

catalog of most of noninformative priors that have been developed.

The work in developing noninformative priors has begun so early by Bayes
(1763), which is known as Bayes’ Postulate, and Laplace (1812). They developed a
noninformative prior to represent the state of complete ignorance or knowing nothing
about the parameters. They depended on the principle of insufficient reason to evolve
such prior that is if there is no reason to prefer one value of the parameter to any other
then all values should be taken equally likely. Hence, they used the uniform prior as a
noinformative prior. Such prior is improper, in the case of infinite parameter space,

and 1s not parameter invariant.

Jeffryes (1961) tried to overcome the lack of invariance to transformations through
developing what is the most famous known as Jeffreys’ prior. The real contribution
due to Jeffreys’ work is that his prior is advocated by convention (or international
agreement), see Kass and Wesserman (1996). He did not insist on unique
representation of ignorance, but he worked to derive the best rule in each of many
cases, as it will be shown in next sections. The Jeffreys’ prior has gained widespread
acceptance on many fields especially Bayesian time series analysis. This wide use is
due also to its simplicity to derive so it is considered as a standard noninformative

prior in Bayesian time series analysis.

The principal of choosing noninformative priors based on invariance property is
widely discussed in the literature beside Jeffreys’ prior such as Hartigan (1964) and a
recent work for Datta and Ghosh (1996).

Some other modification to Jeffreys’ prior is presented according to a different

philosophy. Box and Tiao (1973) have derived the locally uniform prior as a

2.2. Literature Review
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noninformative prior based on the concept of data translated likelihood. They
developed a noinformative prior that makes the likelihood independent of the data
except for its location. This prior is proposed because of the difficulties that face the
use of Jeffreys’ prior in dealing with multiparameter case with different types of

parameters. Recent work in deriving that type of priors is introduced by Kass (1990).

Maximum entropy is another approach to construct a noninformative prior, where
prior with larger entropy is considered as being less informative. This principle seeks
the prior that maximizes the Shannon (1948) entropy. Such priors were developed by

many authors such as Jaynes (1957, 1968, 1980, 1982, 1983) and Zellner (1991, 1995).

Another criterion for selecting a noninformative prior is that based on the
information measurement, the most important studies to derive the prior are due to
Zellner (1971, 1977) and Berger and Bernardo (1989). The Zellner’s method leads to
maximal data information prior, which gives the minimum information compared with
the sample information. While Berger and Bernardo (1989, 1992) introduced the most
formal rule to derive a noninformative prior that is called reference prior. A very recent
work discusses definition and application of the reference prior is due to the work of
Berger et al (2007). The last prior is often used in the case when there are nuisance
parameters, where the Jeffreys’ prior does not adopt such case. Many authors have
extended the implication of reference priors to multiparameter case through different

applications such as Ye (1990) and Yang (1994).

Frequentist coverage matching approach is another method to select the
noinformative prior that makes “the data speak for themselves”. Such prior is the one
that achieves probability agreement between the sample and the posterior distributions.
This approach has been widely undertaken to discriminate among alternative candidate
prior distributions such as Welch and Peers (1963), Peers (1965 and 1968), Ye (1990)
and Yang (1994), Datta and Ghosh (1995), Sun and Ye (1995).

For more review and discussion to a variety of criterion to select noninformative

priors reader may be refered to Kass and Wasserman (1996).

2.2. Literature Review
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2.3. Jeffreys’ Prior

2.3.1. Introduction

Tracing Jeffreys' work throws light on opulent literature with vast writings of
other eminent statisticians who undertake exploring Jeffreys' contributions to Bayesian
statistics. They have appreciated Jeffreys' work due to its particular influence on their
own work in statistics. The influence of Jeffreys' work in the analysis of several
statistical problems reflects the power of Jeffreys' contributions and insights. Some of
those outstanding writings are for Geisser (1980), Good (1980), Lindley (1980), Kass
(1982) and Zellner (1980, 1982a and 1982b).

The current thesis will mainly rely on those writings to present a short summary of
Jeffreys' numerous contributions to Bayesian analysis. However the main emphasize
will be given to the noninformative prior suggested by Jeffreys, the so-called Jeffreys'
prior. Thus, it should be emphasized that the work will highlight these contributions
bearing in mind that the prime interest is writing up the Jeffreys' entry to the prior

distributions when no or little information is available within the Bayesian work.

Some of Jeffreys' contributions to the philosophy, methodology, and applications

of Bayesian analysis could be presented through the following headings:

Jeffreys as a scientist besides being a statistician:

Jeffreys was a noted physical scientist who re-established the statistical theory in
his time on the Bayesian foundations. Therefore most of his work on Bayesian
statistics was oriented towards the natural sciences. In this regard, one can never
ignore the very important citation of Lindley (1980, p. 4),

It is of course, one of Jeffreys' great strength as a statistician that he is a scientist.

This feature produces the inherent appearance of mixing those theories and
applications found in Jeffreys' work. This also reflects a testimony of the coherent
statistics apparent in Jeffreys' work, which was built on the theoretical satisfaction and
practical implementation. In this respect, Zellner (1980, p. 4) comments:

This is a recognition of the pervasive interaction between theory and application that is

present in his work.

2.3. Jeffreys' Prior
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It i1s noteworthy that his procedure for estimation, prediction, and inference is
applicable in natural and social sciences. So the applications of his techniques in
astronomical and geophysical fields are similar to that in econometrics and other social

sciences (Zellner, 1980).

Jeffreys' contributions to probability:

Most of Jeffreys' contributions to statistics, particularly to Bayesian statistics, are
found in probability. Jeffreys was the first who used probability to deal with problems
in the philosophy of science in addition to using probability to explain and investigate
the reasonability of scientific theories. This work was introduced through his work
with Wrinch (1919, 1921 and 1923), and through his famous book Scientific Inference
(1931). Furthermore, Jeffreys (1939) extended the notion of “degree-of-belief”, which
was first used by those who adapted the subjective concept of probability. However
Jeffreys disagreed with them in their confining on the personal beliefs, so he treated
probability in the logical sense. Jeffreys' theory of probability book has been
introduced in two more editions, in 1948 and in 1961, but the third in 1961 was of the
Bayesian revival. Jeffreys (1961) introduced the logical concept of probability in
Bayesian framework based on the principle of inverse probability, to compute
probabilities rather than the empirical calculations which followed in the frequentist
approach. In other words, Jeffreys' work in probability is developed along Bayesian

lines.

Jeffreys defines probability to be the reasonable “degree of belief”, or “priori”,
that an individual has in a proposition "q" given some body of evidence (the observed
data) "p". Then, the formal notion p(q | p) expresses the measure of the implication in
which "p" support or refutes "q". This concept of probability is considered to be
objective through the Jeffreys' view “there is one and only one opinion "q" justified by
any body of evidence "p" which could be the same”. Thus, such probability p(q | p) is
considered to be unique impersonal logic one could calculate or estimate only in the
context of Bayesian framework (Zellner, 1982b). Then the logical view adapted by

Jeffreys straddled the subjective and frequentist view in being objective but expressing

degree of belief (Barnett, 1973).

2.3. Jeffreys' Prior
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However, Jeffreys does not assume that everyone always have the same prior
information (Zellner, 1982b). Moreover, he is the first to adopt the case when the
person has no opinion which is the case of formulating “ignorance”, “nothing” or
“knowing little” resulting in the so called Jeffreys' prior, which will be discussed in the
next point. Such type of prior is noninformative. For that last reason, the probability
theory book of Jeffreys' is considered as a modern book because it introduces a recent
meaning of probability when little information is available (Lindley, 1980). That
concept of probability could be updated in the light of new information using the
Bayes’ theorem or the principle of inverse probability, where the resulted posterior
distribution could be used as a prior distribution taking into account further set of data

(Huzurbazar, 1980).

Jeffreys' ingenuity in quantifying “ignorance”:

As mentioned above, Jeffreys in developing his theory of probability, has not
denied the presence of any type of information (prior information) the investigator may
have and need to be tested with data. Such sort of priori is termed as “informative
prior”. Jeffreys was aware of many applications in which informative priors rather than
noninformative priors should be applied (Zellner, 1980). Furthermore, Jeffreys in his
work argued that each scientific law should be assumed to have a priori otherwise no

law could ever become probable no matter the evidence includes it (Good, 1980).

On the other hand, it may be the case of lack of information, i.e. the case when the
investigator has “no opinion” or “know little” about the proposition. In such case,
Jeffreys was considered as the unparalleled statistician that blew up the well-known
procedure for formulating “ignorance”, which is translated into the so called Jeffreys'
prior. However, he had a firm belief in the existence of an “initial” state of knowledge
even before data is available, and the importance of being able to make inference
merely based on data. Zellner (1982a) describes Jeffreys as pragmatic in his valiant
attempts to represent such a state of information, he says as well:

The situation is similar to the need to formulate the concept of vacuum in physics.
At this point, it is noteworthy to put forward the reasons that motivated Jeffreys to

develop procedures to express such state of ignorance; those reasons are as follows:

2.3. Jeffreys' Prior
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1. It is a matter of common nature of science to let the data speak for itself. Since in
many contexts including; scientific reports, courts of law and many other fields, one

wishes to abstract from personal views of an investigator (Zellner, 1980).

2. "A subjective assessor who had some prior information would need to be driven back to
the cradle or womb to reveal a time when what he knew was negligible or irrelevant to the

matter at hand." (As stated by Geisser, 1980, p. 17).

3. One of the difficulties that faced the Bayesian theory is which prior distribution to
be used when the prior knowledge is weak relative to that provided by the data.
This difficulty has been considered as a serious block to the universal acceptance of
Bayesian approach. Thus, Jeffreys tried to describe that relative lack of information
and developed a theory to deal with this difficulty (Lindley, 1980). It is very
important here to notice that, this type of prior distribution will set the Bayesian

machinery in motion providing indifference or impartial stance (Geisser, 1980).

The most noticeable criticism encountered Jeffreys is the dissatisfaction with his
technique to obtain numerical values of such unknown prior probabilities. Jeffreys'
respond was "It is not a correct description or an exact quantification, but a type of
approximation, to determine some infinite number of initial probabilities, each is
consistent, and then choose the best one according to some type of international
agreement". Jeffreys (1961) takes on providing satisfying general canonical rules for
choosing initial probabilities to express ignorance. On that same matter, Kass and

Wasserman (1996, p. 1345) state:

The real contribution that due to Jeffreys' prior is that he gives an evaluation to the prior
distribution base by convention away from unique representation of ignorance. That
means that Jeffreys did not insist on unique representation of ignorance, but he did work
to find “the best” rule in each of many cases.
Jeffreys also gave a further support of these general rules in case of large amount
of data. Where, in such case, the assignment of these initial probabilities by a
conventional choice of priors would make little difference in the posterior results.

Moreover the results given by the Bayesian inference are indistinguishable from those

given by the classical inference (Huzurbazar, 1980).

2.3. Jeffreys' Prior



CHAPTER2: Noninformative Prior Distributions 16

In view of what have been presented, Jeffreys' prior is considered as an essential

part of the furniture of the Bayesian statistics.

2.3.2. Derivation

The preceding section discusses the Jeffreys' motivation to express the case when
the prior information about the parameter is vague relative to that provided by the
observed data and his attempts to seek a general formal rule or a standard prior
distribution. Such distribution would be viewed as an approximated representation to a
vague prior.

Jeffreys (1961) defined the noninformative prior distribution of the parameter as
follows:

It is a way of saying that the magnitude of the parameter is unknown when none of the

possible values need special attention.

Jeffreys stated that if there is no information relevant to the actual value of the
parameter then the prior distribution must be chosen to express none or to say nothing
about the parameter values. However, it may be restricted within certain constraints.
Therefore, Jeffreys (1961) derived some rules for choosing the prior distribution to
cover the most common cases of the regular type. He identified rules that should

satisfy the following characteristics:

1. Provide a formal way to express ignorance of the parameter value over the

permitted range.

2. Make no statement of how frequently that parameter occurs within different

ranges.

3. Give the same results in terms of several different sets of parameters, that is, the

rules have to be invariant under re-parameterization.

Jeffreys’ first rule:

If the parameter @, the mean in location densities for example, may have any value
in a finite range or from -oo to oo, the prior distribution should be taken as uniformly

distributed in the form:

p(6)e< constant (2.3.1)

2.3. Jeffreys' Prior
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The uniform distribution was first used, to express complete ignorance, by Bayes
(1763) and later by Laplace (1812). It is based on the “principle of insufficient reason”
where if there is no reason to prefer one value of the parameter to any other then all
values should be taken to be equally likely. The choice of the uniform prior has long
been known as Bayes' postulate as an indication to Bayes' theorem. Jeffreys indicated
that the uniform distribution could not be a final solution for all problems because of
its lack of invariance under transformation. In more explicit meaning, the ignorance
about the parameter values intuitively implies ignorance about the values of any
transformation of the parameter. However, given a certain transformation, the uniform
distribution would not be the distribution of such function of the parameter (see Lee,
1989). This concept is usually termed as invariance, which will be explained in a

following subsection.

It is obvious that the p.d.f. in (2.3.1) is improper which means that it has infinite
mass or the integral on that density over the entire range of the parameter leads to oo

rather than the unity.

Using (2.3.1) involves representing complete ignorance about the parameter values.
Jeffreys explained this by the statement Pr{a <@ <b}=0, where a and b are any finite
numbers, however this statement does not mean that € is outside the closed interval
[a,b], (which resembles the fact that the probability of a continuous random variable
taking a specific value equals zero). This property corresponds to the first

charachteristic mentioned above.

Based on the previous property, the odds Prfa<@<b}/Pric<6<d} is
indeterminate, where a, b, ¢ and d are any finite numbers. This property corresponds to
the second characteristic, since no statement can be made about the odds that & lies in
any particular pair of intervals. The indeterminacy of this ratio seems to be adequate to

justify the use of the rectangular p.d.f. (see Zellner, 1971).

To check whether the distribution in (2.3.1) meets the third characteristic, consider

another parameter 7=g(0), say 77 =exp(€) hence, the inverse function given by

6 =In(n). This is a one-to-one transformation, through which the new parameter 7

2.3. Jeffreys' Prior
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will be defined over (0, ). Hence if p(@)is the density of @ then the corresponding

noninformative prior distribution p(77) of 77 could be derived as follows:

2

P e plg™ ) ‘j—i

Based on equation (2.3.1.), the above relation could be simplified to:

a6

p (1)< a7

b

p ()< ‘din (ln(n)* :
then
prmen. (2.3.2)
Therefore, the noninformative prior distribution of 7 have to be proportional to 7™

to maintain consistency and to obtain the same answers in each parameterization.

Thus, the consistency could not be satisfied if a constant prior distribution is chosen

for both 8 and 7 since (2.3.1) in terms of 77 would not meet the third characteristic

(see Berger, 1985).

From what stated above, the argument that the lack of prior information should
correspond to the constant density (2.3.1) would be hard to defend in general.
Therefore, the lack of invariance of (2.3.1) motivated Jeffreys to search for

noninformative priors that are appropriately invariant under transformations.

Jeffreys’ second rule:

If the parameter o, the standard deviation in scale densities for example, may have
any value in a semi-infinite range from 0 to oo, the prior distribution of its logarithm
should be taken uniformly distributed in the form:

p[ln(O')] o< constant,

which is equivalent to

() oL 23.3)
O

This distribution is termed as "Jeffreys-Haldan" distribution. An interesting natural

application of this distribution is the "table entry" problem, which represents the study

2.3. Jeffreys' Prior
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of positive entries in various natural numerical tables, such as table of population sizes

and tables of positive physical constants.

The form in (2.3.3) can be proved using Jeffreys' first rule in (2.3.1). The proof is
the same as presented for (2.3.2). The prior distribution in (2.3.3) is again an improper

prior distribution.

Jeffreys pointed out that (2.3.3) has the property Pr{0 <o <a}=Pria<o <oo}=co,

which indicates that nothing is known about o, the case of complete ignorance

provided by the first characteristic.

The previous property implies that the ratio Pr{0 <o <a}/Prfa <o <o} is

indeterminate, where "a" is any finite number, and thus nothing can be said about the
odds of these two probabilities, which correspond to the second characteristic. Again

this indeterminacy is considered as a formal presentation of ignorance.

With reference to the third characteristic, Jeffreys observed that (2.3.3) is invariant

to the one-to-one transformations only in the form 7=0", in other words (2.3.3) is

invariant under positive or negative powering of ¢ . This is an important property,

because some investigators parameterize models in terms of the standard deviation o

and others in terms of the variance o, or the precision parameter 7 = o .

Checking the invariance property of the powering transformation can be done as
follows (in case if n=2 for example):
Let

n=f(o), (2.3.4)

where f(0)=0c? in this case, then applying the change of variable technique using
the distribution in (2.3.3) will lead to

P’ (e plf ) \do/dn

where p’(17)is the required noninformative prior, then

b

-1/2 ,-1/2

p ey,

then

. 1
o< —. 2.3.5
p () 7 (2.3.5)

Then p'(c?%) < 1/ o2 has the same form as (2.3.3). Thus, applying Jeffreys' rule in

(2.3.3) to different parameters of the form ¢” provides prior p.d.f.’s of the same form

2.3. Jeffreys' Prior



CHAPTER2: Noninformative Prior Distributions 20

and consistent with each other. These prior distributions are consistent in the sense that
posterior probability statements based on the alternative parameters will be also
consistent. i.e., if an investigator "A" parameterizes a model in terms of ¢ and uses
(2.3.3) as his prior p.d.f., whereas another investigator "B" parameterizes the model in
terms of 77 and uses (2.3.5) as his prior p.d.f., they would get their posterior p.d.f.’s in
terms of their own parameter. If the invariance property is satisfied, "B" can use (2.3.4)
to transform his posterior distribution in terms of o and gets the same posterior
distribution that "A" has obtained. Alternatively, "A" can use (2.3.4) to transform his

posterior distribution in terms of 77 to get the posterior distribution that "B" has

obtained (see Zellner, 1971).

Jeffreys’ general rule:

Jeffreys (1961) generalized the invariance property base to develop the
noninformative prior distribution and hence, solve more general problems such as
problems involving multiparameter cases. Jeffreys pointed out that the prior p.d.f. of

the parameter vector 0 should be taken as:
1/2
p(8) o< [Infg| "~ (2.3.6)
such that
Infg = —E 9 log p(y|©) =12k, (23.7)
[ y‘e aelaej ) ’J_ 949y IV y I
where 0’ = (6 6,... 0 )is the k-vector of parameters defined on the space Q€ R ,yis
the n-vector of observations having the p.d.f. p( y| 0) over the space S < R", which
has continuous @ derivatives for all ye §, Inf9 is the (k x k) Fisher’s information
matrix for the parameter vector 0, and E denotes the expectation with respect to the
p.d.f. of y.
The most important property of Jeffreys’ prior in (2.3.6) is the invariance property,
in the same sense explained in the previous section. Thus if n=G(0), where G is a

one-to-one differentiable transformation of @, then the invariance virtue of (2.3.6)

involves that, the prior p.d.f. of n should be taken as

] 1/2
p(n)“‘lnn‘ -
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Therefore, the posterior probability statements will be consistent for all problems
that are parameterized in terms of 0 and m (for the proof of this property, one could

refer to Zellner (1971, p. 47)).

It is important here to notice that Jeffreys himself pointed out that such
multiparameter rule must be applied with caution, especially in scale and location
parameters problems that occur simultaneously. He also emphasized that this rule must
be examined to avoid adding some unwanted prior information into analysis. This

guides Jeffreys to assume the following rule:

Jeffreys’ independence rule:

In such cases he suggested treating location parameters separately. Thus, consider
the case when the parameters' vector specified by (4, 4, ... 1 0), such that g 's
denote the location parameters whereas 0 is an additional vector of parameters that
includes the scalar parameters. Then the modified general rule recommended by

Jeffreys is given by

\”2, (2.3.8)

p(,ul sMosees Uy ) o< ‘Infe
Kass and Wasserman (1996) called (2.3.8) Jeffreys' location general rule while called

(2.3.6) Jeffreys' non-location general rule.

Difficulties encounter applying Jeffreys' general rule

The major difficulty associated with the application of Jeffreys' rule in (2.3.6) arises
when parameters of different types are considered simultaneously. For example, in
problems containing both location and scale parameters, Jeffreys (1961) avoided
applying (2.3.6) and derived alternatively a noninformative prior density assuming
independence between parameters of different types. This modification leads to the
rule given by (2.3.8). Jeffreys explained the nonuse of his general rule, in (2.3.6), in
such cases by his deem that this rule will lead to dissatisfying results and the derived
prior density based on it will be inferior. So he, instead, derived the noninformative
prior by assuming independence then applying the rule separately to parameters of
each type (that is the rule in (2.3.8)). He also proposed that the resulted prior

distribution is invariant under transformations of a certain type. Zellner (1971) proved
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that Jeffreys' prior assuming independence is "minimal information" prior. This

concept will be explained in a next section (see §2.5).

On the contrary, Box and Tiao (1973) stated in this respects, that the independence
assumption between parameters of different types could appear inappropriate in certain
cases. They showed some applications in which the location and the scale parameters
could be dependent according to the nature of data of interest. To overcome this
problem, they suggested manipulating data by adapting some appropriate
transformations such as taking the logarithm of the original data to remove constrained
dependence. For further details and explanations, one could refer to the example which

they introduced (see Box and Tiao, 1973).

Another difficulty, that impedes working with Jeffreys' general rule, is that the rule
could not be applied with distributions of non-regular type and distributions
indifferentiable with respect to parameters (Huzurbazar, 1980). In this respect, Jeffreys
himself realized that his assumption only works under regularity conditions in one

parameter; in continuous problems (see Irony and Singpurwalla, 1996).

Regarding the invariance requirement attained by Jeffreys' rule, Jeffreys insists on
viewing his rule as unique for any given model, which is considered to be wrong by
many other statisticians. Huzurbazar (1980) considered seeking a single invariance
rule, which is adequately applicable to all distributions, as an impossible hope. He
deemed that such hope is as unlikely as discovering a single scientific law to explain

satisfactorily all physical phenomena.

In essence, the application of Jeffreys' rule leads to inappropriate results in large
dimensional parameter space and in distributions of non-regular type as well. Hence an
inevitable technique of noninformative prior will be required. Some other techniques
could be available to produce a noninformative prior distribution that fits those cases,

see Berger and Bernardo (1989 and 1992) who developed the reference prior.

2.3.3. Properties

For long decades and till nowadays, Jeffreys' prior has been considered the most

widely used standard noninformative prior in many applications, particularly in
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Bayesian time series applications. This is due to its simplicity in being derived
automatically. Therefore, it was important to provide a subsection here discussing the
two main properties of Jeffreys' prior. First, being an improper prior is considered by
many others to be a flaw. Second, the invariance consideration involved by such prior

is considered by many as a great contribution.

Impropriety

It happens frequently that noninformative priors are improper, which means that it
has infinite mass. In such case the function used is not a probability density at all.
Many statisticians consider this a serious drawback of the noninformative Bayesian
analysis because it is hard to apply it with problems in estimation and inferences
(Koop, 1994). A reasonable response to this criticism revealed by Bernardo through
his discussion of noninformative priors in Irony and Singpurwalla (1996, answer to
question 7) was:

One should not interpret any noninformative prior as a probability density.
Noninformative priors are merely technical devices to produce non-subjective posterior
distributions by formal use of Bayes theorem and sensible non-subjective posterior

distributions are always proper.
This involves that the improper noninformative priors will be "unacceptable" if they
yield improper posterior distributions. So the propriety of the posterior distributions
should be the first property required when improper noninformative prior is applied

even for minimum sample size as it will be illustrated in following parts.

The previous discussion has not confined the noninformative priors to be improper,
however, proper noninformative priors are usually found whenever the parameter

space is bounded (see example 2.3.1), although this is not a general case.

Jeffreys was the first to propose an axiomatic foundation of improper
noninformative priors. The most applicable use of such improper distributions is in

elementary quantum mechanics (Good, 1980).

Jeffreys considered using improper noninformative priors as the best way to
describe the case of complete ignorance. Commenting on this, O'Hagan (1994) argued

that there is no prior information that is completely absent, but improper priors are
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used precisely to reflect weak information relative to the data. In such point of view,
the posterior distribution will generally be robust to any reasonable choice of
noninformative prior even improper one. In the same sense (see Irony and
Singpurwalla, 1996) similar representation of noninformative priors are adopted,
whether proper or improper, to construct a posterior distribution that reflects data

dominance.

Another two interested arguments must be mentioned. First, in the case of large
sample sizes choices of noninformative priors, whatever proper or improper, will have
minor effect on the posterior results (Gelman, 2002). Second, an improper prior can be
approximated by a proper one, for example the Jeffreys-Haldan distribution in (2.3.3)

can be approximated very closely by a log Caushy distribution (Good, 1980).

Invariance

One of Jeffreys' great contributions to Bayesian inference is that he introduced and
developed invariance considerations into the Bayesian system (Geisser, 1980).
Furthermore, Jeffreys' prior was the first explicit use of the concept of invariance in
statistics and particularly in the selection of noninformative prior distributions (Good,
1980). He was then the first to set up rules for noninformative prior distributions that
satisfy various invariance principles, as will be illustrated below. On the other hand,
the invariance principle is suitable only when no prior information is available, so the
analysis of invariance will correspond to Bayesian analysis with noninformative priors

(Berger, 1985).

The invariance requirements are crucial for sensible posterior distributions that are
based on noninformative prior. Furthermore, one should not seriously consider an
assumption for noninformative Bayesian inference which does not satisfy them. The
importance of meeting invariance principles could briefly be due to the following

reasons as mentioned in Berger (1985):

1. People who don't like to talk about noninformative priors are welcome to do the

same procedure in terms of invariance.
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2. Existence of many choices of noninformative prior, which is considered as a
crucial criticism to noninformative Bayesian analysis, will be restricted to one

particular noninformative prior if invariance is satisfied.

Most of the recent use of invariance could be traced back directly or indirectly to
Jeffreys' work (Good, 1980). Later efforts to derive noninformative priors through
considerations of transformations of a problem had been extensively used in Hartigan
(1964), Jaynes (1983 and 1968), and Villegas (1977, 1981 and 1984) and Berger
(1985).

The most apparent noticeable property of Jeffreys' general prior is that it satisfies all
requirements of invariance concept as Hartigan (1964) proposed. Zellner (1971)
introduced the invariance principles that they all hold through applying Jeffreys' prior
in (2.3.6) according to the establishment of Hartigan (1964). These requirements are as
follows:

Let y be the n-vector of observations having the p.d.f. p(y|9) over the space

S © R", which has continuous 8 derivatives for all ye S, where 6=(6, 6,...6 )is

the k-vector of parameters defined on the space Qe R" . Hartigan (1964) established
that if the Jeffreys' prior in (2.3.6) is considered, the Bayesian transformation, by
combining the prior information with sample information, will have the following

invariance properties:

1. S-Labeling Invariance: let z=G(y) be a differentiable one-to-one

transformation that takes the sample space S for y into S’, the sample space for z,

then
p®|z)< p(8]y),
where p(9| z) and p(9| y) denote posterior distributions of z and y respectively. This

property is important particularly if this transformation in data involves a change in the

units of measurement.

2. $2-Labeling Invariance: Let M = F(0) be a differentiable one-to-one transformation

of 0, then
p(|y)e< p(8]y),
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where p(n| y) and p(9| y) denote posterior distributions of q and 0 respectively. This

property, as mentioned above, is important in different parameterization of the

problem.

3. Q-Restriction Invariance: Assume that 8¢ Q° — Q. Then

p (8] y)< p(8]y),

where p'(B|y)is the posterior distribution based on p’(y|@)with 6€ Q. This

property means that Jeffreys' prior is not affected by a restriction on the parameter
space. In other words, applying Jeffreys' prior under restriction on the parameter space

will lead to the same posterior.

4. Sufficiency Invariance: Let t = (¢,¢,...1 ) be a vector of sufficient statistic of 6.

Then:
p®| )< p(8] y),
where p(9| t)is the posterior distribution obtained from the model p(t| 0). In this

regard, Jeffreys' rule will lead to appropriate prior distributions for all well-known
distributions that admit a sufficient statistic for a parameter, but merely in the case of

single parameter.

5. Direct Product Invariance: Let y, and y, be two independent sample vectors each

of nx1, then

p(9| y)°<pl(91|yl)p2(62|y2),
where p(8;|y;)e< p.(8,) p,(y,]|0,).for i = 12, 8,€Q,,0,€Q,, 8 Q=0 xQ;,

and the prior p.d.f.'s p,(8,), p, (8, ),and p(8) are each taken in Jeffreys' form in (2.3.6).

6. Repeated Product Invariance: Suppose that y,,y,,..., y  are each nxI independent

observations vector and each is from p(y| 0), the same as for y. Then

m
P(Y[:Y ¥ |8 =T P(y,|0),
i=1

and
% m
p 0]y.yy.y, )= PO p(y,;|0),
i=1
and
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PCIE TR 2 (] y1>ﬁzp<yl~| 0),
where p(0)is the form in (2.3.6).

2.3.4. Examples

In this subsection, the derivation of Jeffreys' rule will be illustrated to several
distributions from which observations are generated. The same examples will be
demonstrated in the following sections for discussing other approaches for selecting

noninformative priors.

Example 2.3.1: Binomial (6)
According to this distribution, the parameter of interest &, defined over the range
[0,1], is the probability of success in each trial of total fixed number of trials n. Then

an observation y (the number of success) will be distributed as follows:

p(y|0) =<6 (1-6)"",y=0,1,...n.

The importance of providing such a distribution is that there are several candidates

in the literature for the noninformative prior form of the Binomial parameter.

Deriving Jeffreys' prior requires computing the square root of the determinant of
Fisher's information matrix, which is a scalar in such case, having the form

d*log p(y| e)]

Then the computation can be proceeded as follows:
log p(¥]6) < ylog 6 + (n - y)log(1- ),
then

legP(y| 9)0(1_ (n—y)
de 6 1-6

>

and

d’logp(]8) -y (n-y)

de? 0> (1-6)>
Infy w—E |22 172 |
N0l g2 (1_g)2
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né n(l1-6)
o< — 4+ ,

0° (1-6)°
o n

0(1-6)"

Jeffreys' prior, which has the form p(8) < /Inf,, , will be
p(@) <82 (1-6)"7 . (2.3.9)

This is a proper distribution well known as Beta(1/2, 1/2) which is also called as the
arc-sine distribution. Some different plausible alternative suggestions to this

distribution will be seen later.

Example 2.2.3: Normal (6)
In such distribution the observations are generated from a normal distribution with a
known variance. The unknown parameter @, which is the location parameter, is the

parameter of interest defined over the parameter space (—oo,o0). This distribution,

which belongs to the family of location densities, is in the form

2
p(y|g)°<620“ a)’e(—°°a°°)-

As illustrated in the preceding example, the algorithm of driving Jeffreys' prior will
be as follow:
log p(3| ) < (y — ),

dlog p(y| 0)
46

d” log p(y] 8)
d6*

o< (y_g)a

oc constant

Hence, Jeffreys' prior of such normal mean will be

p(0) =< constant,

which is in the same form as Jeffreys suggested in his first rule in (2.3.1).

Example 2.3.3: Normal (o)
The observations are also generated from a normal distribution but with a known

mean. The unknown parameter o, which is the scale parameter, is the parameter of

interest, defined over the parameter space (0,o0). This distribution, which belongs to

the family of scale densities, is in the form
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-1 2
—— (-0
p(y|0)°<0_1€2‘72 , V€ (—00,00).

Deriving Jeffreys' prior can be done through the following steps:

1
log p(y| &) < ~logo —— (v - 6)°,
20

dlog p()| o) ol w-0’

do c o
d’logp(hlo) 1 3(y-6)
do? o’ ot ’
1 3(y-6)*
Infg =—F L—a— ’
-1 3
*2 o
o<20'_2,

then, Jeffreys' prior in such case which takes the form p(o) o< /Inf, , will be

p(0)ec o]

which is in the same form as Jeffreys suggests in his second rule in (2.3.3).

Example 2.3.4: Normal (6,0)

In such case the observations are generated from a location-scale normal

distribution with unknown mean and variance. The parameter space over which the

parameters are defined is the same as mentioned in the above two examples, for € in

example 2.3.2 and for ¢ in example 2.3.3. The form of this distribution is as follow:

-1 )
——(-0)
_ 2
p(y|0,0-)°<0_ 1620' ,ye(—oo,oo)_

To follow the procedure for deriving Jeffreys' prior we need first to calculate,

1
log ()] 6,0) =< ~logo ——-(y - 6)°,
20

then to find the Fisher's information matrix, which is symmetric having the form

9” log p(y|6,0) 97 log p(y] 6,0)

2 00do
Inf, o—E 960 :
0.0 N6:01 9% log p(y]6,0) 97 log p(3] 6,0)
d6do do?
1
— 0
5 |-
0 -
0.2
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then, Jeffreys' prior with the form p(8,0) =< ‘Inf 9.c|> Will be

p(0,0)< 0. (2.3.10)

Jeffreys discarded to use this prior, as mentioned in a previous subsection, and
recommended alternatively another prior distribution that resulted from assuming
independence between both the location and the scale parameters. That leads to the

Jeffreys' non-location rule.

The main reason of considering this result inappropriate is that, when the model
extended to the k-means and a common unknown variance, the marginal posterior
distribution of the location parameters is the student-t with degrees of freedom depend
only on the sample size regardless the value of k (see Zellner, 1971). So given this
assumption the joint prior density in this case taken as the product of the Jeffreys'
priors for the mean parameter 8 and the scale parameter o separately to get the joint
prior in the form

p(6,0)=<oc”', (2.3.11)
which is the result of the product of p(8) o constant and p(c) e o~ ". This result can
be obtained, as well, by applying directly Jeffreys' location general rule in (2.3.8). This

final form is the recommended prior distribution by Jeffreys to this problem.

Example 2.3.5: k-Normal (0 ,0)

It is essential to provide another example for a multiparameter distribution.

Therefore, the distribution of k-normal independent populations with k-vector of

unknown means 6’ =(6,,6,,..,.6,), defined on the parameter space Qe R*, and
unknown common standard deviation o, which is defined over(0,e), will be

presented here. In such distribution there are k independent random samples y's , each

of size n, defined over the sample space S c R"and each also generated from

Normal(6,,0 ), where, i =1,2,....k. The joint distribution of the k-vector of samples

Y = (Y1, Ya»en ¥, ) Will be in the form

%%(Yi_gi)z

p(y|8.0) = o7 €27

Derivation of Jeffreys' prior in (2.3.6) requires computing the following term

k
2(y; _01)2

log p(y|8,0) < —k logg - =——
20
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Then compute the Fisher's information matrix in (2.3.7), with a minor difference that
there is another additional parameter ¢, which means that the matrix will be of order
(k+1)x(k+1). The elements of this matrix will be computed according to the following

steps:

The first k elements on the main diagonal will be proportional to

6,0)| .
,i=12,k,

92 log p(y
“_Ey\ 0.0 3
’ 26,

o<0'_2.

But the last (k+1)™ element on the main diagonal will equal to

0% log p(y| 8,0)
8.0 do? ,

o< —E

y

< 2ko 2.

Since Infy is symmetric, the off-diagonal elements except for the last row and last

column will be hence in the form

5 92 log p(y
y‘ 6.0 8191819]

8.0) . .
,i#=j=12,.k,

o< zero .

Similarly, the off-diagonal elements on the last row and the last column will equal :

021 s
_E [ 0g p(y| @ 0)}, i=12..k,
Y| 6.

o< Zero .
It is noticed, so far, that the Fisher's information matrix for this problem is of
diagonal type. Therefore, Jeffreys' prior, which is the square root of the determinate of

Fisher's information matrix, will be computed as follows:

k
p(6,0) = \/(HG_Z)X(ZkG_z) ,
i=1

p(8,0) < Vo * xo7? .

Then, Jeffreys' prior for this problem based on his general rule in (2.3.6) will have the

form

p(0,0)0c oKD (2.3.12)
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Jeffreys deemed this last derived form as a dissatisfying prior. Instead, he derived
another noninformative prior form for this problem assuming independence between
both the vector of means and the standard deviation, where both are of different kinds.

He then, applied his general rule separately to each type of parameters, to get

p(0) < constant as a noninformative prior distribution for 6 and p(0')0<0'_1as a

noninformative prior distribution for o. This can easily be proved in the two cases for
this problem. Then the joint noninformative prior distribution will result from the

product of these marginal distributions to be

p(0,0)<o". (2.3.13)

This was the final form accepted by Jeffreys and practically applied in similar
problems. Zellner (1971) considers (2.3.12) as more informative for large k than the
(2.3.13). In other words, Zellner described (2.3.13) as "minimal information prior".
This latter concept introduced by Zellner (1971), as another tool to derive
noninformative prior forms, will be discussed later (see §2.5). Zellner generally, and
particularly in such problem, explained Jeffreys' departure from his general rule by his

concern to add inconvenient prior information to the analysis.

2.4. Locally Uniform Prior

2.4.1. Introduction

Box and Tiao (1973) objected the reckless application of Bayes' postulate to
characterize the situation where nothing is known about the parameter. They also
disagreed with the realistic existence of "complete ignorance" state of knowledge
about the parameter. The state of "knowing little" is considered to have meaning only
relative to the information provided by an experiment. This refutation has been
justified by many reasons. The most noticeable one, which has been indicated in the
preceding section, is lacking of this postulate leads to consistent posterior distributions
if it is applied to different transformations of the parameter using the same data.
However, they did not absolutely reject the uniform prior distribution. They permit

using it approximately in certain cases such as:
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1. In cases where the range of uncertainty of the parameter is not large, since
many transformations would be nearly linear such as logarithmic and reciprocal.

However, this argument would not necessarily work if a very extreme

transformation was considered such as ¢ =exp(exp(d))or ¢ = 910, assuming that

@ is the parameter of interest and ¢ is some transformation of this parameter.

2. For large or moderate-sized samples. Since fairly crucial modification of the
prior distribution, through transformations in parameter may, only lead to minor

modification of the posterior distribution.

Away from these limited cases, they proposed a tool for choosing a particular
metric (transformation) in terms of which a uniform, or locally uniform distribution as
they call, can be regarded as a noninformative prior distribution about the parameter.
Such a noninformative prior distribution is termed by them as a reference prior which
is used as a standard prior to characterize the situation of ignorance about parameter

relative to the informative data.

Relevance Concepts:

The technique for choosing a noninformative prior distribution proposed by Box

and Tiao (1973) is mainly inherent to some basic terms.

Likelihood Function (LF)

Suppose that y is a vector of n observations whose density p(y| 0) depends on the
value @, the parameter of interest. p(y| ) is considered as a function of @ for fixed y
not as a function of y. In such case, p(y| ) is called the likelihood function (LF) of &

given y and written as Z(8| y). Further, assuming p(@) indicates to the prior

distribution for 8, Bayes' theorem is very often written in the form
p(O|y)=<1(6]y)x p(8).

Therefore, the LF plays a very important role in Bayes' formula. It is the function
through which the data y modifies the prior beliefs about €. It can hence be regarded
as representing information about 8 coming from the data. The main properties of the

LF can be summarized as follows:
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1. Multiplication of LF by a constant, or generally by a function of the data y only,
leaves the LF unchanged.

2. The LF should not have the same properties as p(y| ), that is Z(6| y)is not always

integrated or summed to unity. In this case, the LF is often scaled so that the area

under the curve is one as follow

16]y)

— 7 24.1
[16)y)ae @4.1)

This quantity is often termed as standardized LF.

Dominance LF

Box and Tiao were concerned with problems of scientific inference occurring in
scientific investigation. They deemed that analyzing scientific data would often be
sensible on the assumption that the LF dominates the prior. For more clarification of
this concept, consider the example of the normal distribution with known variance,
where 6 is the location parameter. The concept of dominant LF may be illustrated by
the following figure.

Figure 2.4.1
The LF dominates the prior distribution

LF

Prior distribution

It is obvious from the above figure that the LF reflects less uncertainty about &
compared to that reflected by the prior distribution. So the LF tends to be more
informative about & than the prior distribution, whose shape indicates that little is
known about 6. Such relationship between the LF and the prior distribution figures

that the prior is dominated by the LF.

Box and Tiao motivated the dominance of the LF in scientific investigation for

many réasons such as:
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1. An experiment, for sake of scientific investigation, is not usually undertaken
unless information supplied by it is likely considered more significant than

information already available.

2. It is appropriate for a scientist who has strong prior beliefs, which strictly disagree
with what others have, to begin with deriving a posterior distribution that
represents the view of someone else who has no strong beliefs or knows little about
the parameter in the light of data. Such posterior distribution can merely be derived

using prior distribution dominated by the LF.

Locally Uniform Prior

A basic property of the Bayes' postulate is that it is an improper distribution. Box
and Tiao (1973) were hesitant to employ the improper p.d.f.'s recommended by
Jeffreys through (2.3.1) and (2.3.3). They rather used such densities to express the
local behavior of the prior distribution of the parameter over the region where the LF
is appreciable but not over its entire admissible range. They have used the term local
as a remedy to impropriety, which have been considered by them as impractical to
occur. So by assuming the prior approximately follows (2.3.1) or (2.3.3) only over the
range of appreciable LF and tails to zero outside that range, the resulted priors used are

actually proper and have hence more practical sense.

Considering the above argument only as for the uniform distribution in (2.3.1), that
can be regarded as a normal distribution with infinite variance. It can hence be
approximately having this form locally over some (possibly very large) interval,
precisely over the range of appreciable LF, and is never very large outside it. The
posterior distribution derived based on such prior distribution is approximately
numerically equal to the standardized LF in (2.4.1). It follows that the dominant
feature of the posterior is the LF, Lee (1989). Such a prior distribution used in this
case, which is a proper one, is termed as locally uniform prior. So Box and Tiao
overcome the theoretical difficulty of the impropriety of the uniform distribution in
(2.3.1) by introducing instead, the practical sensible, the locally uniform prior

distribution.
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In general, the locally uniform prior is the prior which is dominated by the LF and
does not change very much, or may be further considered as reasonably flat, over the
region in which the LF is appreciable and does not assume large values outside that
range (see Fig. 2.4.1). Kass and Wesserman (1996) considered such suggestion of the
locally uniform prior by Box and Tiao (1973) as a response to the suspicions about the
often impropriety property of many noninformative priors. Kass and Wesserman
explained the use of locally uniform prior as a truncation of an improper prior to make

its domain more compact and it hence becomes a proper distribution.

Difficulties associated with locally uniform prior:

It is of interest to bear in mind that, appealing to the locally uniform prior, as a
remedy to the impropriety, has not yet so far wiped out the crucial flaw of its being
self-inconsistent. It's being so, in the sense when it is applied to different
transformations for the original parameter, which has just been indicated at the
beginning of this section. Box and Tiao (1973) have devoted an effective technique for

choosing a noninformative prior that overcomes such crack, as will be demonstrated.

Data Translated LF

Box and Tiao (1973) introduced the notion of data-translated LF to refine the use of
locally uniform priors. For more assimilation to such terminology, consider again the
example of the random sample y of size n from the normal distribution with known

variance o”. The LF for 6, the location parameter, can be considered to be normal
distribution with mean equal the sample mean y, and standard deviation %—. This
n

LF has precisely the following form

16| 0,y)<e20

- (6-y)?

Considering different sets of data represented by different values for y's, the

standardized LF curves would have the appearance shown in figure 2.4.2(a). It
obviously illustrates how different sets of data exactly translate the LF curves on the
6 axis but leave it otherwise unchanged, with same functional form, except for a shift
in location. Now if the locally uniform prior is taken for @, the posteriors based on

these sets of data will be also the same except for their locations. That’s why Box and
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Tiao considered that it seems sensible to adopt a locally uniform prior when the LF is

data translated.

It is now important to provide the case when the LF is not data translated in terms
of the parameter of interest. Consider, therefor, the case when the random sample y is
generated from normal distribution with known mean but unknown variance o°. Then

the LF for ¢ will be in the form

[(n=1)s>+n(6-7)]
l(0]8,y)< o "e20’ ,

where

2 =2
‘Z(yl' -)
2 _ =l
Ky e —
n—1

In such a case, the standardized LF curves in terms of the original metric ¢ with
different data sets, expressed by different values of S's, as shown in figure 2.4.2(b).

Figure 2.4.2
The standardized LF shapes relative to different sets of data and the
corresponding noninformative prior distributions of the parameter

A noninformative Likelihoods

priorf(&._.]/_\—-A""A_._.

(a)The likelihood is data translated in terms of 0

9 (Normal mean)

Likelihoods

The corresponding
noninformative prior for ¢

0 (Normal standard deviation)

(b)The likelihood is not data translated in terms of ¢

Box and Tiao considered that the noninformative prior for ¢ should not be taken as

locally uniform distribution.

In such a case, they suggested to express the unknown parameter o in terms of
another metric, say 0(c), so that the corresponding LF for this transformation is
exactly data translated. That is the LF curves for ¢(c) are unchanged via data sets

except for their locations. The locally uniform prior could hence be sensible to be
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assigned as a noninformative prior for ¢(c). Then the corresponding prior distribution
for o could hence be easily derived by the usual change-of-variable rule based on the
distribution of ¢(c). Such a resulted prior distribution for ¢ is termed as

noninformative prior.

In essence, for the moment, the above argument strengthens the use of locally
uniform prior as long as it guarantees the LF to be exactly data translated. That is, in
another words, the LF is said to be data translated when the sets of data only serve to
relocate the LF with the same functional form. However, if this is not the case another
transformation for the original metric is still a natural urge to be sought for and that
makes the LF in terms of which exactly data translated. The locally uniform
distribution is hence chosen as a noninformative prior for such transformation. Then
by formal rules of change-of-variable techniques the corresponding noninformative
prior distribution of the original parameter could easily be derived based on the locally

uniform distribution of the transformation.

Multi-parameter Data Translated LF

It is of wide interest to point out the manipulation of Box and Tiao to the same

concept of "data translated LF" but within multi-parameter models. For illustration,
consider the example of Normal linear model (NLM), ie., E(y)= X0, where

y, =(y,»,--»,) 1s aset of Normally independent distributed random variables having

. 2 ’ .
common known variance 6, 6 =(6 6,...6 ) is a k-vector of unknown parameters,

and X is the design matrix of order (nxk). The LF can be expressed as:

18|y,0) o< exp{ —L (0 —0)X X(0 - é)},

20'2

where 0 is the vector of least squares estimate of 0. In case of k=2, figure 2.4.3(a)
shows the same shape of LF contours for different sets of data represented by different
values of él and éz. That is, data sets serve only to relocate the LF over 6, and 6,
space and leave it with the same spread. In such case, the LF is data translated and the
noninformative prior for @ would be taken as locally uniform. When this is not the
case, a transformation will be needed such that, in terms of which the LF is data

translated. Then the procedure of selecting a noninformative prior for the original
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parameters will be applied according to the same argument that followed above.
Practically it is difficult to find a transformation that fulfills such concept. Generally a

transformation would be necessary only to produce LF regions of the same size, see

figure 2.4.3(b).

Figure 2.4.3

Likelihood contours relative to different sets of data

0, ¢>

SDHD
D

0 O
(a) NLM: likelihood contours with (b) Likelihood regions with different
same shape. shapes have the same size.

2.4.2. Derivation

It should be emphasized, so far, that the main issue is how to select a
noninformative prior, or a reference prior as Box and Tiao called it, which provides
little information about the unknown parameter relative to what is expected to be

provided by the projected experiment.

In the light of the above discussion, the best procedure for Box and Tiao, is to
recommend the locally uniform distribution as a noninformative prior provided that it
satisfies the exact data-translated LF principle. That is because the locally uniform
prior under this principle will produce posterior densities with the same form, except
for their locations, for different samples. This feature of the locally uniform prior is
what makes it noninformative. It is therefore convenient to devote this subsection to

hold this concept, on which they based their derivation, in more details.

(a) Single parameter case:

Mathematically, according to Box and Tiao (1973), the LF is considered to be

exactly data-translated if it may be written in the form
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1(6]y) > g[¢(8) ~ 1(y)] (2.4.2)

where ¢(0) is a one-to-one transformation of 6, g(.) is a known function independent of
y and t(y) is a function of y often expressing a sufficient statistic. If this is so, the
noninformative prior of ¢ is taken to be locally uniform and the corresponding

noninformative prior of @ is as follows

locally d¢
pO) (o (2.43)

Box and Tiao stated further that, a transformation that allows the LF to be expressed
exactly in the form (2.4.2) is not generally available. Thus, for a moderate sized
samples all what would be necessary to require is a transformation ¢(¢) in terms of
which the LF is approximately data translated. That is, the LF is nearly independent
of the data y except for its locations. So Box and Tiao developed methods for
obtaining parameter transformations in terms of which the LF is approximately data
translated. These methods are based on approximation of the LF to a quadratic form
that is approximately normally distributed. Then, the required transformations will be
derived on the principle of variance-stabilizing parameterization, the principle that
fulfills to the LF to be nearly data translated. The procedure introduced by Box and
Tiao has slight differences according to the type of the p.d.f. as will be shown under

the following two titles.

I.  p(y| 6) belongs to the exponential family:

Consider y, =(,»,-.» ) to be arandom sample from a distribution p(y| 0) that

follows certain regularity conditions. If this distribution belongs to the exponential

family, it could be written in the form
P(y| ) = h(y)w(6) exp[c(O)u(y)] (2.4.4)

then the metric ¢(¢) in terms of which the LF is approximately data translated would
be derived such that:

go< [£"7(6)d6, (2.4.5)
®

where O is the parameter space on which 6 is defined
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. _ 2
K(e){?l g ~ ]é, (2.4.6)

and L is the logarithm of the LF, i.e., L(@‘y) = logl(0|y), and @ is the maximum

likelihood estimate (MLE) of 6.

Applying Box and Tiao's procedure for selecting noninformative prior of &
involves taking the locally uniform prior distribution for ¢ as an approximately
noninformative prior. This in turn implies that the corresponding noninformative prior

for @ approximately follows the form:

locally

p(0) o

d ¢ locally

K'"(0). (2.4.7)

IL.  p(y|6) does not belong to the exponential family (the general rule):

Since p(y| 0) is not often expressed in the form (2.4.2), Box and Tiao modified the

above argument. Through this refinement, for large n, the quantity in (2.4.6) converges

in probability to the expectation form as follow:

9" log p(y|6) 8)} (2.4.8)

o 06

ﬂm=—E{
y

which is the fisher's measure of information about @ in the sample y’ =0, Y, ¥.)>

which is generally defined as:

_ iy
¢ ‘Ey\ 0( - j (2.4.9)

while in case if y is a random sample, such a form would be expressed as:

¢ (0)=ng(0) (2.4.10)

Consequently, arguing as before, the metric ¢(¢) for which the locally uniform is
approximately noninformative and that makes the LF be approximately data translated
will be, in this case, as follow:

go< [£12(8)d6. 2.4.11)
Q)

Hence the corresponding noninformative prior for € is approximately distributed as:
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a0
dé

locally

p(O) o

locally  1/2

< C(0), (2.4.12)

which is the same as derived by Jeffreys (1961), on grounds of invariance, and that is

discussed in (§2.3). It could easily be shown that, when the distribution p(y| 0) is of
the form (2.4.4), the forms in (2.4.6) and (2.4.8) are equivalent, i.e., J(6)={(0).

Whence the prior distribution in (2.4.7) is identical to the prior in (2.4.12) and the

latter form can be used generally.

(b) Multi-parameter case:

Box and Tiao extended their argument to include the multi-parameter problems, and
discriminate between two cases. First, when a transformation that produces data
translated LF is available in a sense introduced from the multi-parameter point of view.
Second, when such transformation is unavailable, a rule is needed to at least produce
LF regions of same size as shown by figure 2.4.3(b).

For further illustration, consider the distribution of data vy, p(y| 0), involves k

parameters 0 = (6, 6,...6,), the required noninformative prior for 6 could be found

through one of the following rules:

1. A rule fulfills data translation LF:

Transformation produces LF, as in figure 2.4.3(a), could be available. In this case,

the data translated LF in terms of this transformation must be written in the form:

18] y) o< g[(8) —£(y)], (2.4.13)
where g(.) i1s a known function independent of vy, ¢,= (9,0,..9,), is a one-to-one
transformation of 0, and [f (y)]/ =[f,(y) f,(y)...f,(y)]is a vector of k functions of y.
The locally uniform distribution is taken as a noninformative prior for ¢. The

corresponding noninformative prior of 0 is then

p(0) < |J

: (2.4.14)

where
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So the matter now is to find a transformation ¢ that produces LF form in (2.4.13)

that is data translated, but this is not generally available. In the location-scale models,
for example, the transformation that leads to LF form in (2.4.13) will not lead to LF
contours as in figure 2.4.3(a). That is because, the existence of the scale parameter
leads to a transformation that magnifies the volume of the LF, as a proportion of the

scale parameter, along the location parameter space, which will be illustrated through

examples (2.4.4, figure(2.4.4)).

II. A rule implies LF regions of same size:

If the previous case is not available, Box and Tiao provide another less satisfactory
method, as described by them, to obtain transformation that produces instead LF
regions of same size. Such method depends on approximating the LF to the Normal

distribution in a quadratic form and leads eventually to the following noninformative

prior for 0 :
1/2
p(0)=<|¢ @) (2.4.15)
92L 9% log p(y| 0)
where = E|- =n E|———————|foralli=;=1,.,k, is the
" yle 801.80/. y| @ 801,80/.

information matrix about 0 associated with the sample. Therefor the prior form in
(2.4.15) is identical to that obtained by Jeffreys' general rule in (2.3.6), but the later is
derived on grounds of invariance. Box and Tiao have some interested remarks about

applying this rule in some certain problems.

Comments on Jeffreys' general rule:

The preceding discussion has exposed to obstacles encounter application of
Jeffreys' general rule. However, it is of interest to state here the difficulties of the
application of the multi-parameter version of Jeffreys' rule which were introduced by

Box and Tiao. They considered that this rule corresponds to less stringent and less
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convincing transformation requirement on the LF than data translation. And under
approximate Normality assumption, as well, the rule seeks a transformation that

produces LF regions of the same size.

They further deem another difficulty associated with the application of this rule to
the location-scale models where parameters of different types are considered
simultaneously. Where applying this rule to these problems leads to inappropriate
priors such as in (2.3.9) and (2.3.11). Therefore, in such problems, seeking
transformations that produce LF regions of same size has not been appropriate. Thus
they agree with Jeffreys in his assumption of independence between location and scale
parameters. In this respects they said "Any prior idea one might have about the location of a
distribution would usually not be much influenced by one's idea about the value of its scale
parameter”". Even though, they considered some problems whereas such assumption is
inappropriate. In such cases they recommended applying some manipulation to data to

assume independence.

It is of interest, to mention briefly the modification of Box and Tiao's methodology
introduced by Kass (1990). He modified their procedure to cover more general
location families. Kass extended their work to become group-theoretic. He also
modified the concept of "approximate data translated LF" to produce a sharper local

approximation.

2.4.3. Examples:

Box and Tiao's procedure will be illustrated in this subsection for the same models

discussed earlier in §2.3.
Example 2.4.1: Binomial (6)

According to this distribution an observation y (the number of success within n

fixed number of trials) will be distributed as

p(y|6)= (;)am —8)", 9e[0,1],y=0,L,...,n.

It is evident that this density could be written in the form of (2.4.4) as follows:
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p(|6)=(")1-6)" explylog (121

Box and Tiao's procedure for selecting noninformative prior for 8 will be applied

1132
for this problem. Start by finding K (49)=[—1 395
n

JA, which can easily be proved to
[

equal:

K@) =6"(1-6)"

Secondly, find the transformation ¢(6)that produces approximately data translated

LF through equation (2.4.5) as follow
11
#() ({KZ(G) de.
It can easily be proved that,
9(0) <sin' V6
Then the locally uniform prior is taken as an approximate noninformative prior for
#(6) . The corresponding approximate noninformative prior for 8, as shown in (2.4.7),
is
locally 1
pO) = K*(6)
then
p(e) o 9—1/2(1 _ 9)—1/2 .
This is the same prior derived for the same problem using Jeffreys' rule in §2.3. It
could easily be proved to get the same result but using the general rule in (2.4.12), as

long as the sample density is expressible in the form of the exponential family.
Example 2.4.2: Normal (0)

The sample distribution of such problem is expressed through the form
=L -0)?
p(y|0)o<620' 5 ysee (—oo,oo)’

which can be written in the form in (2.4.4), so both procedures of Box and Tiao in
single space parameters will lead to the same result. So the general rule, (2.4.12), will
be applied and leads to the result

2
8—12‘ oc constant.
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Then, by assuming that y is a random sample the quantity ¢ (8)is calculated through

forms (2.4.9) and (2.4.10) as follow

921

£ () o< constant.

Then, through form (2.4.11), the metric ¢(€) that leads to LF which is approximately

data translated is ¢@(@)=6, which has the locally uniform distribution as an

approximate noninformative prior. The corresponding noninformative prior of &,

through form (2.4.12) is approximately

locally

pO) o« £'2(0).
Then,

locally
p(@) o Consatant.

This is again the same result derived by Jeffreys' for the same model, see §2.3.
Example 2.4.3: Normal (o)

The random sample that is generated from this distribution has a density in the form

-1 2
p(y| O-)°< O.—l e 20'2 , y’ee (—OO’OO),O-G (0,00)

This distribution belongs also to the exponential family, so the procedure of the

general rule could be applied and leads to the result

FL_n A(n—-Ds* +n(6-)*]
o> o2 = :

Then, the quantity {(o)is calculated through forms (2.4.9) and (2.4.10) as follow
9’L
< F R
cores, 2]

30?

<o,
Then, again through form (2.4.11), the metric ¢(o) that leads to LF that is

approximately data translated is
g [{ (0)do
0

¢(0)=<logo.

The corresponding noninformative prior of o, through form (2.4.12) is approximately

locally
p0) « (' (0),
then
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locally
p(0) < o7

This is again the same prior derived by Jeffreys for the same model, see §2.3, but on

grounds of invariance.

Example 2.4.4: Normal (6,0)

This is a type of location-scale distribution, where the random sample is generated

from distribution of the form

)2
p(y|6.0)=<0" 8202 . Y,0€(—o0,2),0€ (0,).

The methodology of Box and Tiao for multi-parameter case that leads to the prior in
(2.4.14) will be applied to this problem. In such method a transformation is sought
such that the LF, in terms of which, could be written in the form in (2.4.13). The
matter now is trying to rewrite the LF of this model in the form (2.4.13), and the
required transformation could be hence automatically reached.

The LF is expressed by

zZ(
1(6,0] y)= oe20” =

<o exp# n(6- y) (n l)s },

Multiplying the last form by s”, where multiplication of LF by constant leaves it

n _ 2 )
o S _n(@—y)2 Ky _(n—l)s
160.0]y)<(£) exp{ oy’ (—sz s’ }
which can be written as

naty=(2)enl-o( 257 2] foul -2
o< exp{— 5 (@)Z exp[-2 log(%)]} X exp{— n log(%) - (”T‘l)exp[—Z log(%)]}.

Eventually, the LF can be given by the following form:
1(6,0'| y) o< exp{—%(@)z exp[—2(logo —log s)]}

unchanged, then

Xexp{ n(logo —logs) — ( )exp[—2(10g0'—logs)]}
This last form could be considered as a translation to the form in (2.4.13) such that

¢o{9 }and f(y)o{y } Then take the locally uniform distribution as a
logo log s
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noninformative prior for ¢ and according to the form (2.4.14) the corresponding

noninformative prior for both ¢ and o will be

p(0,0) <|J|,

then

p(0,0) o< o L.

The same result could be reached if one applies Jeffreys' general rule but under
assuming independence between location and scale parameters, in the sense as
mentioned in §2.3. However, Jeffreys' general rule when independence assumption is
not incorporated, will lead to the inappropriate result

p(0,0) o< o2,

As mentioned earlier for the location-scale models the transformation leads to LF

form in (2.4.13) will not lead to LF contours as in figure 2.4.3(a). Figure (2.4.4) shows

the contours of LF of the transformation taken through the preceding methodology.

Figure 2.4.4

Normal (€, 0): contours of LF
of (0,log o) for different data sets

logo

“SH

S ©

0

It is evident that this transformation leads to a bit magnification to the volume of the

LF, as a proportion of the scale parameter, along the location parameter space.

Example 2.4.5: k-Normal (0,0)

For another example to the multi-parameter problem, the distribution of k
independent normal population has been provided. Assuming for simplicity that the
random samples are same sized, say 1, the LF of the k-vector of random samples will

be in the form:
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ZZ(y,] -6)°
1(9 G| y)°< G_nezo- ==l 5 ylj,el € (_°°a°°)y j=1a2s-~-ars i=1a25-~'aks

o e (0,0), and n=rk.

Similarly as shown in the previous example, one could derive the noninformative
prior of © and ¢ according to Box and Tiao methodology. Again the idea is trying to
rewrite the LF of this model in the form (2.4.13), hence the required transformation

could be reached automatically.

The preceding LF could be expressed as

2 7 _
18,0] y)< o exp{— (105> _ r0-5)0-5) }

20'2 20'2
where
k r
5 Z(y —0)2—2 2 [0y =3 = (6, - y)1%,

i=l j=1 i=1 j=1

-z Z(y —y)2+2r(y -6.)%.
l_]_

where }i is the arithmetic mean within the sample i, where i=1,2,...,k.

Multiplying the last form of the LF by s”

10,0 y)e (%)n exp{—(”;zk)(%)z _ (%)2 r(8-3) (0-Y) },

252
which can easily be rewritten as
[0, O'| y) o< exp{— £ M exp[—2(logo —log s)]}

)exp[—2(log o —log s)]}

X exp{— n(logo —logs) — (”Ek
Once again, this last form corresponds to the one in (2.4.13) such that ¢ [?ogo} and

f(y) o< [lyogJ . Then, the locally uniform distribution will be taken as a noninformative

prior for ¢ and according to the form (2.4.14) the corresponding noninformative prior

for @ will be

p(0,0)<|J
then

p(0,0)< o).
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Remember that, Jeffreys reaches the same result but under independence
assumption between location and scale parameters, in the sense mentioned in §2.3.
However, Jeffreys' general rule when independence assumption is not involved, will

lead to an inappropriate result, presented previously by equation (2.3.12).

2.5. Maximal Data Information Prior(MDIP)

2.5.1. Introduction

Zellner (1971) sustained using "locally uniform" proper priors when an investigator
knows something about parameters such as their range, the experimental design and
properties of LF. Information of this sort may be available in a perspective that was
demonstrated in §2.4. This is usually not the situation in practice. Therefore, when
such information is not available, Zellner emphasized that it usually makes very little
practical difference whether locally uniform prior or Jeffreys' improper prior is used.
In these regards, Zellner (1971) developed a framework that is based upon
informational considerations, to derive a noninformative prior that formulates the case

of "knowing little" or "ignorance".

Since learning from data and experience is an important activity in science,
Zellner's main idea was to reach a prior that leads to a posterior distribution reflecting
mainly the information in a given sample or adds little information to the sample
information. Thus, his objective was to obtain a prior that maximizes the difference
between the average information in the LF, and the information in the prior. A solution
to this optimization problem is a "Maximal Data Information Prior (MDIP)" or a

"Minimal Information Prior", as Zellner (1971) called it.
Definitions

Single parameter case

In order to illustrate this concept in case of one parameter, say 8, notice that, the
basic idea underlying MDIPs is that they maximize the gain in the information resulted
from the sample. Zellner (1971) introduced the following quantity as a powerful

criterion of such gain
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G= iy ~ [p(®)In p(6)de , (2.5.1)
Ry

where p(0) is the required prior distribution of & which is defined on the parameter

space R,. Whereas, I_y is called the prior average information associated with an

observation y and calculated as

iy = IéL 1,(6) p(6)de, (2.5.2)

where Iy (0) is defined to be a measure of information in the sample p.d.f. p( y| 0), and

computed as

1,(0)= RI p()]6) In p(3{ H)dy, (2.5.3)
y

such that R y is the sample space on which the sample p.d.f. is defined.

As seen through above relations G is just the difference between two information

measures. The first relating the data and the second relating the prior.

Zellner (1971) hence defined MDIP or the minimal information prior to be the one

that maximize G for a given p(3{6).

Multi-parameter case:

For data p.d.f.'s involving more than one parameter, say a vector of k parameters

0 = (6,6,...6,), which is defined on the parameter space Ry, G will be defined as

follows,

G= J'y — [ p(8)1n p(6)de, (2.5.4)

Ry

where,

y= RI 1,(0) p(6)a,

0
and
1,0)= [p(3]0) Inp(y|0)dy. 2.5.5)
R
y

Moreover, the same definition could be introduced for a random vector of

observations y’ =(y,»,-.y ) of order n with j.p.d.f. p(y| 0) where 0is the k-vector of

parameters.
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Zellner admits using another definition of a minimal information prior by
employing any other measures of information. Much work has been done to derive
priors by maximizing the information provided by an experiment, see e.g., Good
(1956), Lindley (1956) and Soofi (1994), via calculus of variations techniques and
getting no clear-cut analytical result because they provide intractable solutions.
Zellner, however, altered the criterion to the form of G in (2.5.1), which is considered

to be relatively easy to produce, Zellner (1996).

Zellner (1977) provides the same procedure with further application to many
problems. Many MDIPs have been developed and further properties to this procedure
have been established in many papers in literature such as Sinha and Zellner (1990),

Zellner (1991) and Zellner and Min (1993).

2.5.2. Derivation

The optimization of G in (2.5.1) with respect to the choice of p(€) subject to side

conditions is apparently just a standard calculus of variations problem. Zellner (1971)

considered the side condition is that the prior p(8) is proper. That is

Rj p(6)do=1. (2.5.6)
(4

Zellner regarded this side condition provided that R,, the region on which 6 is
defined, may be, very large but it must be at least a compact region.

The solution to the problem of maximizing (2.5.1) subject to (2.5.6), denoted by
p"(6), has been derived by Zellner (1977) to be

PO =expll @) Ok, 2.5.7)
such that 1, (), given in (2.5.3), is the information in the data density p( y| 0).
Zellner (1996) noticed that if Iy(a) is constant, independent of &, then the MDIP

p.d.f. is the uniform distribution. He also pointed out that the rule in (2.5.7) is

implemented relatively easily for many problems.

Similarly, expressions as in (2.5.7) could easily be produced for multi-parameter
problems. In this respects, the MDIP that maximizes the functional criterion G in

(2.5.4), as shown by Zellner (1977), has the following form
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p'@expll, @) 0ckR,.
where the terms 0, Iy(e), and Rjare defined above. The same result could be

obtained for models that contain random vector of observations, for further details see

Zellner (1977).

2.5.3. Properties

The use of MDIP approach provides an explicit tool for the problem of selecting
noninformative prior distributions. This approach is easy to implement since no
asymptotic approximations are involved. Zellner (1996) appends several comparison
results provided by alternative procedures for producing noninformative priors,
indicates that MDIPs are relatively easy to produce. Besides that, they have reasonable
properties which make them helpful to researchers and decision-makers in formulating
priors. In this regard, Zellner (1996) epitomized these properties when he said "The
MDIP approach allows one to derive diffuse and informative priors that are invariant with respect
to relevant transformations is indeed fortunate.". Each of these features mentioned in the

above citation shall be considered in details.

Informational considerations

Zellner provides an illuminating discussion of information processing rules. These
rules derived by optimizing some informational criterion, are 100% efficient (Golan,
2002). This optimization process resulted in MDIPs. Thus it is intuitive to review some

general informational features of the MDIP approach.

1. Entropy measure view:

Zellner deemed that there is no way to answer the question about the form of a
distribution to express the ignorance without using a measure of information.
Therefore, he suggested a measure that is used by many others including Shannon
(1948) which is the negative entropy, denoted by -H. This measure is used to express

the information in a p.d.f. For example the negative entropy of the prior distribution

p(0), relative to a uniform measure, is given by,

—H= [ p(6)ln p(6)do. (2.5.8)
Ry
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This last expression is just the second term of the quantity in (2.5.1). Zellner (1971),
however, started with this concept to construct his functional criterion G. He used the

entropy measure to signify the information in the joint density p(y,8) which is defined

as follow,

-H= 1| [p(»,6)lnp(y,0)d6dy. (2.5.9)
R, Ry

On using p(y,9)=p(y|9)p(9), the last equation could be passed through the

following relations,

—H= [ 1p010)p®) In[p(3]6) p(6)]d6dy,
y e

| ij(y| 6)p(6)[In p(1]6) + In p(6)]d6dy,
()

p(6) Rj (@) In p(3|0)dyd6 + RJ p(6)In p(6) Rf p(¥|0)dyde.
y 4 y

]
Ry
By substituting from both equations (2.5.2) and (2.5.3) in the last quantity, it could
be written as
- H-= J'y + [ p(6)In p(8)dé. (2.5.10)
R

0

As seen from (2.5.10), which makes up the total information in the joint density

p(»,0), that it breaks up into two parts. The first is the prior average information in the

data density and the second is the information in the prior density.

According to that, Zellner conveniently chooses G to be equivalent to the difference

of the two terms on the R.H.S.of (2.5.10).

Zellner suggested using another informational measurements to express the
criterion G rather than the negative entropy based on uniform measure, as mentioned
by (2.5.8) or (2.5.9). In this respect he recommended employing the negative entropy
defined on other measures rather than the uniform measure to construct G, see Zellner

(1996) for further details.

Another interpretation of MDIPs according to their entropy view, is mentioned by

Jaynes (1982), is that MDIPs are the p.d.f.'s that maximize the entropy associated with
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a prior distribution subject to the side condition that the average entropy in the data

p.d.f., p(3]6), be constant.

2. The average log-ratio of LF to the prior view:

A second interpretation of the criterion G from the informational point of view is
given in Zellner (1977). This interpretation could be attained through the following

steps:

Substituting from equations (2.5.2) and (2.5.3) in (2.5.1), G could be written as

G= [ p(®) | p(4]6)In p(y|6)dyd6 - | p(6)In p(6)d8,
Ry R, Ry

It can be proved that

G=1 | [in p(3]6)~ In p(®)]p(».6)dvde.
6"y

Since Z(0| y) = p(y| ) is the likelihood function (LF) and given the last form, G can be

expressed as

(6
G= ] ln[ s }p(y,é’)dydé’-
R R,

According to this last view of G, it can be interpreted as the average log-ratio of the

LF to the prior p.d.f. Hence, by maximizing G by choice of p(8), the average log-ratio
of the LF to the prior will be made as large as possible.
Given also this view, the forms of the MDIPs will depend on properties of the LF's

or on the design of an experiment. This seems natural, since the purpose of the MDIPs

is to allow the information provided by an experiment to be featured (Zellner, 1977).

At last, having the LF featured in this fashion is an important aspect of the MDIP

approach for selecting noninformative priors (Zellner, 1996).

Invariance considerations

Zellner (1977) proposed two important theorems that provides some confining
invariance properties of the MDIPs that are relating only to linear transformation of the

parameters. According to these theorems:

2.5. Maximal Data Information Prior



CHAPTER2: Noninformative Prior Distributions 56

1. MDIPs are invariant with respect to changes in the unit of measurements.
This property of invariance is particularly termed as S-labeling invariance,

see subsection 2.3.3. for more discussion to such property.

2. MDIPs are generally invariant with respect to linear transformations of the

parameters and observations.

Kass and Wasserman (1996) pointed out that MDIPs are not generally
parameterization invariant, specifically they are not Q-labeling invariante as Hartigan
(1964) called it. However, Zellner (1991) argued that invariance under specific classes
of re-parameterization can be achieved by adding the appropriate constraints. That is to
introduce the invariance conditions as side conditions in the optimization process of
the functional criterion G.

For more clarification to such a point, consider the case of m one-to-one

transformations 7, =h,(6), i=1,2,..,m. Zellner (1991) suggested obtaining MDIP by

maximizing instead the following quantity

G=T - [pOWnp@do+3| [ p@O),)dn,~ | pn,)in p,)dn, |
yoop =\ y

0 B, By,

where 1,(7,)= [ p(y|n,)In p(y[n,)dy
y

The optimization process for such quantity will be hold subject to

p(0)d8 = p(n,)dn,, Vi=12,.,m.

The solution of this optimization problem has been produced by Zellner (1991) and
given by

. m 1n‘hl.'(a)‘
PO =ew 1,0+ 1
=

This resulted prior then has the desired invariance properties over the given
transformations. Some of interesting examples to such transformations are the
reciprocal and power transformations. It is noteworthy that imposition of invariance

conditions changes MDIPs that don’t incorporate them (Zellner, 1996).
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By deeming the above algorithm, Zellner avoids being restricted by broad
invariance conditions of the so-called Q-labeling invariance. As mentioned by Zellner
(1977), the objective of having a posterior distribution that reflects mainly the
information in the data distribution can be achieved, but, for a particular
parameterization. In other words, different investigators will obtain the same posterior
distributions given that they use the MDIP procedure to generate priors for any given

parameterization.

The problem of achieving invariance to a wide class of re-parameterizations is a
problematic issue that has received considerable attention in the literature and must be
considered. On this respect Berger (1985) comments "The major problem with invariance
concerns the amount of invariance that can be used.”. Rao (1987), however, discussed
degrees of invariance and states that the choice of metric naturally depends on a

particular problem under investigation and invariance may or may not be relevant.

A tool to produce "Informative priors'’

The MDIP approach is designed specifically to provide rules for selecting
noninformative priors. One of the greatest contributions of MDIP approach to
Bayesian inference is that it can further be employed to produce informative prior

distributions.

This can be done by incorporating the available prior information as side conditions
in the process of optimizing G in (2.5.1). The prior distribution resulted from this
maximization process is informative. For instance, as shown in Zellner (1996), the side
condition may include the prior to be proper, that is, in (2.5.6), besides the additional

moment conditions with the m,'s given by

m, = [6'p(@)d6, i=12,..m. (2.5.11)
Ry

Zellner showed that the prior that maximizes G in (2.5.1) subject to (2.5.6) and
(2.5.11) is given by

* 2
p ()= exp{[y )+ 4,0+ 4,07 +...+ 2,67 },
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where 4's are Lagrange multipliers. A reader may refer to Zellner and Highfield

(1988) for a procedure for computing values of these multipliers.
Another type of information could be embodied, as a side condition, may be
restricted on the ranges of the parameters. Moreover, Zellner (1996) extended his

technique to involve prior information related to prior fractiles. He involved it as a side

condition in his algorithm and derived informative priors.

Affinities with Jeffreys' general rule:

As most of researches within noninformative prior selection could possibly be
traced back directly or indirectly to Jeffreys' prior, it seems natural to inquire about the

existence of some affinities between MDIP approach and Jeffreys' prior.

Zellner (1971) considered the asymptotic form of the criterion G as follow

G. = p(6)n n‘Infe‘dH— ] p(6)1n p(6)d6,
RG RG

where n is the number of independent drawings from p(y| ¢) and Inf, is the Fisher
information matrix defined in (2.3.7). By maximizing G subject to (2.5.6) Zellner

obtained the following prior

%
p(6) =Inf, |,

which is just Jeffreys' invariant prior given by his general rule in (2.3.6).

Thus from the asymptotic form of G, Jeffreys' prior is MDIP. In this respect, it must
be recognized, however, that Jeffreys' prior is not always minimal information prior
since it does not always maximize G. It is convenient to notice some situations in
which G, is not maximized by Jeffreys' prior. This is so when one considers models
such as location-scale models where parameters of different types are involved

simultaneously, and models of high dimension as well.

At the other extreme, minimal information priors do not have generally the
invariance property of Jeffreys' prior as just mentioned above. Zellner (1991) refined
his approach to derive MDIP that meets the invariance requirement, but for particular

relevant parameterization. Zellner (1971), however, deemed that investigators using
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different parameterizations can get compatible (or consistent) results if they adopt the
convention of using MDIPs for any given parameterization when they know little
about the values of the parameters. That is, the invariance property has not yet been

considered as an urgent necessity against getting MDIP.

2.5.4. Examples

MDIP approach is applicable to a very wide range of data densities, as shown in
Zellner (1977), where many MDIPs for a number of univariate and multivariate data
densities are presented. He pointed out, e.g., that for location-scale data densities, the
resulted MDIPs are in accordance with usual prescriptions for diffuse or
noninformative priors that are in widespread use. Zellner (1996), moreover, discussed
deriving MDIPs for parameters of several frequently employed models such as linear
models, e.g., General Linear Model (GLM) and Autoregressive Models (AR). He also
applied his technique for hierarchical models hyperparameters and for common

parameters in different data densities as well.

Throughout this subsection, applications of MDIP approach will be demonstrated

for those densities presented in sections 2.3 and 2.4.

Example 2.5.1: Binomial(6)

The well-known Binomial process will be considered but for a single observation,

for simplicity, that is the Bernoulli process. The probability mass function of such a

process, p()]6), is in the form
p(y|@)=6"(1-6)""Y, 0<f<landy=0,
where y is the number successes and @ is the probability of success.

Evolving the MDIP in (2.5.7) for the binomial parameter € requires computing the
quantity ]y (8) in (2.5.3), which represent the information in the data mass function

p( y| @) . This term can be computed as follows
1
1,(0)= ygop(yl 6)In p(y]6),

- %Oey(l—0)1‘y[y1n0+(l—y)ln(l—ﬁ)],
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=01n8+(1-8)In(1-0),
=In|6?(1-6)"]
Thus the MDIP for @, by using (2.5.7), is
p (@) <8°1-6)"7, 0<6<1 (2.5.12)
This prior density contrasts sharply with Jeffreys' prior for Binomial parameter that

is in (2.3.8), which is the Beta(%,}). An interesting comparison between these two

prior densities will be provided at the end of this chapter.

Example 2.5.2: Normal (6)

When the data density belongs to the normal distribution with known variance o2,

noted to belong to (0,e0). Such distribution is a type of location densities and has the

form

—L(y-6)

p()’|9):ﬁ€” ) ye(_“a“)

where 6 is the unknown location parameter that is defined on the parameter space
(=00, 00).

The data density information measure / y (0), according to (2.5.3), is given by

= =L0-6) —L(-0?
Iy(e) =_jmﬁe o ln(éa e jdy,
e —5(y-6) oo —L(y-0)
:(m(éa)_;m Lo dy)+(2612 T -0 e dy) (2.5.13)

Since the integral in the first term on the right side of (2.5.13) is an integral all over the

space of the normal p.d.f., it will hence give unity. Whereas, integral in the second

term is just E(y-6)%, which gives the variance ¢?. Hence the form in (2.5.13) can be

reduced to

1,0)= 1n(é6)+ (2—712(02)).

=—ln(\/g)—ln0—%

Finally the measure / ’ (6) will be given by

1,(0)=-1[n@7z)+1]-Inc (2.5.14)
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It can obviously be seen that the right side of (2.5.14) is constant, independent of 6,
then the data density information measure of the normal distribution with unknown
mean is as follow

1 . (6) =constant .

Then the MDIP of the mean parameter 6 can be produced using (2.5.7) to be as

follows
p* (@) =< constant.

This prior distribution is in accordance with the Jeffreys' prior of 6 for the same

problem, that is, Jeffreys' first rule in (2.3.1).

Example 2.5.3: Normal (o)

Regarding the normal distribution with unknown variance o2, the form of the p.d.f.
is given by,

=L (y-0)?
202(}/ )

pOloy=—=e , V€ (—o0,00)

2o
where € and o are defined through the previous example.

To illustrate the derivation of the MDIP of o in such problem, the measure of the
information in the density p( y| o), which is [ (@) should be calculated using (2.5.3).

This can be done easily by following up the previous steps of computing ]y (0) that

have been shown in example 2.5.2. Eventually, the measure 1, (o) can easily be
proved to have the same form as in (2.5.14). That is it will be given by,

1,(0)=-1[n(27)+1]-Ino,

which is equivalent to,

Iy (o) =constant — Inc . (2.5.15)

Thus, the MDIP of o, based on (2.5.7), will be given by
P’ (@) =expll, (@)

=exp {constant +lno! },

Then, the MDIP of o, finally, has the form
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p*(O') <ol

Again this prior distribution is equivalent to Jeffreys' prior of the normal standard

deviation o, which is Jeffreys' second rule that given by (2.3.3).

Example 2.5.4: Normal (6,0)

It is essential to provide a data density that belongs to location-scale densities.
Therefore, the normal distribution with mean and variance are both unknown is

considered. The form of the p.d.f. is given by,

—L(y-6)
070-) 246262 g » VE (—oo,oo) D

2wo

p(y

where, the parameter space is the same as mentioned in the above two examples.

The information in this density, measured by / ’ (0,0) using (2.5.5), can be shown

to be equivalent to the right side of (2.5.14). It can be accordingly reduced to the same
form as in (2.5.15). That is

Iy (6,0) =constant — Ino .

As shown throughout the previous example, the prior yielded by MDIP approach has
consequently the following form
P (6,0)<c. (2.5.16)
This result corresponds to Box-Tiao "data translation” rule for producing
noninformative prior presented in §2.4, both in form and being defined over a finite
range of parameter space and, thus, being proper density. But this MDIP is in contrast
with Jeffreys' general rule, in (2.3.6), which produced the prior form in (2.3.9) that
deemed by Jeffreys to be unsatisfactory because it involves adding unwanted
information. Jeffreys modified that prior by assuming independence between the
location and scale parameters and applying his general rule separately to each
parameter and eventually reach the prior in (2.3.10), the prior he employed in practice,

which corresponds the form in (2.5.16).
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Example 2.5.5: k-Normal (0 ,0)

Another example for a multi-parameter case with larger dimension is the

distribution of k-normal independent populations with k-vector of unknown means

e’=(elez ..0 ) defined on the parameter space Qe R*, and unknown common

standard deviation o defined over(0,o), will be presented here. In such distribution
there are k independent random samples y 's , each of size r defined over the sample
space S C R" and each also generated from Normal(6,,0), where i=12,.. k. The

j-p-d.f. of the k-vector of random samples y, =(y,y, - y,)will be in the form,
72 S(y,-6,)
p(y|(—) 0)= (J_a)‘”eza i=lj=1 , where n=rk.

The information in the data density, measured by / y(0,0), are given by

] dy,,dy - dy

10.0)=] ]..]

—00 —00  —00

Then

o oo oo ZZ(Y1 [ zZZ(Yl 0)2
L®o)=] | ..] 2z e TR (arey e AT Ty dyy, dy

—00 —00  —00

LS S (y;-0.)

:ln[(\/27r0')_n}of T...of(\/zm)‘"ez" ==l dy,,dy,,...dy
722(}11 0)2
[ ]H ] W2ro)” ZZ(yU—e) e FATT T G dyndy
—00 —00  —00 = /_

The right side of the last equation can easily be simplified to the following form,

I = i—6,)?
1“[(J_ 70)” }IKIH fofzmoy e uy,

1 j=l-
(le i)

dy;, where m=(i-r+ j,

+[ _lzji f[f[TJ_J) S(m,1) €2

and S(m,!) is an indicator function is defined as
sy =i %)
1 m#l

It can be seen, for the first term of the right side of last form of 1y (0,0), that each

integral within the n multiplied terms is unity. Whereas, the amount of the second
term, is a summation of n terms each is a multiplication of n terms of integral. To
evaluate this amount, consider for example the first term in the summation where /=1

that is given by,
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(yll ) (yll i)

I(\' 7o) (v, —6)’ e dY11a(mzl)XHIHZI(V ro) e ay ;|5 (me1)
i=l j=2-c0
) k r
=o” xX[[ [T
i=l j=2

:O'z
This result could be achieved for all the remaining (n-1) summed terms. Then, the

information measure Iy((),o-) can be eventually reduced to,

1,(6,0)= In(2z o)™ " nn(l)+( )Za
i=1j=1 20‘

=In(2zo)™" + T”

=L InQz+)+Ino ",

Using the generalized form of (2.5.7) in multidimensional case, the prior yielded by
MDIP approach has consequently the following form

—n

r(0,0)<0

It is of quite interest to consider such example as it was previously concerned in
section 2.3 (see example 2.3.5). The purpose is to compare the results when applying
MDIP to the k-Normal distribution with those obtained when applying Jeffreys' prior.

In such case, the sample p.d.f. is in the form,

(yi— 9)2
p(y|8,0)<0 kez"zlzl

Again, obtaining the MDIP involves evaluating the quantity 1,(0,0) that represents
the information in the data,

1,0.0)= ] | [ p(y|0.0) Wnlp(y|0.0)]dv, dy, .,

—0c0—00 —o0

0w b s T 0 b T8
=[ [..] ( 27r0') e~ = ( 27r0') e~ = dy, dy, ..dyy

-1 k
=ln|:(\/2ﬂGTk:| [ ] .. (szfkesz%l(y’ % dy, dy,..dy,

S (y,~6,)>
( }H (J_af Z(y -9)? ezfmy dy, dy, ..dy,

Since the random sample y,'s are independent and each has Normal (6 ,0), then the

right hand side of the above equation could be simplified to
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0.0 =nfza) ] (o) e,

i=l —co

(y, 6,)?

( ] f J(\/_O')_ (vi—6) 62”’1 dy, dy,..dy, +

—o0  —oo

(2.5.17)
; Z(yl -6,)?
(J_a)' (y,—0)> e’ dy, dy,..dy, +

S (y,-6)?
(\/EO'T (i =6, 620 '1 dy, dy,...dy;

—o0  —oo

The integral of the first term in the right side of the above equation is unity. On the
other hand, the amount between brackets in the second term is a summation of k terms

each is a multiple integral. To evaluate each term, consider for instance the first term

as follows:
il —k Z( i_a)z
.j( 27r0') (y,-6,)> e A dy, dv,..dy,
oo e B
ol — j(yl_el) k=1 o (yl 1)
= T Wazo) (v, -a)* e i <1l [W2ro) ! e &,
—oo i=2—c0
k-1
=o’x]1 (1)
i=2
=62

Evaluating the integral of each of the other (k-1) terms will lead to the same result.

Eventually, the equation (2.5.17) simplified to

Iy(e,a)zln( 2750‘)”‘151 (1)- 12 iaz
207 i=l

i=2
= 1n( 2750‘)"‘ -=

=In(27) - % +Inc™*

:—g(ln(zx)+1)+ no*

The MDIP can be obtained by substituting in the generalized form of (2.5.7) in the

multiparameter case. Then, the MDIP of such problem is given by

p(0,0) <™. (2.5.18)!

It is of great interest to notify that the result in (2.5.18) is different from the one derived by Zellner
(1971, p. 53). We contacted professor Zellner to discuss such issue. Professor Zellner confirmed that our

proof is correct and there was a typing error in his book.
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2.6. Concluding Remarks

In summary, the noninformative priors derived through the previous examples are

presented in the following table.

Table 2.1: Noninformative priors for some selected sampling distributions

Jeffreys ' Prior
Sampling Locally Uniform
Independence MDIP
Distributions General Rule Prior
Rule
Binomial (&) p(O)<02(1-6)" pO)=<072(1-0)" | p6)=6°1-6)1"9
Normal (6) p(0) o< constant p(6) o< constant p(0) o< constant
Normal (o) po)=o”! po)=o”! po)=o”!
Normal (8,0 ) p(6.0)<0? p(6,0)<c” p@.0)=0”! p(6,0)<c”!
k-Normal (6,6) | p8.0)eca ™D | p@,0)=c” p(6,0)=c”"! p(6,0) <k

Regarding the results displayed in the previous table, one may notify some
outstanding remarks. First, the different noninformative prior approaches may lead to
the same prior p.d.f.. In further details, the noninformative prior p.d.f. of the binomial
parameter has the same form that meets both the invariant principle and data translated
likelihood concept, however, considering the principle of MDIP leads to a different
form, which is the beta form. Zellner (1977) discussed the main properties of those two
forms with respect to the uniform prior ( p(6)=1). Hence, he pointed that both Jeffreys'
prior and MDIP are proper p.d.f.s, while the MDIP is symmetric around ’2 and lies
between the Jeffreys' prior and the uniform prior. Moreover, MDIP tends to 1 as 6 tends
to 0 or 1. However, Jeffreys' prior tends to o as € tends to 0 or 1. On the other hand, the
three approaches lead to the same prior distribution in case of sampling from Normal(6)
and from Normal(c). Nevertheless, when sampling from Location-Scale-Normal
distribution Normal(f, o), the Locally uniform prior is the best noninformative
approach to be used, since it leads to an accepted noninformative prior form. While
Jeffreys' discards his general rule by assuming independence to lead to the same form
attained by using the data translated likelihood without assuming independence.
Furthermore, adapting the principle of MDIP leads to a different form that contains

higher information that is considered by Jeffreys' as dissatisfying information.
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Chapter 3
Informative prior distributions

3.1. Perspective on informative priors

Bayesian scheme allows one to incorporate prior information into statistical
models, before observing data, for decision-making. It then works for producing the
posterior distribution by the aid of Bayes' rule. Inference problems concerning the
parameters of interest will mainly depend on this distribution since it summarizes all the
available information about the parameters, both prior information and sample
information. One motivation to incorporate such information is that in certain problems,
taking into account cogent information that are not contained in the sampling
distribution, can improve the accuracy and the reliability of conclusions (Litterman,
1980). Thus, prior information is a crucial element in Bayesian framework so it attracts
numerous statisticians to develop approaches to coin such information. These prior
information or beliefs about parameter may be available, usually subjectively, in terms
of historical information or expert judgment. It was stated that a convenient way to
quantify such prior information is in terms of an appropriate probability density
function of the parameter of interest (Berger, 1985). This chosen p.d.f. has to be
adequate in representing the prior information otherwise another prior p.d.f. has to be
chosen by the investigator to do the same function (Zellner, 1971). Such a prior p.d.f. is

the so-called informative prior distribution.

It is worth stressing that, in practice of Bayesian statistics, noninformative prior
distributions are used for cases in which expert judgment is unavailable or not of
interest. However, it is appealing to incorporate any available information about the
parameter as an informative prior to the analysis. Ignoring this information, just for the
sake of objectivity, is not recommended. Thus, quantifying prior information is often
corresponding to subjective Bayesian system. Prior distributions, in this context, attempt

to model the unavoidable ambiguity in life and nature (Pericchi, 1998).
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Subjective beliefs are usually available in scientific inference. For example, a
scientist decides to do a particular experiment in order to confirm some hypothesis

about the parameter (Press, 1989).
3.1.2. Interpretations for informative priors

Pericchi (1998) introduced two interesting different broad interpretations for

informative prior distributions as follows:

I. Sensitivity analysis

This is also often called "Bayesian robustness" or "collection of individual priors".
Bayesian robustness aims to establish a neighborhood around a sensible subjective

prior. Two intrinsic characteristics of such interpretation are

1. Classes of priors are composed of priors individually judged to be reasonable and
compatible with the partial available information.

2. Each prior is consistent with actual prior beliefs but it is recognized that prior beliefs
are imprecise.

II. Collective prior

In such interpretation the properties and the features of the whole class is the main

concern. On the other hand, the practical features of individual priors are unimportant.

Both interpretations are similar in mathematical manipulation but different in

assessment strategies. Also problems addressed by each type are different.

Informative prior distribution is commonly used in small samples where there is
insufficient data to form a convenient conclusion. A probability distribution is needed to

represent these subjective beliefs.

Reviewing the development elicitation methodologies for informative priors
recommends the following broad principles that guide beneficially these efforts (see

Hahn, 2006):

[1]. Elicitation methodologies have to be flexible enough in the form in the sense that
they would generate a wide range of distributions expressing a wide range of

propositions deemed by the experts.
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[2]. Probabilistic judgments coined by distributions generated by these methods have to
be simple and consistent. However, in case of complex ones, it is beneficial to

break them down into a series of more straightforward ones.

[3]. Methods have to minimize the computational efforts of statistician. That is, these

methods have to be easy to implement.

[4]. Methodologies for prior elicitation have to be applicable to a wide range of models
or scenarios. That is, it is more desirable to have more broad methodologies that
could be used in various settings. For example, a unified approach is desired to be
applied to real-valued parameters, strictly positive parameters and parameters that

exist on unit interval could save development work.

Before overviewing methodologies for prior elicitation, it is important to recognize

possible types of prior information that might be quantified by prior distribution.

3.1.2. Types of prior information

Zellner (1971) discussed a considerable broad classification of prior information.
He distinguished between what is called data-based prior (DB) and non data-based
prior (NDB). Moreover, Berger (1985) introduced an extensive summary for many

other types of NDB priors.

I. Data-based prior (DB)

In this type, the prior p.d.f. represents information contained in a sample of past
data that have been generated in a scientific manner. There is an inherent disapproval of
such a prior because of its practical dependence on data since the idealized Bayesian
view is that the prior does not depend anyway on the data. Berger (1985) described this

view as not very realistic for some of the following reasons:

1. The model that describes data is often chosen after examining the data and one goes

on then to define the parameter.

2. Even when the parameter is well defined outside of the experiment, yet specifying
subjective prior information becomes a very sophisticated serious task in multivariate
situations, particularly when the parameters have dependent coordinates. On the

contrary, one should peek at the data in order to find out where prior elicitation
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efforts should be concentrated. That is, to ignore the components of parameter vector

that are well assessed by the data.

3. It is noticeable that even methods for developing noninformative priors mostly yield

priors dependent on the model. Therefore, noninformative priors are not pure.

It must be recognized that when other reasonable choices of the prior that are not
DB yield the same conclusion as the DB prior does, then the details of the prior
development will not be of much concern. On the other hand, Bayesian robustness or

sensitivity analysis plays a concrete role in alleviating criticism of DB priors.

Another considerable remark is that it is possible that two investigators working
with the same model and DB prior information can arrive to different posterior beliefs if
they base their prior information on different bodies of past data. The results could be
brought into agreement by pooling their past samples to produce the same DB prior

information (see Zellner, 1971)

II. Non data-based prior (NDB)

In this type, the prior p.d.f. quantifies personal or subjective information about the
parameters of the model. These subjective beliefs about parameters may be arising from
introspection or theoretical considerations. Thus, such a type is relevant to the
subjective view of probability. The main idea of subjective view is to let the probability
of an event reflect the personal beliefs about the chance of the occurrence of the event.
For more details about subjective probability in comparison with other probability
views and for knowledge about methods to assess such type of probability, see Barnett

(1973) and Berger (1985).

Berger (1985) proposed an interesting discussion to various sorts of subjective
information that could be available about the parameters, particularly for parameters of

continuous type, and that be beneficial in elicitation of an appropriate prior p.d.f.

The Histogram approach

In such sort of information, the space of the parameter is divided into intervals.
Subjective information about parameter could be available in a form of subjective

probabilities assigned to each interval. In the sake of constructing an appropriate prior

3.1. Prspective on Informative Prior



CHAPTER3: Informative Prior Distributions 71

p.d.f., plot the probability histogram. Then, smoothing this histogram will lead to the
prior density. This technique for developing informative prior is known as the histogram
approach. There are some difficulties in applying this approach. Since, there is no clear-
cut rule to control number of intervals. Moreover, it is hard to be applied in infinite

intervals (with tails).

The Relative likelihood approach

Here again, the parameter space, say ©® is a subset of real line, is divided into
intervals. Subjective probabilities could be assigned to the relative "likelihoods" or
"odds" ratios of various pairs of points in the space. A direct sketching to these points
could bring a prior density. It is evident that such a method involves comparing a vast

pairs of points to produce an accurate sketch.

There are several advantages to the relative odds ratio prior methodology. First, the task
is straightforward to the expert. Second, it is quite general and applicable for many
parameter cases. Third, it is easy to be used to produce graphical output that can be used
to provide additional feedback to the expert. However, a difficulty is encountered when
using such methodology with unbounded ® where tails may not be included in such
algorithm, since it is applicable in finite region. A possible reply to such problem is that
the expert is free to continue adding intervals to the p.d.f. until it has been sufficiently
well specified. A comprehensive discussion to such problem is covered in Berger
(1985).

A recent work by Hahn (2006) has refined this approach to be implemented with
Markov Chain Mont Carlo (MCMC) methods. In that work, ® is divided into &

intervals. Denote the i interval as 6. . Subjective information are assigned in a form of

a series of expert's judgments indicating the relative likelihoods or odds of 6, compared

to 6, where i, j=1,2,....,k and i < j. This process is repeated by eliciting relative odds

ratios for all 6, and 6,, which requires Jk(k—1) judgments from the expert that can be

incorporated in a matrix. The resulted matrix is termed as the matrix of judgments.
Hahn used the principle of Kullback-Leibler divergence to derive the prior p.d.f. The
resulted informative prior p.d.f. has the interpretation of being the best estimate of the
expert's underlying distribution that generates his judgments, for more details see Hahn

(2006).
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The cumulative distribution function approach (CDF)

Subjective information may also be available for several a-fractiles. Then, the CDF
of the parameter of interest, say Z(a), could be constructed for each a. The prior p.d.f.
could hence be assessed by plotting and smoothing the curve joining the points (o,Z(o))

for all a.

Information match a given functional form

The preceding types of subjective information has so far been discussed are of
nonparametric nature. However, another parametric type of information is useful by
assuming that the prior density is of a given functional form, which may belong to a
standard density function. It is evident that this given distribution will be a function of
another, frequently unknown, parameters. Those parameters are called the

hyperparameters, therefore, this technique is described as parametric (Berger, 1985).

3.2. Literature Review

Overview of the literature on developing elicitation methodologies for informative
priors shows a vast history with several controversies that are still not entirely resolved
(Jaynes, 1985). On the late 1940's, the prior information idea was strongly instructed,
however written work on such issue does not appear at all, possibly, since prior

knowledge was hard to document.

Representing the prior information by a proper distribution has been widely
covered in statistical literature. A statistician may represent his subjective prior beliefs
using “some functional form” without any restrictions. This approach usually requires an

application of numerical integration methods to get the posterior distribution.

Another well known and widely used approach is the so-called “conjugate priors”,
discussed by Raiffa and Schlaifer (1961), DeGroot (1970) and Berger (1985). These
priors are chosen such that they have the same functional form as the likelihood when the
last is expressed as a function of the parameters. These priors have many useful
properties that will be discussed later. A recent work for Packiorek (2006) discussed a
certain type of conjugate prior for the normal linear model that is called the unit

information prior.
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Zellner (1986) presented “g-prior” as an informative prior in the Bayesian

regression analysis.

Another type of informative priors, introduced by Kadane (1980), Kadane et al.
(1980), Geisser (1990), Winkler (1967 and 1980) and West et al. (1994), are called
predictive distribution priors. This type of prior involves assessment of the expert’s
beliefs based on the sample from the process under interest. Thus, this approach
suggests using the marginal distribution of the observed sample to determine the prior

distribution.

The ML-II (the type II maximum likelihood prior) is another powerful technique
to select an informative prior distribution. This approach is developed and applied by
many authors such as Good (1983a) and Berger and Berliner (1983). Such technique
involves assuming that the prior p.d.f. belongs to a given functional form then
determine the prior parameters, the hyperparameters, using the maximum likelihood
approach. A similar approach discussed by Berger (1985) is the moment approach that

is to determine the hyperparameters using the sample moments.

Lindley and Smith (1972) and Good (1983b) and a recent work for Berger and
Strawderman (1993) developed another important approach of informative priors that is
called "hierarchical priors". Such approach is used when one has more than one type of
prior information at the same time. Hierarchical approach involves modeling these

information in stages.

3.3. Natural Conjugate Priors

A class IT of prior distributions is called conjugate class for the class of density
functions F, if the resulted posterior density 7[(0| x) belongs to the same class I1 for

any prior distribution 7(8)e I1, and any density function f (x|0)e F, see Berger

(1985). Some illustrative applications for the use of the natural conjugate prior will be
introduced through the following two sections. The most important type in conjugate

class is the so-called natural conjugate (NC) prior. 1t is constructed by choosing the
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conjugate family class having the same functional form (kernel) of the likelihood

function. Natural conjugate prior is also called “convenience prior”.

3.3.1. Properties

Raiffa and Schlaifer (1961) proposed to generate the family IT so that it satisfies
the following properties:

1. Closure property: Conjugate priors allow one to begin with a certain family of

distributions and end up with a posterior distribution of the same family, but with
parameters updated by the sample information. Therefore, conjugate priors are
called "closed under sampling" or "closed under multiplication".

2. Property of tractability: The conjugate priors are analytically tractable so that they

ease the computations of the posterior distribution given a certain sample. This
property is the main reason of their popularity in time series analysis. They are
frequently used in time series analysis such as Broemeling (1985).

3. Richness property: The conjugate family of priors is very rich. It contains many

members from well-known standard forms that are able to express the prior
information in various situations.

4. Interpretable property: The conjugate family, II, should be parameterized in a

manner which can be interpreted so that it will be easy to verify that the chosen
member of the family is really in close agreement with the decision-maker's prior

judgments about 6.

3.3.2 Derivation

Raiffa and Schlaifer (1961) have developed a class of distributions that attains the
above properties. However, they confined the development to the case where the sample
observations are independent and admit sufficient statistics of fixed dimensionality.
Their main idea to develop the natural conjugate class is to use the sample kernel as a
prior kernel.

Definition:

Consider the i.i.d. random sample X ,X ..,X such that for any n and any

sample (X%, 0es X ), there exist a sufficient statistic y (x,x,,...x )=y=(y ¥,V )
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where y.'s are real numbers in the range Y and the dimensionality s does not depend

on n. Then, the LF is give by /(x ,x, ,...,x |6) o k(/6). In such representation of the LF,
k is called the sample kernel. The natural conjugate prior with parameter " in the range

Y can then be given by
P (0)<k(y]6), yeY (4.1)

Then, the posterior distribution of ¢ will be given by

P(6|y)<k(y'|0) k(y|0) (4.2)

Raiffa and Schlaifer (1961, p.53) illustrated some considerable examples for some

data-generating processes. It is of quite interest to show some of them through the

following table:
Table3.1: Some Natural Conjugate prior distributions
Data Generate Bernoulli Process Poisson Process Normal Process
from: (Exponential (Both Mean and precision
distribution®) unknown)
Sample Mass / - - 12y
p F(]0) =6 (1- )", S =Ae ™, Fojun =ar)y e 2
Density Fun. wherex=0,1, 0<@<1 where x>0, 4> 0 where —co<x, < o0, >0
v _lydr
o 1. / <72 e 2
Likelihood Fun. 10x), % X |6) 00" (1=0)"" | 1(3).%gusx, | D) o2 A7 (0o, | 160) <22 €
12700y, 12720 1 1 2
1 L (m—p)
X T?2e ?
y=(,m,s) where v=n-1
Sufficient Statistics | y=(n,r) where r=Yx y=(nr) Where r=yx | m =%Z x; and
2 2
Vst =3 (xl. — m)
Natural Conjugate
(NC) Prior Dist. is: Beta Gamma-I Normal Gamma-I
NC pI‘iOI‘ p.d.f. p(gr”n’)(x 67"—1(1_9)7’1’—7‘,—1 p(ﬂ| n',t/)«ln _le_ﬂ’r p(,u,f‘m’,s’z,v/)ocz'%_l e—%V,S,ZT
1 Low'-u)

% x is a random variable denoting the time between two successive occurrences of a random event. Such
an event is generated from Poisson distribution, hence x is exponentially distributed.
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3.3.3. Difficulties in assessment of Natural Conjugate Priors

The main problem in using a conjugate class is that one must estimate the
parameters of the prior distribution, namely, the hyperparameters. There is no ideal
method to give a general rule by which the hyperparameters can be estimated. However,

there are some ways to estimate the hyperparameters, as follows:

1. Historical relative frequency distribution method

In some applications, there are previously available relative frequency
distributions for the values of the prior parameters. It is reasonable to match the
parameters of the current prior distribution with the historical frequency distribution of
their values. Then, choose the prior distribution that gives the closest form to the

historical distribution (see Raiffa and Schlaifer, 1961).

2. Moment method

If there are available information about the prior moments, then the
hyperparameters can be estimated by expressing them as functions of these moments.
This method is not recommended in the case of skewed prior distributions because of

their drastic effect on their moments, see Berger (1985).

3. Fractiles method

Another method for assessing prior parameters starts by a subjective determination
of the prior median and some other odd fractiles such as odd quartiles and odd octiles.
Then, choose the parameters of the given prior distribution to obtain a density that
matches these fractiles as closely as possible, see (Berger, 1985). This method depends
on little trail-and-error calculations, and is also called “subjective betting odds”. For

more details, one may refer to (Raiffa and Schlaifer, 1961) and (Lempers, 1971).

4. Predictive method

The prior parameters can be estimated also in terms of the predictive density of the
observations. This approach is sometimes called “the device of imaginary results”
(Berger, 1985) and (Broemeling, 1985).

Consider a prior distribution depends on the hyperparameter ae A, then the

predictive density depends on ¢ through the prior can be as follows:
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plx|a)= [ f(x|6) z(6|a)do , x5, acA (4.3)
Q

where f (x|6?) is the data density function defined on the sample space S for given
values of 8e€ Q, whereas 7z(<9|a') is the prior distribution of 6 given the unknown

hyperparameter « that requires to be estimated. One can observe values x;,x,,...,x,,

imaginary future or past values, from the density in (4.3) and choose « that is
compatible with this predictive density. That means to use this predictive density
incorporated with the future or past observed values to estimate & with the standard
known methods of estimation such as moment or maximum likelihood methods.
Broemeling (1985) preferred this method for estimating the prior parameters because of
its property to think about & as an observed random variable rather than as an

unobserved parameter.

5. Training Sample method

Another helpful approach to estimate the hyperparameters is the training sample
approach. Such a method has been widely applied in the area of the objective Bayesian
analysis. Since the training sample admits utilization of improper objective priors
(noninformative priors) to a subset of the observed data to obtain a proper posterior
distribution. This last distribution is used to estimate the hyperparameters. Then the
Bayesian structure is applied to the rest of the sample as if it was the actual sample to
obtain the posterior analysis. Various Bayesian applications used such approach in
literature such as Broemling (1985) and Ismail (1994). A recent work to develop a
variety of methods of choosing training samples is due to the work of Berger and
Pericchi (1996), Pérez and Berger (2002) and Berger and Pericchi (2004). Berger and
Pericchi (2004) developed some new definition of training samples that can overcome a
wide range of problems in Bayesian analysis. However, they deemed that it is unable to
define any type of "optimal" training sample. According to the revision of many training
sample techniques discussed in literature, a training sample could be chosen to be as
small as possible and that convert improper objective prior into a proper distribution.
This type of training samples is called "minimal training sample". It is of limited use
particularly when the data set is small, see Berger and Pericchi (2004). Another solution

reviewed in Ismail (1994) is the "overlap training sample". This technique suggests
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using the whole data set including the training sample that is used to estimate the
hyperparameters. That is the actual data overlaps the training sample. A more
generalized view to select a training sample is discussed in Berger and Pericchi (2004),
where they introduced what is called "randomized and weighted training samples" that
chooses a training sample according to sampling mechanism, they also discussed the
"imaginary training samples". In such type, training samples are not obtained from the

real data, but from some specified distribution.

3.3.4. Examples

DeGroot (1970) presented several types of the natural conjugate priors for samples
from various distributions. Table 3.2, in addition to table 3.1, summarize some of the

natural conjugate priors that correspond to different populations.

Table 3.2 Some Natural Conjugate prior distributions

Sampling distributions Natural conjugate prior distributions

1. Bernolli Success probability is Beta

2. Binomial Success probability is Beta

3. Negative binomial Success probability is Beta

4. Poisson Mean is Gamma

5. Uniform (ky,&5) (k7, k5 ) has joint bilateral bivariate Pareto
6. Exponential with mean ! A is Gamma

7. Normal with o2 is known Mean is Normal

8. Normal with xis known Variance is Inverted Gamma

9. Normal with g and o’ are (#,6%) has joint Normal-Gamma

unknown

The Normal-Gamma conjugate prior is widely used in Bayesian literature,
especially in time series field, since sampling from normal distribution is the most

common case.

3.3. Natural Conjugate Priors



CHAPTER3: Informative Prior Distributions 79

3.4. G-Prior

3.4.1. Introduction

As shown in the previous section, the natural conjugate prior technique is an
appealing one for assessing informative prior distributions that lead to relatively
simple posterior results. Zellner (1985) considered the class of natural conjugate prior
distributions as a very useful class of "reference informative priors (RIPs)". However,
that technique encounters a serious pitfall in evaluating the prior covariates of the
parameters. That motivates Zellner(in 1983 and 1986) to seek another prior, belonging
to the same class, that figures out this problem and has the same attractive properties as
the natural conjugate priors. Zellner's main concern was with simplifying the Bayesian
results for one of the most well known models in econometrics, the general linear
model (GLM), therefore he confined his work to the derivation of RIPs for the
regression parameters. Such work leads to what is called g-priors, the class of priors
that provides a middle ground of sorts between an informative natural conjugate prior
and a diffuse prior, see Karlsson (2001). The main feature of g-prior is that it allows
the investigator to introduce information about the location of the regression
parameters without having to think about the most difficult aspects of prior

specification, which is the prior covariates structure of the regression parameters.

Zellner's g-prior has later been extensively utilized for many problems in
econometrics. For instance, Zellner (1985) applied the g-prior for a simple-structural
econometric model. Moreover, g-prior has become a standard choice for the regression
coefficients in the field of Bayesian model averaging (BMA) for several practical
reasons, See, e.g., Fernandez, et. al. (1998), Jornsten and Yu (2002), Clyd (2003), and
Koop and Potter (2003).

In this section, a standard GLM will be considered for an nx/ vector of
observations on the dependent variable y, wherein y is generated through the following

model:

y=XB+u (3.4.1)
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where X is an nxk non-stochastic design matrix of rank k, f is a kxI regression

parameter vector and the error vector u is assumed to be a N(0,6°1I,), where o?is
finite unknown value. The likelihood function (LF) for the GLM is given by

(B0 y.X) < 6" expl- (v - XB) (v - Xp)/ 25 } (3.4.22)

It is desirable to rewrite the quadratic quantity in the exponent of (3.4.2a) in terms of

the least squares estimates g, where g=(XX)"' Xy, as follows:

= XB) (v = Xp)=yy-yXp-BXy+FXXp

Now completing the square in the right side of the last quantity with respect to f

implies to

(= XBY (v = XB) = ¥y + (B - (X307 X XX(B - (XX)" X)) - yX(XX) ' X
=yy+(B-B'XX(B -~ yXp

then completing the square with respect to y leads to

(= XB) (v~ XB)=(y— XB) (v~ XB)+ Xy~ PXXp+ (B~ B XX(B - p)

Since AXXB=pXX(XX)"'Xy=pXy, the form of the LF, in (3.4.2a), can be

eventually written as

I(B.0] . X) o o™ expb (5% + (B - BYXX(B - )1/ 207} (3.4.2b)

where vs? =(y - XB) (y— XB) and v=n—k.

Procedures for assessing informative prior distributions for the GLM's parameters
have been used by many authors such as Winkler (1967, and 1977), Kadane et. al.
(1980) and Zellner (1985). In what follows, the derivation of the g-prior distribution
for the GLM parameters will be illustrated. In a next chapter, The posterior results
based on the g-prior will be displayed and compared with those based on the natural

conjugate approach.

3.4.2. Derivation

Zellner (1983 and 1986) innovates an approach to derive a reference informative
prior (RIP) distribution, as he called, as the joint g-prior distribution of f and o

through the following steps:
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1. Before observing y, consider another imaginary or conceptual sample y, assumed to

be generated by
Yo =XB+u, (3.4.3)

where X is the same design matrix defined by (3.4.1), but u, is assumed to be

N(0,0,’1,), where ¢* =go,”, and u= @uo, where g is assumed to be initially given.

2. Assume the Jeffreys’ independent rule for the joint prior p.d.f. of g and o. Then

1

p(B.,0) a o~ . Let S, denotes the conceptual sample information in (3.4.3), then the

posterior p.d.f. p(,B,0'| S,) can be evaluated by combining the LF of the model in
(3.4.3) and the Jeffreys' prior p.d.f. p(B,0). Then the posterior p.d.f. of # and o will

have the following form:
p(,B,o" Sy)eco D exp{f glvs,> +(B-B,) XX (B —,&0)]/202} (3.4.42)
where ﬁA'o Z(X:X)_IX.,V(M VSo2 =(yo — Xﬁo),(.)’() - Xﬁo) and v=n-k.

It can be seen that the posterior p.d.f. in (3.4.4a) is a normal inverted-gamma

distribution given by

P(B,0lSy) e ¢V exp{— gvs,/ 262}><o"k exp{— (BB XX(B-B)/ 202} (3.4.4b)

where the first part of (3.4.4b) is the inverted-gamma(l I') of type II. Raiffa and
Schlaifer (1961) have represented diifferent forms of gamma and inverted gamma
distributions. It is worthwhile to shed further light on some of these distributions in a

separate appendix (see appendix-I).

Hence, the marginal posterior p.d.f. for £ is obtained by integrating the form in
(3.4.4a) with respect to o, which gives the kernel of I I'-II distribution with parameters
(r =n,r* =glvs,” +(B— ) XX (B - [fo)]), which turns out, as shown in distribution IV
in appendix-I that

—(v+k)
1+(ﬂ_ﬂ0)XX(ﬂ_ﬂo) ? (3.4.5a)

2
Vg

p(B|Sy) e

which is obviously the k-variate t distribution with v degrees of freedom, mean vector

/;’0 ,and a dispersion matrix proportional to (X X)"vsZ /(v —2).
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Similarly, the marginal p.d.f. for ¢ can be obtained from (3.4.4b) by integration with
respect to B, that is integrating the k-variate normal part in (3.4.4b) which gives

constant. Hence the marginal posterior p.d.f. for o is

(0] Sy) o ™ expt- g1s,2 /202 } (3.4.5b)
which, through the form IV in appendix-I, is I I'-II distribution with parameters
(rzv,/iz =gs§).
3. Zellner suggests using anticipated values for f and o’ denoted by A, and o

respectively. Zellner applied the Muth's (1961) rational expectations hypothesis that is
taking them respectively equal to E(f8 | S,) and E(0'2| S,)» the posterior means derived

based on  (3.4.52) and  (3.4.5b). Thus g, =E(B|S,)=p, and

o, =E(0’|S)=ves; [v-2.

4. Zellner recommends using the joint g-prior distribution as given by

6, ac " exp{— va! +g(B-BYXX(B-B))/ 202} (3.4.6)

p,(B.o

which is still the form of the normal inverted-gamma, where 8, =(8,.5,%,g,v) is the
vector of hyperparameters, &2 =gs? =(v—2)o2/vand v=n—k. It is evident that, this
prior form is the same as in (3.4.4a) and (3.4.4b) but the first is in terms of the
anticipated values B, and . It can also be seen, as shown above in (3.4.5a) and

(3.4.5b), that the marginal g-prior p.d.f. of o is the I T-II (r =V, = Eaz), which takes
the following form,

po(olv,07)ec o™ exp{— Vo /20'2} (3.4.7a)

2

So it is seen that E(c?)=v5? /(v —2)=0?. Where the marginal g-prior for B is of the

following form,
L R —(v+k)
— — 2

—2
Vo,

Po(B| Birg.v.50) |14+ g

which is the multivariate t distribution with v degrees of freedom, mean vector g, , and
a precision matrix proportional to g(XX)/&2, hence the dispersion matrix is

proportional to (XX)'va? /(v -2)g=(XX)"0?/g.

a
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3.4.3. Properties

Zellner discussed some properties of the g-prior in (3.4.6) which can be summarized

as follow:

1. When g value is unknown, a prior p.d.f. for g, noninformative or informative,

can be introduced and g-prior can be integrated out.

2. When g is unknown, it could be taken as a function of the sample size, g = g(n),

say g =1 or g= k’% . In such assumption, g controls the dependence of the prior

precision on the sample size, so an appropriate choice of this function can allow
prior precision to grow with n and if desired at a rate less than the rate at which
the sample precision grows. Other potential values for g are investigated in
literature and will be exhibited in next subsection.

3. In case when another design matrix, say X, , is given, the form of the regression
model is the same for both design matrices X, and X . That is (3.4.3) can be
rewritten as y, = X, + u,, with y, and u, each of dimension n,x1 and X, of

dimension n, xk and same approach, discussed above to derive the g-prior for

the regression parameters, can be proceeded.

3.44. Potential values for g

The choice of the unknown hyperparameter g is crucial for obtaining sensible

results. Therefore, several methods are followed to assign the value of g.

Information criteria methods

Fernandez, et. al. (1998) investigated the properties for many choices for the
unknown scalar g. That work shows that some of these choices yield posterior results
that have properties similar to commonly used information criteria. They concluded
that g-prior could possibly be assigned as a function of the sample size or the number
of regressors in the data set. So based on simulation studies, they analyze the
consequences of using many different choices of g-prior. It is of interest to introduce

herein some of them.
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[1]. g=l

n

This prior corresponds to assigning the same amount of information, the same
weights, to the conditional prior of £ as contained in one observation. This comes

up with the spirit of the "unit information prior" of Kass and Wesserman (1995).

[2]. g=§

Here more information are assigned as many regressors have been entered in

the model. That involves more shrinkage induced in 8 to the prior mean g as the

number of regressors grows, see equation (4.1.3b) in the next section.

[3]. |g= 1

n

The value of g using this prior behaves asymptotically like Schwarz criterion.

[4]. |g=4—

n

As in prior [2], more shrinkage induced as number of regressors increases.

In(k +1)
Inn

[6]. |g=

The priors given in [5] and [6] behave asymptotically like Hnnan-Quinn

criterion.

_ L
[7]. |g= P

Using this prior implies the Risk Inflation Criterion (RIC) of Foster and
George (1994).

Fernandez, et. al. (1998) concluded, on the ground of consistency, that it is better to
suggest making g-prior as a decreasing function of the sample size n. Moreover, they

deduced using simulation that the most reasonable choices of g-prior are
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> gzk%, for n<k>.

> g=l , for n>k>.
n

In addition to such choices for g listed above, there is another method to assign
values for g and in a data-based manner. This is the so called empirical Bayesian

methodology, which was first coined by Robbins (1956).

Empirical Bayesian methods

In the context of this approach, the Bayesian estimation structural is used with a
pre-assigned prior distribution to obtain the Bayes estimator. However, the parameters
of the prior distribution, or the hyperparameters, are not assessed subjectively, rather
they are estimated through the current data. Often the hyperparameters are estimated
by maximizing the marginal likelihood, to get the maximum likelihood (ML), or by
sample moments. Nevertheless, empirical Bayesian methodology can be criticized
because allowing a prior to depend on data violates the rules of conditional probability,
the Bayes' rule that requires the prior distribution depend only on its parameter not on
the data set. However, the empirical Bayesian methods are popular for many practical
econometricians. For more details about empirical Bayesian approach, see Press
(1989) and O'Hagan (1994). Koop and Potter (2003) adopt such approach to estimate
the value of a single prior hyperparameter that is g-prior here, using the maximum
likelihood estimate (MLE). They adopt this methodology in the application of

forecasting dynamic factor model using Bayesian model averaging.
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Posterior analysis to GLM

The g-prior is often described as a less informative prior, and has numerous terms in
literature, where it is called as "objective", "benchmark", "shrinkage", and at last as
"reference informative" prior. Furthermore, Fernandez, et. al. (1998) considered the g-
prior as a slightly "noninformative prior" that is related to a natural conjugate structure
with g-prior specification to the hyperparameters. In addition, they considered such
prior specification as a one that lead to sensible results in the sense that data
information dominates prior assumptions. That is because such prior does not require
substantive amounts of subjective prior election by the researcher except for the scalar
parameter g, however the choice of g may be determined subjectively. Nevertheless,
some objective methods to specify g are discussed in literature. Therefore, the affinity
of the g-prior of the regression parameters with the natural conjugate prior must be
emphasized. This difference will be clarified through the posterior analysis of the

GLM.

4.1. Based on the g-prior distribution

Zellner(1986) introduced the following particular g-prior to derive the posterior

distribution for £ and o,

P, (B,0)< p(o)x p(f|o, ) (4.1.1)
where p(o)«=1/c, and p(flo,g) <o exp[-g(B - ) XX (B - )/ 20°], then combining
this prior distribution with the LF in (3.4.2a) will lead to the following joint posterior

distribution:

p(B,0] S) o D expl[(y - XB) (v — XB) + g(B— BY XX(B-F))/ 267} (4.1.2a)

86



CHAPTERA4: Postrior Analysis to GLM 87

where S denotes the sample and prior information. Some simplifications will be
considered now to the term in the square brackets in the exponent, say Q, in the right

side of (4.1.2a), where Q can be proved to equal,

O =lyy+gBXXPI-[(y'X + 2B XXP1- 18Xy + XX P)]+[B (XX + g XX)p]
If the two matrices w’ = (y'fg”zﬁ'X') and W' = (X'Eg”zX') are considered then O can

be expressed as,
O=ww-wWp-gWw+pWWp
Similar simplification made previously in (3.4.2b) will be applied herein. Thus,
through completing the square with respect to £, O can be rewritten as,
O=ww+[B—WW) '"WwIWW[B-WW) ' Wwl-wWWW) ' Ww
=wwt(B=PYWW(B—B)-wWp
where 7= (WW)™'Ww, then completing the square, in the right side of the last form of

0, with respect to w implies:

O=(w-WBY(w-Wp) +BWw—BWWE+(B—BWW(p-p)
=w-WB (w-WB+(—-BWW(PB-p)

’ ’

where g WW = WWW W) Wiw=8 Whw, thus (4.1.2a) can be finally expressed as

P(B.0|S) o D expl[w - WBY (0 —WB) + (B BYWW (- 1/ 207} (4.1.2b)

It is evident that the joint distribution in (4.1.2b) is in the normal inverted gamma
form, where the marginal posterior distribution of £ is obtained from it by integrating

with respect to o to get the kernel of I I'-II distribution with parameters
(r:n+k,r/12:(w—WE)’(w—WE)+(ﬂ—E)’W’W(ﬂ—E)j, that eventually implies the

following form:

—(n+k)

p(B|S) e 1+(ﬁ_7)’=W’W(ﬁ_Z) o (4.1.3a)
(w=Wp)(w—Wp)
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which is simply the k-variate t distribution with n degrees of freedom, posterior mean

W) v -wp v -wp) It is important
(n-2) '

7, and variance covariance matrix V(ﬁ'|S) =
to notice that,
B=WW) Wi
=(1+ g)‘l((X’X)‘IX’y + gﬁ)
Where, the matrices w and W are defined above. Then, the posterior mean ; is finally

given by

?=(’&+g7’)) (4.1.3b)
1+¢g

However, the posterior dispersion matrix of S, as shown above, is
VRIS =WwW)'a® =(XX)"'a®/ 1+ g), where,

(n=2)a*=(w =W B)(w-Wp)
=(y=-XP (y-XP)+e(B-P'XXB-p)

then, at last

v (BS) =[<n—2>‘1 XX (=X (- XP)+ 2B~ B XX (P —E)ﬂ/mg) (4.1.3¢)

Similarly, the marginal posterior p.d.f. of ¢ can be evaluated by integrating the k-
multivariate normal part in (4.1.2b) which gives the distribution of the form

p(c]$) e o expﬁ (w—WB) (w—W B)/ 205> } (4.1.4a)

which is the I I'-II distribution with parameters (r =ngl=(w-W 7)'(w -w 7)) . Thus,

as shown in distribution IV in appendix-I, the posterior mean of o is
E(02|S):a2=(n—2)‘1(w—W7)'(w—W7). This quantity can be simplified to the

following form, as shown above to give (4.1.3¢c)

E@6?]8)=(n-2)" [(y SXB) (v-XB)+g(B— B XX (B - ?)] (4.1.4b)

4.1. Based on the g-prior distribution
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4.2. Based on the Natural Conjugate Prior

Zellner (1986) has discussed assessing another prior distribution to the GLM
parameters which is the natural conjugate prior developed by Raiffa and Schlaifer
(1961). This approach, using a certain prior p.d.f. of such class, will lead to a posterior
p.d.f. belongs to the same class. This family of distribution involves herein
representing the prior information to the GLM using the normal gamma joint prior

distribution for the parameters f and t, where t is the precision parameter and

7' =¢?. That is the joint prior distribution, p,(B,7) is given by

P (B.7) > pe (D)% py (Bl7) (4.2.1a)
with

pu Byt expl- 2 (8- B A8 - B)} 4.2.1b)
and

po(t) o<t exp{-br} (4.2.1¢)

where p, (,B|f) is a k-variate normal distribution for £ given t, with prior mean vector
S and prior precision matrix T4, whereas p(r) is the marginal prior distribution of

which is the gamma distribution with parameters a and b.

Expressing the LF of (3.4.1) in terms of t will give

1(B.7| y, X) o 77 expl- £ (y - XB) (v — XB)} (4.2.2)

Now, joining the joint prior distribution in (4.2.1) with the LF in (4.2.2) will give

the following joint posterior distribution
(B Syt ™ expl-2lb+ (v - XB) (- XB)+ (B-BYAB- P} (42.3)

this is again in the normal gamma form. To focus more on the posterior results,

consider the quantity in the exponent, except for the 2b term, say Q that is

0=-XBY(y—XB)+(B—B)AB - B)
=yy—yXB—BXy+BXXB+ AR FAB— AR+ FAR
=yy-B(Xy+AR)—(Xy+AB) p+ (XX + A)p+ fAB

completing the square with respect to # in the right side of Q will give
0=yy+ [(ﬂ —(XX + )7 (X + AB) (XX + - (XX + ) (K + AB))}

—(Xy+AB) (XX + A (Xy+ AB) + FAB

4.2. Based on the Natural Conjugate Prior
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then the posterior p.d.f. in (4.2.3a) can be rewritten as

p(B.7|S) e P exp{—g[zb + 3y —(Xy+ ABY (XX + A (X + AB) + E’Aﬁ]}
(4.2.3b)

x 7/ exp{— g(p (XX + A (Xy+ Aﬁ)),(X’X + A) (ﬂ (XX +A) 7 N(Xy+ Aﬁ))}

Obtaining the marginal posterior distribution of £ is obtained by integrating the form in

(4.2.3b) with respect to t, that gives the kernel of the gamma distribution with

n+2a+k
2

parameters r = and

Yy—(Xy+ABY (X X+4)7] (X'y+Aﬁ)+ﬁ'Aﬁ+(ﬂ—(XX+A)_I (X'y+A/7)) X+ ) p-x+ ! (X’y+A/7)j

A=b+ 3 .

Thus, the marginal posterior distribution of # will be of the form

_((n+2(l)+k)
2

(B-(XX+ )™ (Xp+ AE)J, (XX + A (XX + ) (Xy+ 4P)

P(BIS) | 1+ (4.2.4a)

2+ yy—(Xy+AB) (XX +A) N (Xy+ AB)+ BAB
which is the k-variate t distribution with n+2a degrees of freedom and a posterior

mean vector = (XX +4)" (X y+Ap) , It can be shown that

B=(XX+4)" (Xy+AB)
=+ (1 —(XX +A4)" A)/'} - (1 — (XX +A4)" A)ﬁ

then at last, the posterior mean of f is expressed as
;=ﬁ+(1—(X’X+A)‘1Aj(ﬁ—B) (4.2.4b)
Whereas, the posterior dispersion matrix of £ is given by
V(BS)=(n+2a-2)" (2b +yy—(Xy+AB) (XX + A) " (Xy+ AB) + B’Aﬁ) (XX+4)7" (4.2.4¢)
which is proportional to (XX +4)".

Similarly, the marginal posterior p.d.f. of T will be derived by integration on the
multivariate k-normal distribution part in (4.2.3b) with respect to f that gives a
constant. It eventually leads to

n+2a

p(T|S)0< T’ 1exp{7%[2b+y'y—(X'y+Aﬁ)'(X'X+A)_1 (X’y+A/?)+Z;'Aﬁ]} (4.2.5a)

4.2. Based on the Natural Conjugate Prior
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e
that is the gamma distribution with =24 and =5+~ “X AR XXA) Xyt AP AP

As shown in distribution III in appendix-I, the posterior mean of =0 is given by
E(z|S)=E(0’|S)=(n+2a —2)‘1(21; +yy—(Xy+ ABY(XX + A (Xy+ Ap) + B’AE) (4.2.5b)
whereas, the posterior variance is

V(e'|S)=(n+2a-2) (n+2a—-4) (2b + Yy —(Xy+ABY (XX + A) (Xy+ Ap) + E’AE)Z (4.2.5¢)

4.3. Concluding Remarks

From the above discussion, it is important to summarize some remarkable notes for
the consequence of using the g-prior technique versus the natural conjugate one to

assess the RIPs for the GLM parameters.

First, it is evident that, using the g-prior leads to a posterior covariance matrix of g
proportional to (X 'X)_1 . This is the main property that motivated Zellner to investigate
an approach that lead to a natural conjugate prior distribution with prior precision

proportional to XX, so it is simple to be assessed. Since all what is required, to assess

such a prior in (3.4.6); a prior mean vector f,, a prior mean for the error term variance
Eaz , and a choice of the value of g. The value g in this case, measures the amount of
information in the prior relative to the sample, that is, setting g=0.1 gives the prior the
same weight as 10% of the sample. Whereas, using the natural conjugate prior
approach leads to posterior covariance matrix of f# proportional to (XX + 4)™', see
(4.2.4c). The posterior covariate structure is thus completely determined by the prior,

by evaluating the elements of the matrix A4, and the design matrix.

Second, one can notice that the g-prior distribution is a special case of the natural
conjugate prior one. Where the joint g-prior in (3.4.6) is in the natural conjugate form

(4.2.1) with p=p,, A=gXX, a=v, and Zb:VEaZ. Thus, using g-prior reduces the

choice of the kxk prior covariance matrix A4 to a single scalar hyperparameter g.

Third, the posterior mean E, produced by using the g-prior, form (4.1.3b) is just a

simple average of g, the least squares estimate, and f, the prior mean vector, with the

4.3. Concluding Remarks



CHAPTERA4: Postrior Analysis to GLM 92

parameter g involved in the weights. Another noticeable remark on (4.1.3b) that as g

getting small ; ~ f8, the LS quantity, while as g is large ; ~ B, the prior mean vector.

On the other hand, following the natural conjugate technique leads to a posterior mean

B, in (4.2.4b), that can be viewed as a "shrinkage" estimate. Shrinkage phenomenon

arises naturally in many Bayesian analysis, in the sense that, the influence of the prior
distribution is to "pull" the likelihood towards the prior, and hence the posterior
estimate can often be seen in terms of a classical estimate being pulled towards the
prior estimate. The shrinkage phenomenon is not only a property of estimates such a
posterior mean but also it affects many other posterior aspects. Shrinkage is also

common in hierarchical models, for more details see O'Hagan (1994)

Shrinkage also obtained through the "ridge regression", where the ridge estimator is
given by b(k)=(k +XX)"' Xy will be identical to the posterior mean g given by
(4.2.4b) by setting A=kI and f=0. So on the algebraic level there is a close
similarity between Bayesian analysis to the GLM using the natural conjugate prior and
the ridge regression. However, in contrast to ridge regression where shrinkage is
toward zero, the Bayes estimate shrinks toward the prior mean, Karlsson (2001). See

Birkes and Dodge (1993) for more details about ridge regression.

4.3. Concluding Remarks



Chapter 5

Bayesian Time Series: AR(1) Models

5.1. Introduction

A time series is a sequence of numerical data in which each item is associated with
a particular time. Univariate time series is a single sequence of data such as monthly
unemployment and daily closing prices of stock indices. Whereas, multivariate time
series consists of several sets of data for the same sequence of period, such as, monthly
unemployment, price levels, and monthly income that are considered over a certain
period. One broad technique of analyzing time series is the "time-domain" methods,
where they are based on direct modeling of the lagged relationships between a series
and its past. Such a modeling technique, theoretically, views a time series as a stochastic
process and regards an observed series as a particular or single "realization" of that

Process.

On a further clarification, suppose the stochastic process {K} of T-dimension is a

set of autocorrelated random variables. A sample of size 1 of each random variable is
hence drawn to form an observed time series. Thus, the observed time series is regarded
as a realization of a stochastic process and there is no way to have another observation
of each variable that is why it is called "single". These two features, dependence and
lack of replication, enforce statisticians to specify some restrictive models for the
statistical structure of that type of stochastic process (Maddala, 1988). Stochastic
process can be described generally by a T-dimensional probability distribution
PV, Y5, ¥r), so that the relationship between a realization and a stochastic process
is parallel to that between the sample and population in classical approach (Mills, 1990).
Instead of capturing a complete form of probability distribution to identify the
stochastic process that generate the time series, one can concentrate on the two moments

beside the covariance statistics of that distribution.

93
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Classical approach undertakes the same view to analyze time series. According to
classical prospect, statistical inference about parameters is explained using repeated
sample concept under the same conditions. Practitioners usually do not accept this
concept especially in fields such as economic, engineering and environment, whereas it
is impossible to obtain another realization at the same time points as just mentioned
previously. Hence, a non-classical approach that overcomes the need to repetition and
avoids learning the large number of sample theory techniques as well, is required in
time series analysis. Such approach is exactly the Bayesian technique, which gives an
acceptable interpretation for point estimation, confidence intervals construction, tests of

hypothesis, and predictions that are requested by many researchers in various fields.

In general, reasons of involving Bayesian approach in time series analysis are as

follows:

1. This approach can assimilate new information different from that one used in the

original analysis, so results can always be updated.

2. This approach can successfully give logical interpretation for statistical inferences

in time series analysis, especially for constructing confidence intervals.

3. Experience plays an important role as a source of information in economic time

series and other fields.

Nevertheless, adopting such an approach encounters some obstacles due to the
adherent complicated nature of most of time series models, since the likelihood function
is analytically intractable for the majority of ARMA models. That is, due to its

nonlinearity which leads to problems with complicated posterior computations.

For simplicity, the current work will mainly focus on the linear autoregressive time
series models, where the likelihood function will produce analytically tractable posterior

distributions. Hence, a complete Bayesian analysis is possible.

Section 5.2 will focus on representing some basic concepts of the first-order
autoregressive time series model, AR(1). Whereas section 5.3 is devoted to develop the
posterior analysis of AR(1) model using some noninformative and informative priors

that have been represented in the preceding two chapters.

5.1 Introduction
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A remarkable comparative study is introduced through section 5.4 to investigate the
performance of the studied prior distributions based on simulation tools for the AR(1)
process. Section 5.5 presents the posterior analysis of some real time series data sets for

AR(1) model.

5.2. AR(1) models: Basic concepts

Suppose the discrete stochastic process {K} that is given by

V. =0y, TE (5.2.1)

where {8,} is the white noise process, which is purely random process that is a sequence

of mutually independent identically (i.i.d.) normally distributed with zero mean and

common variance o, i.e.,

E(¢) =0,

Var(g;) = 62, and

Cov(g,&_; ) =0,forallk # 0.

The model (5.2.1) is called autoregressive model of order one. A main
characteristic of that model, by using the Wold's decomposition, that it can be expressed
as a "linear filter" of a sequence of white noise process. That can be shown as follows:

Vi =€ Py
=& +0(&1 +9y-2)
=& +P& +¢2 (€2 +Py1-3)

2 3
=E+PE 1 +OE 2+ P (E,3+0Y14)

2 3 k
=€t+¢€t_1+¢ Et_2+¢ &3 +"'+¢ Eip t...

Finally, the process {Y,} can be written as

=

y,=X ¢’e .,  where j=12,.. (5.2.2)

=0 t=j
The last infinite series in (5.2.2) is also called the "infinite moving average
process" and is denoted by MA(). Using this transformation, taking into consideration
of the information about the white noise process, leads to the following derivation of the

first two moments of AR(1)

5.2. AR(1) models: Basic concepts
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E(y)=E( ¢’ &)
Jj=0

= §¢j E(g,_ ;) =zero
J=0

While the variance of the process {Y,}, 7, ., is give by:

7, = Var(y))

= Var( i(,/)j E )
=0

= T¢¥ Var(e, )+25 3¢9/ Cov(e,_e, )
j=0 -J i#j t—i t—j

— o2 §¢2J (5.2.3)
j=0
Similarly, the covariance function at lag &, Y, is given by

7/k = COV(yt’yz—k)

- E(yz Vi
2 3 k k+1 k+2
5 (‘9[ +¢‘9;_1 +¢ £ ,+ o £ ..t o £, + 0 £ +¢ £, +...)><
2
(gt_k +toe , +o7E L+ )
=gk E(gt_k )+ Pk E(gt_k_1 )+ P E(gt_k_2 )+
w 2jtk
=0’ zo¢ (5.2.4)
/:
Consequently, the autocorrelation function at lag k£ can be given by
o2 E’: ¢2 J+k
p = ﬁ = —j=0
k 7/0 0_2 §¢2]
j=0
Since o7 is a non-zero positive quantity, then,
§¢2j+k
p, =
k § ey (5.2.5)
=0

It is quite important to notice that the sequences of &'s for y, as shown in (5.2.2)

will accumulate rather than die out if ¥|@’ | — o, which is equivalent to |¢|>1.

Consequently, all the moments of Y, given through (5.2.3) to (5.2.5) will not exist.

5.2. AR(1) models: Basic concepts



CHAPTERS: Bayesian Time Series: AR(1) Models 97

However, in the case when Z| ¢’ |<oo and hence |¢|<1 that is the weights
converge absolutely. That condition is equivalent to assuming that the stochastic
process {Y,} is covariance stationary, which guarantees that all moments exist and are

independent of time, particularly, the variance p, is finite. Moreover, under that

condition, the covariance between y and Y, depends only on the lag £, the length of

the time separating observations and not on the time itself (Mills, 1990). Thus, for any
stationary covariance stationary process Q/j = 7_,» for all integer j. That is called weak
stationarity. Furthermore, the covariance stationary Gaussian AR(1) process is strictly
stationary, since the latter definition requires that all joint distributions of any subset of
the time series are unaffected by a change of time origin , however, they just depend on
the lags. According to the AR(1) process, only the first two moments are needed to
identify the distribution completely. That is why for such a process weak stationarity is

equivalent to strict stationarity.

Given the assumption of stationarity the equations through (5.2.3) to (5.2.5) can be
simplified as follows
7, =0 L9%
j=0
=0’(+¢* +¢* +9° +-)
The right hand side of the above equation is an infinite geometric series with base

| ¢ | <1, so the variance of stationary AR(1) process is given by

0_2

:1_¢2

Similarly, the covariance function can be derived as follows

7, (5.2.6)

2 S 42j+k
v, =0 Lo
Jj=0

:¢k §O_2¢2J’
i=0

Jj=

then,

5.2. AR(1) models: Basic concepts
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Y, =97,
o (5.2.7)

Similarly, the autocorrelation function is given by

V

p, ="

Y
k
o'y,
Yy
="

Stationary time series is also called non-explosive time series, whereas, non-

(5.2.8)

stationary time series is described as explosive.

Techniques of time series analysis are not confined to the analysis of stationary or
non-explosive time series. Pragmatically, most of the time series encountered are
nonstationary. However, some transformations could be applied to achieve stationarity
such as taking difference of successive orders until achieving stationarity. Stationarity is
beneficial in reducing the number of parameters of the investigated model. However,
the current study will focus on the posterior analysis of AR(1) when stationarity is not

assumed as will be discussed below.

5.3. Posterior Analysis of AR(1) Models

Autoregressive (AR) models are regularly used for the analysis of time series data.
Bayesian analysis of AR models began with the early work of Zellner and Tiao (1964)
who considered the AR(1) process. Bayesian analysis of higher order of AR model are
given in Zellner (1971). Lahiff (1980) developed a numerical algorithm to produce
posterior and predictive analysis for AR(1) process. Diaz and Farah (1981) devoted a
Bayesian technique for computing posterior analysis of AR process with an arbitrary
order. Broemling (1985) adapt many types of AR models discussed in literature in a
very general framework. Philips (1991) discussed the use of different prior distribution

to develop the posterior analysis of AR models with fitted trend with no stationarity

5.3. Posterior Analysis of AR(1) Models
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assumption assumed. Koop et al. (1995) investigated the effect of the prior distribution
choices on the prediction particularly when stationarity condition is imposed. Ghosh
and Heo (2000) introduced a comparative study to some selected noninformative priors

for the AR(1) models.

In this section, the posterior analysis to the AR(1) model, in (5.2.1), is developed
using some of selected noninformative and informative priors that have been introduced
in the current thesis. Such development will be carried out only for the general case
when no attention to the stationarity condition, this case would be applicable for

stationary or nonstationary time series.

5.3.1. Based on Noninformative Priors
The AR(1) process is generated using the formula in (5.2.1) that is
y = ¢yl_1 +e, t=12,..,T
Whereet ~1iid.N(0,0%) for all t=1,2,3,...,T. the parameters ¢ and G are unknown
parameters such that —co<@g<oco and 0< o’ <oo. In addition, Y, is an initial

observation assumed to be known constant. Note that there is no restriction for the

autoregressive coefficient ¢ to be within the stationary interval -1 and +1. The

probability density function of y is given by

f(yt ¢ao-’y0)°<6_l exp{_%(yt_¢yt—l)2}’ t=1a2a~-~sTandys¢e (—oo’oo)’o'e (0’00) (531)
20

The likelihood function of the parameters ¢ and o given the observations is given by

-T r 2
@y =0 el 150, -0, ) (532)
Consider 8" = (¢ 0©) is the vector of parameters and y = (y,9,--y,) is the vector of

observed data of length 7. The issue now is to derive the noninformative priors

according to the techniques introduced in chapter 2 that would be as follows:

Jeffreys’ Prior

Applying Jeffreys’ general rule given by (2.3.5) and (2.3.7) but in terms of the

likelihood function will lead to the following results

5.3. Posterior Analysis of AR(1) Models
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0% logl(p,oly)
Inf < —-E — 1, L,j=12
"o " yle| T 9600 b
L tJ o
The logarithm of the likelihood function is given by
1 L 5
logl(g,0ly) < ~Tlogo——=> (v, =9y )%,
207 =1
then
9 logl(,aly) 9° logl(¢,0ly)
2
Inf x<—-F ¢ 9509 ,
9.0 00| 92 loglg,0ly) 0% logl(p,0ly)
dod¢ do?
T 5 T
_Elyf“ —2t§l(y, -0y,
o o2 ] o3
T 2
y|9o S22, 9y )0 o 350, -9y, )°
o’ = o
Since E (y —¢y H)=0 and E (v —oy )2 =02, then the Fisher's information
y ¢,O- t t—1 y ¢,6 t t—1

matrix could be simplified to

T

2
Xy
Inf o< 2
,O ° ’
9 -2T
0.2

Jeffreys' prior, hence, using the formula p(¢,0) o< | |Inf b0 | , will be in the form

p(p,0)<No ™,
then
p(p,0) =<0

This prior distribution is refused by Jeffreys as mentioned before in §2.3, therefore,

Jeffreys assumed independence between the autoregressive coefficient ¢ and the scale

parameter ¢ . This assumption leads to the independence rule given by (3.2.8). Hence,

the Jeffreys' prior distribution of ¢ and o is given by

p($.0) <o (5.3.3)
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Locally Uniform Prior

Box and Taio (1973) considered the locally uniform prior based on the data
translated likelihood concept. As discussed earlier in §2.4, the data translated likelihood

is the one takes the form in (2.4.11) that is

18]y) o< g[n(®) - f(y)l,
where g(.) is a known function independent of y, 5 = (n, n,), is a vector of order 2 that
is one-to-one transformation of @, where 6 =(¢ o), and [f(y)] =[ £ f,(]is a

vector of 2 functions of y. The locally uniform distribution is taken as a noninformative

prior for m, then the corresponding noninformative prior of 0 is given by

p(0) < |J|,
where
8771 8771
d¢p do
J:
/] an, an,
d¢p do

The concern now is to try to rewrite the likelihood function, in (5.3.2), in the form of
translated likelihood function given by (2.4.11). Thus, it will be helpful to consider the

following quantity

S, =9y, ) =2, -N-@y,_ -,
=(T-Ds*+T(py, -7,
I -2
X, -

where 5% = ’:1—1 . Then the likelihood function could be expressed as

2

(¢, 0| y)es ol exp{— 70y, (1S’ } ’

20 20

Multiplying the last form by s’ , where multiplication of likelihood by constant leaves it
unchanged, then

r T(py -3 [ g2 _1)s?
o[ S N W I S P €O
l(¢’a| y) (0') eXp{ 257 o2 20 |’
can be written as

1(¢, 0] y) e (%)_T exp{—%(W’%ﬁjz(%)_z}exp{—(%n(gj_z }
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_=\2
(.0 y) e exp{—% [¢y,_+y] exp[-2 IOg(%)]} Xexp{— T log(%) - (%)exp[—z log(%)]},

Eventually, the likelihood function can be given by the following form:

—\2
(9, O'| y) o< exp{ % [M—lyJ exp[—2(logo —log s)]} X
s

exp{— T(logo—logs)— (ﬂ)exp[—2(log o—log s)]}

This last form could be considered as a translation to the form in (2.4.11) such that
n < (¢ y,, logo) and [f(»)] =[ylogs]. Then, one may take the locally uniform

distribution as a noninformative prior for n, hence the corresponding joint

noninformative prior distribution for § and o is given by

p(9,0) <],

} @) 55 @)
55 (ogo) 52 (logo)

>

Yig O

O_—l

o<
>

then
p(@,0) <0,

This entirely agrees with the form of Jeffreys’ prior given by (5.3.3).

Maximal Data Information Prior

Referring to §2.5, the MDIP for the parameters of AR(1) process could be given

using the multiparameter version of equation (2.5.7), since the MDIP of ¢ =(¢ o)

depends on the quantity / y© computed by (2.5.5). Then, it can be proved that,

I, ®= RI f(,|0) In f(y,|0)dy,,

v,
= log(a_1 )—logF—%

Eventually, the MDIP, using the above measure of information in the sample and

the form in (2.5.7), will be given as follows:

P*(¢,o-)o< exp{log(o-—l)_logﬁ_%}

Then, finally the joint MDIP of g and o is in the following form

5.3. Posterior Analysis of AR(1) Models
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P (g.0)=07",
which is yet again the Jeffreys’ prior given by (5.3.3). Thus, all approaches of
noninformative priors studied by the current work have unanimity the form of Jeftfreys’
prior in case when no restriction assumed to the stationarity of AR(1) process. That
result emphasizes the outstanding substance of Jeffreys’ prior to be wide applicable.
Moreover, different philosophies to noninformative elicitation in literature end up with

the Jeffreys’ prior.

Posterior Analysis of AR(1)

The joint posterior distribution of g and o will be obtained by combining the prior

distribution with the likelihood function. First, it will be helpful to simplify the quantity
X -9 yz-1)2 , in the exponent of the likelihood function, by completing the square

with respect to ¢ then with respect to y . We obtain,

XV, Y,
S, =0y, )7 = Tyl +Tyl| 07 -9
Vi

Consider S =Zy’—)2}"l, which is the ordinary least square (OLS) estimate for the simple

DI
linear regression model since y , is viewed as a regressor for the dependent variable

v, . The above equation will be reduced to
S, =9y ) =3 (y, -By | fe (¢—,3)22yf_1,
Consider vg? =Y (yt .y v, )2 , Where v =T-1, the likelihood function in (5.3.2) could be

written as

19,0]yy, »)eco exp{—%[vf +(¢—B)22y3-1} (5.3.4)

20

Combining the likelihood function in (5.3.4) with the joint prior distribution in

(5.3.3) will lead to the following joint posterior distribution of gand o
P(,0]y,, y) o< oD exp{—ﬁ[mz o-pf =2, ]} (5.3.52)

The above form is just the normal inverted-gamma distribution, which can also be

written as

p(9, o1, y) o< o~ exp{—ﬁqu} xo ! eXp{_ﬁ (¢ —,[?)ZZ ytz_l} (5.3.5b)
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Thus, to obtain the marginal posterior distribution of ¢, (5.3.5a) is integrated with
respect to o gives the inverse of the kernel of I I'-II (Inverted Gamma-2) distribution
with parameters (r =T,rA> =vq? +(¢ —[3)22 ytz_l). See Appendix-I for more details about
that distribution. Eventually, the posterior p.d.f. of ¢ is given by

—(v+1)
2

(o-8F Zytz_l

qu

PPy, y)e<| 1+ s @€ (—o0,00) (5.3.6a)

which is obviously the univariate t distribution with vdegrees of freedom. The
2
vq

posterior mean is given by 4 and the posterior variance equals to — -
(v-2)Zy
-1

Similarly, the marginal posterior p.d.f. of o can be obtained by integrating (5.3.5b)
with respect to ¢, that is integrating the normal distribution part in (5.3.5b) which gives

constant. Hence, the marginal distribution of o is given by

p(aly,,y)eca exp{—ﬁwz}, >0 (5.3.6b)

is the I I'-II distribution with parameters (}’:V,/lz zqz). The posterior mean and the

) ) ) &= v &=
osterior variance of o are given b r22 27 and g ———| g lr-2 2~
p g Y 443 ) q V2 q\/; re)

respectively, where v > 2.

A considerable note that, the posterior analysis introduced above for AR(1) model,

without restriction to stationarity, is identical to that of simple linear regression model.

5.3.2. Based on Informative Priors

In this section, the posterior analysis to the AR(1) model will be developed using
the informative priors introduced in chapter 3. These informative priors are the Natural
Conjugate prior and g-prior. The development will also be confined to the general case
where no stationarity assumption is imposed. The posterior analysis here is similar to
that introduced in chapter 4 to the GLM, however matrix representation will not be used

and the derivations will be executed in terms of the standard deviation ¢ not in terms of

. . 1
the precision 7=—.
o2
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1. Posterior Analysis of AR(1) Using Natural Conjugate Prior

This approach involves starting with a model p.d.f.,, then selecting a prior
distribution from a class leading to a posterior distribution belonging to the same class.
The likelihood function of the AR(1) process which has been presented in (5.3.4) which

could also be expressed by
(@00, )" eXp{ - }XG leXp{——(qﬁ -Bf >yl 1}

This distribution belongs to the normal inverted-gamma class. Accordingly, the natural

conjugate prior of the parameters ¢ and o is supposed to belong to the same class
defined by

p(o,9) = p,.(0)xp, (9]0)

where,

Y
1o (0) = ot exp{ 2”12 }, o,r,A>0
o

is the Inverted Gamma of type I with parameters » and A, as shown in Appendix-I,

while

_ 2
py (@8 o)eca exp hz (0— )’ .0, st € (—o0,0),0,h>0
20

is the Normal distribution with parameters x and o*h7>. Hence, the joint prior

distribution of ¢ and o given by
p(p,0) < D exp{z [MZ (p—p)*h ]} @, lE (—00,00),0 >0 (5.3.7)
O'

Combining that joint prior distribution with the likelihood function, in (5.3.2), implies

the following posterior distribution,
T
P(@.0]yy vy 0T exp{—%[rﬁz +Hp-u)n’+ 0, -9y )2]},
0 20 - t t—1

which can be written as

p(@, G‘yo,y) oc g 14142 exp{

}xexp{——(w Ul +é<yt—¢yt_1>2]}

Consider the quadratic form in the second exponent of the above distribution denoted by

0, which can be simplified to
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0=(o-nP K +X(3,~03,.,)’

-1

=u*h*+3y’ —(Zy,yt_l +.Uh2)2 (ny_l +h2)_1 +[¢—(Zytyt_1 +ﬂh2)(2yf_1 +h2) T(ny_l +h2)

Consider ¢ = (Z v,y + uh* XZ yf_l +h? )_1 , then the quantity Q could be shortened to

0=u’h? +Zyt2 —éz(zy,z_l +h2)+(¢—é)2(ZYf_l +h2)'

Then, the joint posterior distribution could finally be simplified to

(o, o"yo,y) o« g {THr+2) exp{— 12 |:V/12 +3 92 —éz[Zyz_ +h2j+,uzh2 +(¢—q5)2[2y2_ +hzﬂ}(5.3.83)
20 t t—1 t—1

That can also be represented by

p(9, O'|y0 ,y)oc o T exp# 12 lrﬂz +Y 2 - éz[Z y2_ + hz) +y2h2”x
20 t t—1

) (5.3.8b)
o exp{—?(gz)— ¢)2 (2 yi +h? )}

This is again, the normal inverted-gamma distribution. Obtaining the marginal
distribution of ¢ requires integrating (5.3.8a) with respect to o . That is integrating an
Inverted-Gamma distribution of type II with parameters » and 4 such that

(r=T+r+l,r/12=r/12+Zyt2—éz(Zytz_l+h2)+ﬂ2h2+(¢—¢3)2(2y12_1+h2)). Hence, the

marginal posterior distribution of ¢ is given by

_(v+1)

" 2 2 2
P9] po3) {H (¢_¢)2(Zy21_1 t )] < p<om, (5.3.9a)

vw

which is the univariate t distribution with v degrees of freedom where
vw? =ri? +Zyt2 —éz(Zytz_l +hz)+,uzh2 and v=T+r. Then, the posterior mean of ¢ is
given by ¢, whereas, the posterior variance is given by szz (Z yi +h? )_1 :
o _
However, the marginal posterior distribution of o could be obtained by integrating
the second part of (5.3.8b). Consequently, the marginal posterior distribution of

o represented by the following form:

po]r,. 3 00 exp{— —2} >0 (5.3.9b)
20
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It is the inverted-gamma distribution with parameters (r:V,/i2 :wz). Hence, the
3!

|4
posterior mean is given by w\/7 G- G and the posterior variance equals to

2
\/’( 3)‘
> T

2. Posterior Analysis of AR(1) Using g-Prior

As previously explained in §4.1., the posterior analysis AR(1) using g-prior could be
developed analogous to the GLM. The joint g-prior distribution of @ and o suggested

by Zellner is given by the following relation

P, (9.0)= p(0)x p(¢9|0.2)

where p(c) yg and p(¢|o,g)<o” exp{— ; ~(o- me> yf_l}. That is to take the prior

distribution of o as the Jeffreys’ prior assigned by rule given by (2.3.3). Whereas, the
conditional prior of @ given o is taking to be Normal distribution with prior mean u
and prior dispersion proportional to g(z ytz_1 ) This prior variance is simply a product of
unknown scalar g and quadratic known value that is based on the observations. It is
noticeable remark that, this quadratic term is considered as a main component of the
variance of the OLS estimate. This is obviously the main motivation to the g-prior in
comparison with the natural conjugate one. This motivation is more evident in

multiparameter case (see §3.4, for the use of the g-prior in such a case). Accordingly,

the joint g-prior of @ and o is given by the following form

pg(¢,0')<x0'_2 exp{ 20_ (¢ ,U) tl}’ (5310)

Combining this prior distribution with the likelihood function in (5.3.2) implies the

following joint posterior distribution:

p(@.0ly,.y,g) o " eXp{—z—( (0-u)’xy? 1+Z(y ~¢y._) j}

Consider the quadratic quantity O between the braces in the exponent of the above

form. Then , it can be proved that,
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T
0=gp-ulzy’, + 20, -9y, )’
A v A 2 _
—gu’zy’ +3y’ Ho—(B+guli+g)") (1+g)2yf_1—(ﬁ+gﬂ) (+g)'zy?,
n XYY . = (A 4 .
where f=—> is the OLS estimate. Consider ¢ = (,B+ gy)(1+ g) "' then the quantity O
2V

could be reduced to
0=gu’sy2 +3 2 +o-0  (+2)sy2 -6 (1+2)x 2,

—(eu? =g 20+g))zy2, +zy2 +p-0  (1+2)z 2.
Then, the joint posterior distribution is given by
p(.0ly,.y.g) e T exp{—ﬁ((gﬂz 52 (1+g))sy? +3y? +lo-o 1+ g)xy?, )}

(o}

(5.3.11a)

That could be written as

P01y, p,) e oD exp%ﬁ (g2 -62(+g))zy2, +3 v Jx

’ (5.3.11b)
o™ eXpLﬁ(¢_¢)2 (1+g)2yt2_1}

This is again, the normal inverted-gamma distribution. Hence, the marginal posterior
distribution of ¢ is given by:

v+

_ =\ 1 2 2
p(¢‘asyo,y)°{1+(¢ 2 +2g)2yt_1 ; T<P<eo, (5.3.12a)

vw

which is the univariate t distribution with v degrees of freedom where
yw? = (g,u2 -9? (1+g))2 ytz_1 +Zyt2 and v =T . Then, the posterior mean of ¢ is given by

é = (ﬁ+ g ,u)(l +g)”" whereas, the posterior variance is given by ﬁ w? ((1 +g)Ty?, )_1 i

However, the marginal posterior distribution of o could be obtained by integrating
the second part of (5.3.8b). Consequently, the marginal posterior distribution of o 1is

represented by the following form:

POy o expl =25 | o> 0, (5.3.12b)

o
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which is the Inverted-Gamma distribution with parameters (r:v,/lz :wz). Hence, the
v _3y)
posterior mean is given by w\/% (z(—vz)

2
W2—V — w\/z—(%_%)' 2
V-2 I )

and the posterior variance equals

One of the main objectives of the thesis is to compare the efficiency of the studied
prior distributions for AR(1) process. So far, the study presents three candidate priors,

which can be summarized throughout the following table:

Table 5.1: Candidate Prior distributions for the AR(1) Process

Prior Name Prior Distribution Form
Jeffreys' Prior P, (9,0) < % , 0>0and ¢ R
Natural Conjugate Py (9.0) < 07D exp{z%‘lz [r/lz +(g- ,ll)zhz]} ,o,h>0and g, ue R
Prior (NC)
g-Prior p,($.0)<o exp{— 25—2 (0-u)zy’, } 0,2>0and §,pue R

5.4. Comparative Study

This section is devoted to investigate and compare the performance of the prior
distributions introduced in table 5.1 that have been selected to implement the posterior
analysis for the AR(1) process. Furthermore, the sensitivity of the posterior distribution
to the change in the prior used is studied. The comparative study is implemented via

some selected criteria.

A Computer program, using Matlab (version 7.1) software, is designed to figure out
these results. A script that does such a task is presented in Appendix-II. The graphical

and table presentation are done using Excel program.
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5.4.1. Simulation Algorithm

The current study follows the simulation techniques used by Ismail (1994) and
Soliman (1999). The current simulation study deals with data generated from the model
AR(1) represented by (5.2.1). Ten cases of AR(1) model are considered, for which, the
values of the parameter ¢ were £0.2, £0.5, £0.8, £1 and *1.5 respectively. The current
work aims to assign different values of the autoregressive parameter on a wide range
within and outside the stationarity domain of the AR(1) model. For each model 500
samples were generated each of length 700. For each sample, the first 200 observations
were dropped to eliminate the effect of the initial values. Five different time series
lengths have been chosen to study the influence of the series length on the performance
of different prior distributions. These lengths are 30, 50,100, 200 and 500. The

comparative study depends on some criteria as will be shown in the following section:

5.4.2. Tools of Comparison

Various frequentist criteria are helpful to compare among prior distributions. The
basic idea is to use the prior distribution to generate a posterior distribution, and
investigate the frequentist properties of such resulted distribution. If the posterior
outcomes resulted from one prior has substantially better properties than that resulting

from another prior, then the latter prior is suspected (Yang, 1994).

An interesting tool was used to determine the reasonable prior distribution. It is just
a percentage measure for the number of samples that satisfy some condition. The

current study considers the following criterion:

95% Highest Posterior Density Region (HPDR) that is defined as the region under the
posterior density over the interval centered at the posterior mean with probability 95%.
For each simulation, n” is defined to be the number of samples where the 95%HPDR

contains the true value of the parameter. Then, the percentage P is evaluated such that:

*

P ="1_x100 (5.4.1)
500
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The performance of a prior is evaluated according to the value of P". That is, for a given
prior, the greater percentage indicates a higher performance of the prior to guide to a

posterior that presents powerfully the parameter.

5.4.3. Results and Discussion

Regarding the general case of AR(1) models, there is no restriction on the values of
the autoregressive coefficient ¢. Thus, the posterior outputs of all of the proposed ten
AR(1) models will be studied using the three prior distributions given in the first row of
table 5.1 which are Jeffreys' prior, g-prior and the Natural Conjugate (NC) prior since ¢
may take any value over the real line. The algorithm of the comparative analysis was
implemented according to the following outlines. For each of the 500 samples; the first
30 observations used to evaluate the posterior distribution of the parameter ¢ via the
three candidate priors. The posterior mean and the posterior variance of ¢ were
computed given each prior. Tracing the criterion mentioned above, an interval centered
at the posterior mean with probability 0.95 was evaluated (this is simply the 95%
HPDRs of ¢). For each model, the percentage of samples for which the actual parameter
exists within the indicated interval was computed (as shown by (5.4.1)). This process is
repeated for the first 50 observations (including the first 30). Similarly, the process is
repeated for the first 100, 200 and, finally, for the 500 observations. A script written by
Matlab program was designed to accomplish the task shown above. Such script is

attached in Appendix-IL.

The results for each of the ten models are summarized throughout ten figures; each
figure consists of a table and a bar graph. These tables and graphs represent the
percentage P~ defined by (5.4.1) for each n". Each table consists of five rows and four
columns. The first column represents the time series length, while each other column
matches the used prior distribution. The values in the cells of the table denote the
percentages P". The graph attached to each table describes a bar graph summary to the

content of the table.
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Figure 5.1 Figure 5.2
¢=-0.2
Jeff. Prior g-Prior NC Prior Jeff. Prior g-Prior NC Prior
30 94.4 95.4 97.2 30 94.8 94.4 97.6
50 94.4 94.4 95.6 50 95.2 94.8 97.2
100 93.8 94.0 94.4 100 94.0 94.8 95.2
200 96.0 95.8 95.8 200 97.0 96.8 96.8
500 95.6 94.4 94.2 500 95.4 95.4 95.2
| - |
N ——— S e——
£ 200 | - 200
B - 5 .
3 100 3 100
o 8 . " 1
= 50 = <0 ]
30 I 10 | ]
0 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 6 70 80 % 100
Percentage Percentage
B Jeff. Prior [Og-Prior & NC Prior B Jeff. Prior Og-Prior ENC Prior
Figure 5.3 Figure 5.4
(]):05 ¢=-0.5
n Jeff. Prior g-Prior NC Prior n Jeff. Prior ~ g-Prior NC Prior
30 94.2 94.6 97.6 30 95.2 94.6 97.4
50 94.8 94.6 95.2 50 96.2 96.0 96.8
100 94.6 95.0 95.0 100 95.2 94.0 94.2
200 95.2 96.0 95.8 200 95.8 96.8 96.4
500 93.6 94.4 93.8 500 96.0 95.4 95.2
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Figure 5.5 Figure 5.6
¢0=0.8 ¢0=-0.8
Jeff. Prior g-Prior NC Prior Jeff. Prior g-Prior NC Prior

30 95.6 94.8 98.4 30 95.6 95.8 97.8
50 94.2 94.0 95.8 50 94.4 95.6 96.8
100 94.2 95.6 95.0 100 94.6 94.8 94.6
200 92.8 94.2 93.6 200 95.4 96.2 95.8
500 93.8 97.2 95.4 500 96.8 98.2 97.0
500 ' '
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Figure 5.7 Figure 5.8
o= =
n Jeff. Prior g-Prior NC Prior Jeff. Prior g-Prior NC Prior
30 90.4 91.0 98.0 30 95.6 96.0 99.4
50 92.2 98.8 94.6 50 94.4 99.6 96.8
100 924 99.6 93.8 100 95.4 99.6 96.4
200 92.8 99.4 94.6 200 97.2 99.6 96.2
500 94.4 100.0 93.8 500 95.6 100.0 95.6
500 : . 500 | .
200 | L < 200 | .
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Figure 5.9 Figure 5.10
0=1.5 ¢=-1.5
Jeff. Prior g-Prior NC Prior Jeff. Prior g-Prior NC Prior
30 51.8 90.6 95.6 30 51.8 91.8 96.4
50 46.6 98.8 96.2 50 48.8 99.0 96.8
100 47.8 94.2 94.2 100 51.6 93.8 93.8
200 50.6 100.0 95.0 200 47.4 100.0 94.8
500 49.2 99.0 93.6 500 47.8 99.8 94.8

TS Length
S

TS Length
S

30 ; N —————
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Percentage Percentage
‘ B Jeff. Prior Og-Prior ENC Prior B Jeff. Prior [ g-Prior ENC Prior

Regarding the above tables and graphs, we achieve the following conclusion:

1. Apart from the case ¢ = 1.5, all priors lead to consistent posterior, in the sense
that the HPDR includes the parameter value in more than 90% of the cases at all
time series lengths. There is no observable difference between the priors at each

time series length.

2. For case ¢ = £1.5, the informative priors are highly better than the Jeffreys'

prior which appears to be less consistent at all time series lengths.

3. The goodness of each prior is not sensitive to the increase of the time series

length.

The above results support the use of Jeffreys' prior if there is an evident that ¢<I1,
since it has approximately the same efficiency as informative priors and it avoids the

problem of estimating the hyperparameters as well.

Nevertheless, if there is an evident that ¢>1, it would be appropriate to select an
informative prior because the lack of efficiency of the Jeffreys' prior. The NC appears to
be a good choice for time series length below 50. However, the g-prior is better for

longer time series.
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5.5. Case Study

To illustrate the achieved results of the simulation study in section 5.4, three real
life time series examples are considered. The data sets are the stock prices for some
different firms. A graphical representation using Minitab package is enclosed to
describe these data through a descriptive summary and time plot for each example.
Moreover, the ACF and the PACF plot are displayed to check the possibility of

modeling these data sets by AR(1) processes.

Csae Study-I: Weekly Average Closing Prices of Al-Watany Bank of Egypt from
1/1/1995 to 25/5/1997

Csae Study-II: Weekly Average Closing Prices of CIB from 1/1/1995 to 25/5/1997

Csae Study-III: Weekly Average Closing Prices of Kabo Company for Clothes from
1/2/1995 to 21/5/1997

Figure 5.11

Weekly Average Closing Prices, Al-Watany Bank
of Egypt, 01/01/1995 - 25/05/1997
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Figure 5.12

Descriptive Statistics: Weekly Average Closing Prices, Al-Watany

Bank of Egypt, 01/01/1995 - 25/05/1997
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Figure 5.13
Weekly Average Closing Prices, Al-Watany Bank of Egypt

1<
1 T

I I I

10 20 30

T LBQ Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ

10.95 122.81 10 0.58 1.82 837.94 19 0.10 0.30 980.80 28 -0.12 -0.34 987.59
6.19 237.68 11 0.53 1.62 877.60 20 0.07 0.21 981.63 29 -0.14 -0.39 990.69
4.69 344.45 12 048 1.42 909.74 21 0.04 0.12 981.92 30 -0.15 -0.43 994.56
3.83 441.46 13 041 1.22 934.27 22 0.02 0.06 981.99 31 -0.17 -0.47 999.28
3.25 528.20 14 0.35 1.01 951.90 23 -0.00 -0.01 981.99
2.83 605.46 15 0.29 0.83 964.02 24 -0.03 -0.08 982.12
2.51 674.69 16 0.23 0.66 971.78 25 -0.05 -0.15 982.57
2.25 736.50 17 0.18 0.50 976.40 26 -0.08 -0.22 983.58
2.02 790.70 18 0.14 0.39 979.17 27 -0.10 -0.29 985.22

95% Confidence Interval for Median

Variable: AVERAGE

Anderson-Darling Normality Test

A-Squared:

P-Value:

Mean
StDev
Variance

Skew ness

Kurtosis
N

Minimum

1st Quartile

Median

3rd Quartile

Maximum

9.576
0.000

35.2951
12.7873
163.516
1.55643
1.53086

126

21.8428
27.2222
32.1315
37.5089
73.4243

95% Confidence Interval for Mu

33.0405

37.5497

95% Confidence Interval for Sigma

11.3797

14.5956

95% Confidence Interval for Median

29.6530

33.3105
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Figure 5.14

Weekly Average Closing Prices, Al-Watany Bank of Egypt

1.0
0.8 -
0.6 -
0.4 -
0.2 - - — — = — — — — ——- - — — — — — — i —
T
Q o - B s g — —— —
< 02 —_—t————-—t—r—_———————_—— —— =
o 04 -
0.6 -
0.8 -
1.0
I I I
10 20 30
Lag PAC T Lag PAC T Lag PAC T Lag PAC T
1 098 10.95 10 -0.01 -0.08 19 0.03 0.34 28 -0.07 -0.76
2 -025 -2.80 11 -022 -252 20 -0.09 -1.00 29 -0.02 -0.21
3 0.00 0.04 12 -0.01 -0.13 21 -0.04 -0.40 30 -0.13 -1.42
4 -020 -227 13 -0.19 -2.12 22 0.07 0.77 31 -0.01 -0.08
5 -0.03 -0.38 14 0.02 0.17 23 -0.07 -0.77
6 0.02 0.23 15 0.05 0.54 24 0.09 1.03
7 0.10 1.09 16 0.01 0.10 25 -0.10 -1.10
8 -0.03 -0.37 17 0.07 0.75 26 -0.05 -0.57
9 -0.11 -1.24 18 0.15 1.72 27 0.01 0.09
Figure 5.15
Weekly Average Closing Prices, CIB,
Egypt, 01/01/1995 - 25/05/1997
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Descriptive Statistics: Weekly Average Closing Prices, CIB,
Egypt, 01/01/1995 - 25/05/1997

Figure 5.16

ACF

-
Q
«Q

© 00 N O~ W=

0.96
0.91
0.86
0.80
0.74
0.69
0.63
0.56
0.49

Variable: AVERAGE

Anderson-Darling Normality Test

A-Squared: 9.890
P-Value: 0.000
Mean 539.190
StDev 123.208
Variance 15180.1
Skew ness 1.89066
Kurtosis 3.24422
N 126
Minimum 402.29
1st Quartile 463.05
Median 510.51
3rd Quartile 572.98
Maximum 1012.63
95% Confidence Interval for Mu
517.47 560.91
95% Confidence Interval for Sigma
109.64 140.63
sa— . N— 95% Confidence Interval for Median
95% Confidence Interval for ian
o ~ont! v : 489.95 518.76
Figure 5.17
Weekly Average Closing Prices, CIB
LI
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T T T
10 20 30
T LBQ Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ
10.81 119.63 10 0.42 1.40 698.51 19 -0.00 -0.01 735.84 28 -0.12 -0.37 744.07
6.05 227.60 11 033 1.11 71422 20 -0.02 -0.07 735.90 29 -0.13 -0.40 746.67
4.55 324.86 12 026 0.86 723.89 21 -0.04 -0.12 736.12 30 -0.14 -0.44 749.83
3.66 409.10 13 0.21 0.67 730.04 22 -0.05 -0.16 736.51 31 -0.15 -0.48 753.63
3.08 482.10 14 0.15 0.49 733.32 23 -0.06 -0.19 737.05
2.66 545.42 15 0.10 0.33 734.84 24 -0.07 -0.22 737.80
2.31 598.95 16 0.07 0.22 735.55 25 -0.08 -0.25 738.79
1.98 641.74 17 0.04 0.13 735.80 26 -0.09 -0.29 740.13
1.67 674.39 18 0.02 0.05 735.84 27 -0.10 -0.33 741.89
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Figure 5.18

Weekly Average Closing Prices, CIB

1.0 -

0.8 -

0.6 -

0.4 —

0.2 - e
LCIS 0.0 1 . 1 1 I I I I I .
Q LI ——I— g o
o 04

-0.6

-0.8 -

1.0 -

T T T
10 20 30
Lag PAC T Lag PAC T Lag PAC T Lag PAC T
1 096 10.81 10 -0.01  -0.10 19 -0.03 -0.33 28 002 0.20
2 022 -248 11 -020 -2.24 20 -0.08 -0.94 29 000 0.05
3 004 046 12 014 158 21 002 020 30 -0.04 -0.44
4 024 -266 13 010 1.08 22 002 -0.17 31 003 037
5 0.13 1.44 14 -0.07 -0.84 23 -0.13 -1.48
6 -005 -0.58 15 007 075 24 003 035
7 -005 -0.52 16 010  1.10 25 -0.08 -0.90
8 -023 -261 17 005 052 26 -013 -142
9 -003 -0.29 18 001 015 27 008 085
Figure 5.19
Weekly Average Closing Prices, Kabo Company
for Clothes, Egypt, 01/02/1995 - 21/05/1997
250 —F————————-+ ———————= F-——————F-——————— Fo—————-— F-—————— =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
o | | | |
o 200 —+-----%-- |=——————= kel ple e r-————==- T==
O 1 1 1 1
A 1 1 1 1
o 1 1 1 1
1 1 1 1
2 ! ! ! !
'a
ke! | | i i
O 1 1 1
1 1 1 1
150 —f-------- oo R T e
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
| | | | |

H » P N

Date/Time & & & %@%" (ﬁ\@" &
¥ N < $® & N

5.5. Case Study



CHAPTERS: Bayesian Time Series: AR(1) Models

120

Figure 5.20

Descriptive Statistics: Daily Closing Prices, Kabo Company for
Clothes, Egypt, 01/02/1995 - 21/05/1997
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Figure 5.22
Weekly Average Daily Closing Prices, Kabo Company for Clothes
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Regarding above figures, the time series plot for all the data sets shows that none of
them is stationary. Such result is confirmed, as well, by the ACF charts, since the ACF
for all data sets is decaying slowly. Moreover, it is entirely evident as shown by figures
5.14, 5.18 and 5.22 that the PACF's of all data sets are cutting off after the first lag. This
result emphasizes that all data can be modeled by AR(1) processes, according to Box-

Jenkins criteria.

The concern now is to demonstrate the results of the previous section, §5.4, via
these three examples. Thus, following the procedure of section 5.4, the posterior
analysis was accomplished and compared over the three candidate priors; Jeffreys' prior,
g-prior and NC prior. For each data set, the posterior mean, the posterior variance and
the 95% highest posterior density region (HPDR) centered at the posterior mean are
evaluated with respect to the three proposed prior distributions. The results of such
posterior analysis are summarized through the following table (table 5.2). A matlab

script is designed to employ such calculations. It is attached in Appendix-IIL
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Table 5.2

Posterior Mean, Posterior Variance of ¢ and the 95% HPDRs centered at the
posterior mean by Prior Distribution for Different Data Sets

[a] Case Study-l: Weekly Average Closing Prices of Al-Watany Bank of Egypt (n=126)

Prior Postrior Mean Posterior Variance 95% HPDRs
Jeffreys' Prior 1.0026 0.0000 [ 0.9920, 1.0131]
g-Prior 1.0029 0.0000 [0.9814 ,1.0143]
NC Prior 1.0029 0.0000 [ 0.9914 , 1.0144]

[b] Case Study-ll: Weekly Average Closing Prices of CIB (n=126)

Prior Postrior Mean Posterior Variance 95% HPDRs
Jeffreys' Prior 1.0016 0.0000 [0.9919,1.0113]
g-Prior 1.0007 0.0000 [ 0.9904 ,1.0111]
NC Prior 1.0111 0.0001 [ 0.9830, 1.0182]

[c] Case Study-lll: Weekly Average Closing Prices of Kabo Company for Clothes (n=121)

Prior Postrior Mean Posterior Variance 95% HPDRs
Jeffreys' Prior 0.9989 0.0000 [ 0.9898 , 1.0080]
g-Prior 0.9990 0.0000 [ 0.9887 , 1.0094]
NC Prior 0.9991 0.0000 [ 0.9887 , 1.0094]

Examining the above results shows similar conclusions for the posterior analysis.
The performance of the three priors is almost the same since they all lead to the same
posterior mean values with very small posterior variance. The unique difference is
shown through the 95% HPDRs that supposed to give a probability 0.95 with shortest
interval. Therefore, the length of the computed interval is taken as a powerful tool to

compare the performance of the priors.

Regarding case study-I, table 5.2a shows that Jeffreys' prior and the NC prior gave
the shortest interval with length 0.02. In addition, g-prior leads to a bit similar value
with length 0.03. Concerning the posterior analysis of case-Il, table 5.2b shows similar
outcomes, since both g-prior and Jeffreys' prior guide to 95% HPDRs with shortest
length, 0.02. However, NC prior leads to posterior interval with length 0.04. On the
other hand, case-III gives entirely similar results, since all priors guide to interval with

length 0.02 (see table 5.2c¢).
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Chapter 6

Conclusion and Future Work,

This study is interested in the problem of prior selection in Bayesian analysis. To
achieve the goals of the study, several well known priors in the literature were discussed
and explained. The priors were divided according to their nature into informative priors

and noninformative priors.

Among noninformative priors the study considered, the Jeffreys' prior, the locally
uniform prior and the maximal data information prior. Whereas, among informative

priors, the study was interested in the natural conjugate prior and the g-prior.

For each prior, the basic idea was explained, the derivation was given, the main

properties were discussed and some theoretical examples were shown.

Some applications of the problem of prior selection were given. The posterior

analysis of the general linear model was employed using informative priors.

A comprehensive application to, the well known time series model, AR(1) was
done. The posterior analysis of AR(1) was employed. The three noninformative
techniques implied the same form except for Jeffreys' prior where it assumed the
independence rule. While, posterior analysis of AR(1), using informative approaches,
showed same results as for the GLM since AR(1) is often considered as a special case

of the GLM.

Simulation was used to check the efficiency of the priors to achieve a consistent
posterior distribution for the coefficient ¢ of the AR(1) models. Several simulation
studies were employed assuming different values for ¢ and different time series lengths.

Some criteria were used to indicate the goodness of the priors.

In the simulation study, for ¢ takes values within the stationary limits, all the priors

lead to consistent posterior. Nevertheless, for ¢ takes values outside the stationary

123



CHAPTERG6: Conclusion and Future Work 124

limits, the informative priors only were efficient. Furthermore, a recommendation was

given for the g-prior for long time series.

Finally, the study considered some real time series examples to illustrate the
process of prior selection in the posterior analysis in real life. All the time series
considered follow the AR(1) processes. Posterior analysis of the real data examples

showed similar results for all priors.

Future Work

This study can be extended in different aspects to enclose further points of future

research. In further details, the following points are some examples of future research:

1. The study can be extended to involve many other types of prior distributions that

may be informative or noninformative priors.

2. Moreover, the application of the prior selection problem can be extended to
further models such as; multivariate GLM, bivariate AR(1), bivariate
autoregressive models, multivariate AR(1) and multivariate autoregressive

models.

CHAPTERG6: Conclusion and Future Work
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Appendix-1

Forms for some standard distribution used in the thesis

I. Gamma-I: (Raiffa and Schlaifer, 1961, Part IlI, CH. 7, pp. 225)
A continuous random variable X is said to have a Gamma of type I distribution

with parameters (r,A) if the p.d.f. of X is defined by:

(Ax) ' exp{- Ax} 1

x\r,A) =
S, 2) T

, x=20,r,41>0

and ,ux:%, and o’ :Lz.
A

I1. Gamma-II: (Raiffa and Schlaifer, 1961, Part III, CH. 7, pp. 226)
A continuous random variable X is said to have a Gamma of type II distribution

with parameters (r,A) if the p.d.f. of X is defined by:

-1
f(x|r, A)= r(lr) (ﬂ;j (%} exp{— MTX}, x=20,r,A>0
2

1 2 2
and ,Ux—z, and O'x —E.

II1. Inverted-Gamma-1: (Raiffa and Schlaifer, 1961, Part III, CH. 7, pp. 227)

If a continuous random variable X has a Gamma-I distribution with parameters

(r,)), then the inverse transformation ¥ = X is said to have an Inverted-Gamma of

type I distribution with p.d.f. is defined by:

+
f()’|r,/1)=(yy),/1;—2))%yy}, y=0, r,A>0

and u =A0r-)"", r>1, and aj =2r-D2r-2), r>2.

IV.Inverted-Gamma-II: (Raiffa and Schlaifer, 1961, Part III, CH. 7, pp. 228)

A continuous random variable X is said to have an Inverted Gamma of type II

distribution with parameters (r,A) if the p.d.f. of X is defined by:

2 (7/17)% —(r e
f(x|r,/1)=ﬁx (r+1) exp{— 14)62}
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L_i)v

_ 2 27 2 _ 2 I 2
and ,Ux—l\/%Tr), r>1, and O'x—/1 —r_2 qu, r>2.
2

V. Univariate t Distribution: (Raiffa and Schlaifer, 1961, Part IlI, CH. 7, pp. 232)

A continuous random variable X is said to have a t distribution, with v degrees of

freedom, location # and precision p, if the p.d.f. of X is defined by:

—(v+1)

% PAY 2
f(x| 1L, pV)= p (1+ p(x .U)
14 B( ) 4

and 4_=pand o’ =$p_l

, X, Me Rand p,v >0,

D=

v
>2

Q=

v >2, where u is the location.

VI. Multivariate t Distribution: (Raiffa and Schlaifer, 1961, Part IlI, CH. 7, pp. 256)
Let X be a kxI real random vector, then X is said to have a multivariate t
distribution, with v degrees of freedom, location k-vector u and positive definite
precision matrix P, if the p.d.f. of X is defined by:

1 , -(v+k)
P2 X-u) P(X- ’
s

, X,ue R¥ andv >0,
14
2

and u, =pand V(X):ﬁP‘1 V>2.

VII. Normal Gamma-I: (Broamling, 1980, App., pp. 442)

Let X be a real random variable and Y a positive random variable, then X and Y

are said to have a Normal Gamma of type I if the density of X and Y is:
A

y) T expi—Ayix (27 _%(y)%exp iy(x—,u)z where x,t€ Randr, 4,y >0.
) et (20 2
such that x|y~ Normal (z, y) and y ~ Gamma-1I(r, A).

1(x, )| 7,7, 2) =

VIII. Normal Inverted-Gamma-II:

Let X be a real random variable and Y a positive random variable, then X and Y

are said to have a Normal Inverted Gamma of type II if the density of X and Y is:

2( 4 )% o 1
l(x,y|ﬂ,f,r,ﬂ)=%y (r+D exp{—”%yz}x (27)2 » lexp{—fyz(x—#)z},
2

such that x| y ~ Normal (, y) and y ~Inverted Gamma-1II(r, 1), Where x,ue Randr, 4,y > 0.
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A Matlab script to simulate from AR(1) for eliciting a reasonable

prior distribution

o°

Script M-file for the application part of MS.c. |

o\

Thesis Title: On the Prior Selection in Bayesian Analysis |

o°

Created By: Niveen El-Zayat |

o\°

First Created Date: 28 Jan. 2007 - 9:00 pm |

o°

Last Updated Date: 17 April 2007 - 10:15 am |

cd('D:\Yarab\Thesis Work\Computer Part')
clear
clc

close all

prompt={'Enter the Sample Size (T):','Enter the Number of Simulated Samples
(N)y:', ...

'Enter White Noise Variance (Sigma”~2):', 'Enter AR(1l) Coefficient (Phi):', ...
'Set the initial value of y0 as:'};
name="'Input for Parameters of AR(1l) Model';
numlines=1;
defaultanswer={'700"', '500"','1"',"'.5','0"'};
Entryl=inputdlg(prompt, name, numlines,defaultanswer);
T=str2num(Entryl{1l});
N=str2num(Entryl{2});
Sigm_Sg=str2num(Entryl{3});
phi=str2num(Entryl{4});
yO0=str2num(Entryl{5});
smpl_length={'30"','50"','100"','200"','500"};
Entry2=1listdlg('name', 'Input for Sample Lengths', 'promptstring', ...
'Enter Sample Length Values','liststring', smpl_length);
for i=l:length(Entry2)
n_length(i)=str2num(smpl_length{Entry2(i)});
end
% TrSmpl=[.2 .2 .3 .2 .1];
TrSmpl=[.1 .1 .1 .1 .17];
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F o +
% [2]- Data Generation from AR(1l) Process |
F o +

state the initial seed of simulation from Normal dist.

o\°

randn('state',0);
e=sqgrt (Sigm_Sq) *wgn(T,N,2);

% set the 1st raw of data equal to the initial values

y (1, :)=yO*ones (1,N);

X

% shift the white noise matrix 1 raw down that correspond the initial values
e=[zeros(1l,N);e]l;
% Generating the AR(1l) Process
for i=1:T
yv(i+l, :)=phi*y (i, :)+e(i+1,:);
end
% Defining the intial values to be the first valye of y's(to be used in
% posterior analysis for stationary AR(1)
Y0=y(2,:);
% supressing the first 200 values to eliminate initial assumption
v(1:200,:)=[1;
e +
% [3]- Posterior Analysis to AR(1l)- Using NonInformative Prior|
F e +
% [3-1]- General Case (Jeffreys' Prior) |
B +

for i=l:length(n_length)

B_J(i,:)=(sum(y(l:n_length(i),:).*y(2:n_length(i)+1,:)))./sum(y(l:n_length(i),:)."2

)i
B_rep=repmat (B_J(i, :),n_length(i),1);

VB_J(i,:)=(sum((y(2:n_length(i)+1,:)-
B_rep.*y(l:n_length(i),:))."2))./((n_length(i)-3)...

*sum(y(l:n_length(i),:)."2));

end

if n_length<=30 % tabulated value for t-dist
BU=B_J+2.045*sqgrt (abs (VB_J)) ;
BL=B_J-2.045*sqgrt (abs (VB_J)) ;

else % tabulated value for Normal-dist
BU=B_J+1.96*sqgrt (VB_J) ;
BL=B_J-1.96*sqrt (VB_J) ;

end

Jeff=double (phi>=BL&phi<=BU) ;

Jeff=100*sum(Jeff,2)/size(Jeff,2);
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F e +
% [2]- Posterior Analysis to AR(1l)- Using Informative Prior |
F e e +
% [2-1]- General Case (g-Prior) |
e +
% Estimation of Hyperparameters Using a Training Sample (35% of the Actual
% Sample)
for i=l:length(n_length)
n0(i)=floor(.1*n_length(i));
% g0 (i)=log(n_length(i)).”-3;
s g0 (i)=(n_length(i)"(-1/2));
% g0 (i)=(n_length(i)"(-1));
MuO (i, :)=(sum(y(1:n0(i),:).*y(2:n0(1)+1,:)))./sum(y(Ll:n0(i),:)."2);
% Posterior analysis besed on the remaining sample (n-n0)
n_nO(i)=n_length(i)-n0(i);
% g0 (i)=(n_n0(i)"(-1/2));
g0(1)=(n_n0(1).7(-1));
% g0(i)=log(n_n0(i))"-3
B(i,:)=(sum(y(n0(i)+1l:n_length(i),:).*y(n0(i)+2:n_length(i)+1,:)))./sum(y(n0(i)+1l:n
_length(i),:)."2);
B_g(i,:)=(B(i, :)+(g0(i).*Mul (i, :))).*((1+g0(i))."-1);
s=((g0 (i) .*(MuO(i,:)."2))~-
(B_g(i, :).”2).*(1+g0(i))) .*sum(y(n0(i)+1l:n_length(i), :)."2)+sum(y(n0+2:n_length(i)+
1,:).7%2);
gg=1+g0(1);
VB_g(i,:)=s./((n_n0(i)-2)*(gg.*sum(y(n0+1l:n_length(i),:)."2)));
end
if n_n0<=30 % tabulated value for t-dist
BU=B_g+2.045*sgrt (VB_g) ;
BL=B_g-2.045*sqgrt (VB_g) ;
else % tabulated value for Normal-dist
BU=B_g+1.96*sqgrt (abs (VB_g)) ;
BL=B_g-1.96*sqgrt (abs (VB_g)) ;
end
g_Prior=double (phi>=BL&phi<=BU) ;
g_Prior=100*sum(g_Prior,2)/size(g_Prior,2);
F e +
% [2]- Posterior Analysis to AR(1l)- Using Informative Prior |
I e e +

% [2-2]- General Case (Natural Conjugate Prior) |

¥ e +

o\°

Estimation of Hyperparameters Using a Training Sample (10%

of the Actual
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[

% Sample)
for i=l:length(n_length)
n0(i)=floor(.1*n_length(i));
aaa=mod (n0(i),2);
if aaa==
n0 (i)=n0(i)+1;
end
MuO (i, :)=(sum(y(1l:n0(i),:).*y(2:n0(i)+1,:)))./sum(y(l:n0(i),:)."2);
MuO_rep=repmat (Mul0 (i, :),n0(1i),1);
VO (i, :)=(sum((y(2:n0(i)+1,:)-MuO_rep.*y(1:n0(i),:))."2))./((n0(1)-3)...
*sum(y (1:n0(1i),:)."2));
s=sqrt ((sum((y(2:n0(1i)+1, :)-MulO_rep.*y(1:n0(1i),:))."2))./(n0(i)-1));

Esgm0O=(s.*sqgrt ((n0(i)-1)./2).*factorial ((n0(i)-1)/2-1.5))./(gamma ((n0 (i) -
1)./2));

Vsgm0O=((s.”2) .*((n0(1i)-1)./(n0(1)-3)))-Esgm0."2;
r0=3;
LmdaO=sqgrt ((r0-2)./r0) .* (VsgmO+Esgm0."2) ;

o\°

Posterior analysis besed on the remaining sample (n-n0)

n_nO(i)=n_length(i)-n0(i);

B_NC(i, :)=(sum(y(nO(i)+l:n_length(i),:).*y(n0(i)+2:n_length(i)+1,:))+Mul (i, :).*VO0 (1

, o)) /e

(sum(y (nO(i)+1l:n_length (i), :)."2)+V0(i,:));
VB_NC(i,:)=((r0.*Lmdal0.”2)+sum(y(n0(i)+2:n_length(i)+1,:).%2)—-...
(B_LNC(i,:)."2).*(sum(y(nO(i)+1l:n_length(i),:)."2)+V0(i,:))+...
((MuO(i,:).72).*v0(i,:)))./((n_n0(i)-2).*...
(sum(y (n0(i)+1:n_length(i),:)."2)+V0(i, :)));
end
if n_n0<=30 % tabulated value for t-dist
BU=B_NC+2.045*sqgrt (abs (VB_NC) ) ;
BL=B_NC-2.045*sqgrt (abs (VB_NC) ) ;
else % tabulated value for Normal-dist
BU=B_NC+1.96*sqgrt (abs (VB_NC) ) ;
BL=B_NC-1.96*sqgrt (abs (VB_NC) ) ;
end
NC_Prior=double (phi>=BL&phi<=BU) ;

NC_Prior=100*sum(NC_Prior, 2)/size (NC_Prior,2);

save Post_ARI1
phi
Sigm_Sq

Criterionl=[Jeff g_Prior NC_Prior]
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A Matlab script for obtaining the posterior analysis for some real
time series data sets fitted by AR(1) models

cd('D:\Yarab\Thesis Work\Computer Part')
clear
clc

close all

o°

y=xlsread ('KABO.x1ls"','D2:D122");

o\

y=xlsread('CMRBNK.x1ls', 'D2:D127");

o°

y=xlsread ('WATNY.x1ls', 'E2:E127");

o°

figure

o\

subplot (2,1,1)

o°

autocorr (y, 40)

o\

subplot (2,1, 2)

o°

parcorr (y,40)

o\

y0=y(1);
T=length(y)-1; % The 1lst observation will be taken as y0 so the whole

o°

sample used as data is of size (T-1)

% [1l]- Posterior Analysis to AR(1l)- Using NonInformative Prior|
g mm B et +
% [1-1]- General Case (Jeffreys' Prior) |

F oo +
B_J=(sum(y(1l:T).*y(2:T+1)))./sum(y(1l:T)."2);
B_rep=repmat (B_J, T, 1);
VB_J=(sum((y(2:T+1)-B_rep.*y(1:T))."2))./((v=-2)*sum(y(1:T)."2));

% The HDRs

if T<=30 % tabulated value for t-dist
BU1=B_J+2.045*sgrt (VB_J) ;
BL1=B_J-2.045*sgrt (VB_J) ;

else % tabulated value for Normal-dist
BU1=B_J+1.96*sgrt (VB_J) ;
BL1=B_J-1.96*sqgrt (VB_J) ;

end
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Jeff_pr=[B_J VB_J]

DHRs_Jeff=[BL1 BU1l]

% [2]- Posterior Analysis to AR(1l)- Using Informative Prior

B e f———————
$ [2-1]- General Case (g-Prior) |

¥ e +

o°

Estimation of Hyperparameters Using a Training Sample (10%

o\°

Sample)

n0=floor (.1*T);

% g0=log(n_length(i)) .”-3;

MuO=(sum(y (1:n0).*y (2:n0+1)))./sum(y(1:n0)."2);

% Posterior analysis besed on the remaining sample (n-n0)
n_n0=T-n0;

% g0=(n_n0"(-1/2));

g0=n_n0"-1;

% g0=log(n_n0)"-3

—+

—+

of the Actual

B=(sum(y (n0+1:T).*y (n0+2:T+1)))./sum(y (n0+1:T)."2);
B_g=(B+g0*Mu0) . * ((1+g0)."~-1);
s=((g0.*(Mu0.%2))-(B_g."2).*(1+g0)) .*sum(y (n0+1:T)."2)+sum(y (n0+2:T+1) ."2);
99=1+90;

VB_g=s./((n_n0-2)*(gg.*sum(y (n0+1:T)."2)));

% The HDRs

if n_n0<=30 % tabulated value for t-dist
BU2=B_g+2.045*sqrt (abs (VB_Qg) ) ;
BL2=B_g-2.045*sqgrt (abs (VB_g)) ;

else % tabulated value for Normal-dist
BU2=B_g+1.96*sqrt (abs (VB_g) ) ;
BL2=B_g-1.96*sqgrt (abs (VB_g) ) ;

end

g_pr=[B_g VB_g]

DHRs_g=[BL2 BU2]

% [2]- Posterior Analysis to AR(1l)- Using Informative Prior
§ e F———————

% [2-2]- General Case (Natural Conjugate Prior) |

5 - — — = —— — —— — —— +

o°

Estimation of Hyperparameters Using a Training Sample (10%

o\

Sample)

o\°

Estimation of Hyperparameters Using a Training Sample (10%

-+
|

—+

of the Actual

of the Actual
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[

% Sample)
nO0=floor (.1*T);
aaa=mod (n0, 2) ;
if aaa==
n0=n0+1;
end
MuO=(sum(y (1:n0).*y (2:n0+1)))./sum(y(1:n0)."2);
Mu0O_rep=repmat (Mu0,n0,1);
VO=(sum((y(2:n0+1)-MuO_rep.*y(1:n0))."2)) ./ ((n0-3)*sum(y(1l:n0)."2));
s=sqrt ((sum((y(2:n0+1)-MuO_rep.*y(1:n0))."2))./(n0-1));
EsgmO=(s.*sqgrt ((n0-1)./2).*factorial ((n0-1)/2-1.5)) ./ (gamma((n0-1)./2));
Vsgm0O=((s.”2).*((n0-1)./(n0-3)))-Esgm0."2;
r0=3;
LmdaO=sqgrt ((r0-2)./r0) .* (VsgmO+Esgm0."2) ;
% Posterior analysisi besed on the remaining sample (n-n0)
n_n0=T-n0;
B_NC=(sum(y(nO+1:T).*y (n0+2:T+1))+Mul.*V0) ./ (sum(y(n0+1:T)."2)+V0);
VB_NC=((r0*Lmda0"2)+sum(y (n0+2:T+1) ."2)-(B_NC."2) .* (sum(y (n0+1:T) ."2)+VO0)+...

((Mu072)*v0)) ./ ((n_n0-2) .* (sum(y (n0+1:T)."2)+V0));

% The HDRs

if n_n0<=30 % tabulated value for t-dist
BU3=B_NC+2.045*sqgrt (abs (VB_NC) ) ;
BL3=B_NC-2.045*sqgrt (abs (VB_NC) ) ;

else % tabulated value for Normal-dist
BU3=B_NC+1.96*sqgrt (abs (VB_NC) ) ;
BL3=B_NC-1.96*sqgrt (abs (VB_NC) ) ;

end

NC_pr=[B_NC VB_NC]

DHRs_NC=[BL3 BU3]

save Post_AR1l_CaseStudy
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