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Abstract  Measurements made on several outcomes for the same unit, implying multivariate longitudinal data, are very 
likely to be correlated. Therefore, fitting such a data structure can be quite challenging due to the high dimensioned 
correlations exist within and between outcomes over time. Moreover, an additional challenge is encountered in longitudinal 
studies due to premature withdrawal of the subjects from the study resulting in incomplete (missing) data. Incomplete data is 
more problematic when missing data mechanism is related to the unobserved outcomes implying what so-called 
non-ignorable missing data or missing not at random (MNAR). Obtaining valid estimation under non-ignorable assumption 
requires that the missing-data mechanism be modeled as a part of the estimation process. The multiple continuous 
outcome-based data model is introduced via the Gaussian multivariate linear mixed models while the missing-data 
mechanism is linked to the data model via the selection model such that the missing-data mechanism parameters are fitted 
using the multivariate logistic regression. This article proposes and develops the stochastic expectation-maximization (SEM) 
algorithm to fit MLMM in the presence of non-ignorable dropout. In the M-step maximizing likelihood function is 
implemented via a new proposed Quasi-Newton (QN) algorithm that is of EM type, while maximizing the multivariate 
logistic regression is implemented via Newton-Raphson (NR) algorithm. A simulation study is conducted to assess the 
performance of the proposed techniques. 

Keywords  Non-ignorable missing, Selection models, Multivariate linear mixed models, Stochastic EM algorithm, 
Newton-Raphson, Fisher-Scoring, Quasi-Newton 

 

1. Introduction 
Longitudinal studies are very common in many fields such 

as medicine, public health, psychology, biology and more. In 
the simplest design of univariate longitudinal data a single 
response is collected repeatedly over time, or possibly under 
changing experimental conditions, on each subject. A 
fundamental feature of longitudinal data is that the repeated 
measurements of the same subject tend to be highly 
correlated, and even more, such correlations often change 
over time resulting a complicated covariance structure 
(Diggle et al, 2002). In many applications it is common to 
measure a set of several responses, m, at each occasion for 
subjects which result in multivariate longitudinal data. The 
relationship among those outcomes is crucial. It requires 
addressing special methods of statistical analysis that can 
properly account for the intra-subject correlation as well as 
the cross-correlation between outcomes since ignoring such   
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association structure will lead to invalid inferences. 
Modeling repeated measures on multivariate continuous 
responses is often implemented via multivariate linear mixed 
models. The multivariate linear mixed models are more 
applicable in this area due their flexibility in allowing (i) 
unbalanced data where a number of repeated measures might 
differ within subjects per outcome, (ii) using different design 
matrix across responses, and (iii) modeling distinct and  
more complex covariance structures. For a comprehensive 
monograph of multivariate linear mixed models see for 
example, Demidenko(2004) and Kim and Tim (2007). 

Missing data are very common in longitudinal data studies. 
Dealing with missing data depends on the process that 
generates the missing values; the missing data mechanism 
(MDM). A general taxonomy of MDMs, originally, 
introduced by Rubin (1976) and later explained by Little and 
Rubin (2002), differ in terms of assumptions about whether 
missingness is related to observed and/or unobserved 
responses. When dropout mechanism does not affected by 
the neither observed nor unobserved response values, it is 
called missing completely at random (MCAR). Missing data 
is said to be missing at random (MAR) when the missingness 
depends on the observed responses. Finally, missing data is 
missing not at random (MNAR) when missingness depends 
on the unobserved response. Nevertheless, it might be 
necessary to accommodate such type of missingness in the 
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modeling process to reduce estimation biases (Little and 
Rubin, 2002).  

Likelihood-Based approach has been established in 
literature to be one of the most widely-used modern 
approaches of handling missing data. Parameter estimation 
has received a serious attention in the missing data literature. 
However, with non-ignorable assumption, such estimates 
cannot be obtained unless approaches are developed to 
model the missing data mechanism (Endres, 2010; Graham, 
2012). Therefore, a number of selection model have been 
proposed to model longitudinal data in the presence of 
missing values aiming to characterize the joint distribution of 
data and the probability of missingness (Stubbendick, 2003; 
Little and Rubin, 2002). Direct maximization of the 
likelihood function, in this case, is not feasible (Jasson,   
and Xihong, 2002). So, numerical and iterative computations 
are exceedingly desired. Three generic iterative approaches 
such as Newton-Raphson (NR), Fisher Scoring (FS), 
Quasi-Newton (QN) and Expectation-Maximization (EM). 
EM algorithm can be used to maximiza the likelihood 
function. The EM algorithm is a generic iterative approach to 
find the maximum likelihood estimates (MLEs) for the 
model parameters when there is missing data or when the 
model contains unobserved latent variables (Demidenko, 
2004). 

The multivariate linear mixed models (MLMM) have 
received more attention in literature particularly under 
non-ignorable MD. Reinsel (1982, 1984) considered fitting 
the MLMM by a closed form with complete and balanced 
data. While Shah et al. (1997) extended the work of Laird 
and Ware (1982) to the bivariate setting (𝑚=2) using the EM 
algorithm to obtain the estimates of the model parameters 
under unbalanced and ignorable missing data. Schafer and 
Yucel (2002) and later Yucel (2015) proposed a variant 
technique of EM algorithm again for estimating the MLMM 
with ignorable missing data. Their EM algorithm considers 
the fisher scoring procedure in the M-step which fastens the 
convergence. Under non-ignorable assumption Roy and Lin 
(2002) consider fitting the MLMM under non-ignorable 
assumption covering the missingness in covariates as well as 
the multiple responses. They assumed that the dropout 
process depends on the latent variable and applied the 
selection model in order to account for non-ignorable 
missing data. Luwanda and Mwambi (2016) considered 
fitting nonlinear mixed-effects models to fit the multivariate 
longitudinal data in the presence of non-ignorable dropout. 
They proposed the stochastic approximation EM (SAEM) 
algorithm and apply the proposed technique to estimate 
parameters characterising human immunodeficiency virus 
(HIV) disease dynamics. 

The aim of this article is to address statistical modeling of 
the multivariate longitudinal data with continuous responses 
via the Gaussian multivariate linear mixed models (MLMM) 
under non-ignorable incomplete data. The missing-data 
mechanism is linked to the data model via the selection 
model such that the missing-data mechanism parameters are 
fitted using the multivariate logistic regression. The article 

proposes a stochastic EM algorithm to estimate the 
parameters of the model. 

The paper is organized as follow. The Multivariate linear 
mixed model for multivariate longitudinal data is presented 
in Section 2. This section also presents the dropout model for 
multivariate longitudinal data and formulates the joint 
distribution of the dropout mechanism and multivariate 
longitudinal response in the form of the full likelihood 
function. Section 3 introduces the proposed method for 
estimating the multivariate linear mixed model parameters in 
the presence of non-ignorable dropout. The estimation 
process involves estimating the dropout parameters and the 
response model parameters. An SEM algorithm combined 
with Newton-Raphson approach is proposed to estimate the 
dropout parameters. Also, a new proposed Quasi-Newton 
algorithm that is of EM type to estimate the response model 
parameters. The requied equations for the estimation are 
derived. In section 4, simulation studies are conducted to 
evaluate the performance of the proposed technique. Finally, 
concluding remarks are provided in Section 5. 

2. Models and Likelihood Function 
In this section we introduce the used models; the 

multivariate linear mixed model and the dropout model. Also, 
the needed likelihood functions are defined.  
Multivariate linear mixed model (MLMM) 

Assume that the number of subjects are N, 𝑖 = 1,2, . . . ,𝑁 
and there are 𝑛𝑖 repeated measures on each subject. Also, 
assume that there are 𝑚  outcomes on each subject, 
𝑘 = 1,2, . . . ,𝑚. The reponses for the subject i are collected in 
the response matrix 𝐘𝑖 = [𝑦𝑖𝑗𝑘] . The 𝑦𝑖𝑗𝑘  denotes the 
measurement of the 𝑖th subject of the 𝑘th outcome at the 
𝑗th  occasion. Assume that 𝐘𝑖 = (𝐲𝑖1 𝐲𝑖2 . . . 𝐲𝑖𝑚)  is the 
𝑛𝑖 × 𝑚 response matrix of the 𝑖th  subject where each of 
𝐲𝑖𝑘(𝑘 = 1,2, . . . ,𝑚)  is the 𝑘th  response 𝑛𝑖 -vector 
measuremnets of subject 𝑖. It is very common that some 
subjects may withdraw from the study prematuraly which 
results in droput.  

The multivariate longitudinal data can be modeled using 
the multivariate linear mixed model (MLMM), where for the 
𝑖th subject the response is modeled as:  

𝐘𝑖 = 𝐗𝑖𝛽 + 𝐙𝑖𝐛𝑖 + 𝜀𝑖 ,     𝑖 = 1,2, . . . ,𝑁      (1) 
where 𝐗𝑖 is the 𝑛𝑖 × 𝑝 fixed between-subject design matrix, 
𝛽  is the 𝑝 × 𝑚  matrix of fixed effects assumed to be 
common for all subjects, 𝐙𝑖  is the 𝑛𝑖 × 𝑞  random 
within-subject design matrix, 𝐛𝑖  is the 𝑞 × 𝑚  matrix of 
random effects, and 𝜀𝑖  is the 𝑛𝑖 × 𝑚  matrix of the 
measurements errors associated with the response matrix 𝐘𝑖. 
The distributional assumptions that are often related to the 
MLMM are:  

  The 𝜀𝑖̃ = 𝑣𝑒𝑐(𝜀𝑖)~𝑁𝑛𝑖𝑚(𝟎𝑛𝑖𝑚,𝚺𝑖 = 𝚺⊗ 𝐈𝑛𝑖; the rows 
of 𝜀𝑖  are normally distributed with mean 𝟎  and 
𝑚 × 𝑚 unstructured covariance matrix 𝚺. The 𝑣𝑒𝑐 is 
the vectorized operator that stacks all columns of the 
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matrix 𝜀𝑖 vertically.  
  The random effects 𝐛̃𝑖 = 𝑣𝑒𝑐(𝐛𝑖)~𝑁𝑞𝑚(𝟎𝑞𝑚,𝚿) , 

where 𝚿 is 𝑞𝑚 × 𝑞𝑚 unstructured matrix. Moreover, 
𝐛𝑖 and 𝜀𝑖 are assumed to be independent.  

  The marginal distribution of 𝐘𝑖 has normal distribution 
with expectation 𝐸(𝐘𝑖) = 𝐗𝑖𝛽  and dispersion matrix 
𝐕𝑖 of dimension 𝑛𝑖𝑚 × 𝑛𝑖𝑚;  
𝐕𝑖 = (𝐼𝑚 ⊗ 𝐙𝐢) 𝚿 (𝐼𝑚 ⊗ 𝐙𝐢)′ + (𝚺⊗ 𝐈𝑛𝑖).     (2) 

The responses 𝐘𝑖  can be expressed as 𝐲�𝑖 = 𝑣𝑒𝑐(𝐘𝑖) 
where 𝐲�𝑖~𝑁𝑛𝑖𝑚(𝜇𝑖 = (𝐼𝑚 ⊗ 𝐗𝐢) 𝛽�,𝐕𝑖) , and can be 
modelled as:  

𝐲�𝑖 = (𝐼𝑚 ⊗ 𝐗𝐢) 𝛽� + (𝐼𝑚 ⊗ 𝐙𝐢) 𝐛̃𝑖 + 𝜀𝑖̃ ,        (3) 
where 𝑖 = 1,2, . . . ,𝑁, and 𝛽� = 𝑣𝑒𝑐(𝛽). The p.d.f. of 𝐲�𝑖  is 
given by  

𝑓𝐲�𝑖(𝐲�𝑖) = (2𝜋)−
𝑛𝑖𝑚
2 |𝐕𝑖|

−12𝑒−
1
2�[𝐲�𝑖−𝜇𝑖]′𝐕𝑖

−1[𝐲�𝑖−𝜇𝑖]�

= (2𝜋)−
𝑛𝑖𝑚
2 |𝐕𝑖|

−12𝑒tr�−
1
2[𝐘𝑖−𝐗𝑖𝛽]𝐕𝑖

−1[𝐘𝑖−𝐗𝑖𝛽]′�.
 (4) 

It can be verified that  

𝐲�𝑖|𝐛̃𝑖~𝑁𝑛𝑖𝑚�(𝐼𝑚 ⊗ 𝐗𝐢) 𝛽� + (𝐼𝑚 ⊗ 𝐙𝐢) 𝐛̃𝑖,𝚺𝑖�.    (5) 

The complete data likelihood function 
Given that the 𝑚  outcomes are fully observed, the 

complete-data likelihood function of the parameters, 
𝜃 = (𝛽,𝚿,𝚺), can be obtained as 

𝐿1(𝜃) = ∏  𝑁
𝑖=1  𝑓(𝐘𝑖|𝐛𝑖 ,𝛽,𝚺) × 𝑓(𝐛𝑖|𝚿)  

= ∏  𝑁
𝑖=1  𝑓(𝐘𝑖|𝛽,𝚺) × 𝑓(𝐛𝑖|𝚿)  

= ∏  𝑁
𝑖=1  𝑓(𝐘𝑖|𝜃).                   (6) 

The MLE of 𝜃  can be obtained by maximizing the 
likelihood function in Eq. (6). Note that this function is based 
on the marginal distribution function of the response 𝐘𝑖 in 
the absence of the random effects. The random effects can be 
considered as nuisance parameters as long as the major 
interest is on the variance structure introduced by (𝚺,𝚿). 
Hence the log-likelihood function, based on Eq. (4) for the 
whole sample is  
ℓ(𝜃) = log�∏  𝑁

𝑖=1 𝑓𝐲�𝑖(𝐲�𝑖|𝜃)� = ∑  𝑁
𝑖=1 log 𝑓𝐲�𝑖(𝐲�𝑖|𝜃)

= −𝑚𝑀
2

log(2𝜋) − 1
2
∑  𝑁
𝑖=1 log|𝐕𝑖| −

1
2
∑  𝑁
𝑖=1 𝐫′𝑖𝐕𝑖−1𝐫𝑖 ,(7) 

where 𝜃 = (𝛽,𝚿,𝚺), is considered the parameter matrix of 
interest, 𝑀 = ∑  𝑁

𝑖=1 𝑛𝑖, while 𝐫𝑖 = 𝑣𝑒𝑐(𝐘𝑖 − 𝐗𝐢𝛽) = 𝐲�𝑖 −  
(𝐼𝑚 ⊗ 𝐗𝐢)𝛽�.  

A simpler form of the log-likelihood function is given by 
(Schafer and Yucel, 2002) 

ℓ(𝜃) = −𝑚𝑀
2

log(2𝜋) + 𝑀
2

log|𝚺−1| + 𝑁
2

log|𝚿−1|  

−1
2
∑  𝑁
𝑖=1 log|𝐔𝑖−1| − 1

2
∑  𝑁
𝑖=1 𝐫′𝑖𝐖𝑖𝐫𝑖 ,      (8) 

where 𝐔𝑖 = (𝚿−1 + (𝚺−1 ⊗ 𝐙𝑖′𝐙𝑖))−1, and 𝐖𝑖
−1 = 𝐕𝑖. 

We assume that the variance-covariance matrices, 𝚿 and 
𝚺, are unstructured. Moreover, we represent these matrices in 
terms of their precision form, 𝚿−1 and 𝚺−1. These forms 
are obtained as linear functions as. 

𝚿−1(𝜔𝑖𝑗) = ∑  𝑚𝑞
𝑖≥𝑗=1 𝜔𝑖𝑗𝜉𝑖𝑗 = ∑  ℎ

𝑙=1 𝜔𝑙
∗ 𝜉𝑙 ,  

𝚺−1(𝜎𝑖𝑗) = ∑  𝑚
𝑖≥𝑗=1 𝜎𝑖𝑗𝜉̇𝑖𝑗 = ∑  𝑔

𝑙=1 𝜎𝑙
∗ 𝜉̇𝑙 ,      (9) 

where [𝜔𝑙
∗] = 𝑣𝑒𝑐(𝜓−1) = (𝜔1∗ ,𝜔2

∗ , . . . ,𝜔ℎ
∗ )′  and       

ℎ = 𝑚𝑞(𝑚𝑞+1)
2

 is the number of diagnol and off-diagonal 
elements of 𝜓−1 . Thus [𝜔𝑙

∗] = [𝜔𝑖𝑗] , such that          
{(𝑖, 𝑗);  𝑖 ≥ 𝑗, 𝑙 = [(𝑗 − 1)(𝑚𝑞 − 𝑗/2) + 𝑖, 𝑖, 𝑗 = 1,2, . . . ,𝑚𝑞] } . 
Similarly, [𝜎𝑙∗] = 𝑣𝑒𝑐(𝚺−1) = (𝜎1∗,𝜎2∗, . . . ,𝜎𝑔∗)′ , 𝑔 =
𝑚(𝑚+1)

2
, and [𝜎𝑙∗] = [𝜎𝑖𝑗], such that {(𝑖, 𝑗);  𝑖 ≥ 𝑗, 𝑙 = [(𝑗 −

1)(𝑚− 𝑗/2) + 𝑖, 𝑖, 𝑗 = 1,2, . . . ,𝑚] } (Saber, 2008).  
Further, each of 𝜉𝑖𝑗  and 𝜉̇𝑖𝑗  are square matrices of order 
𝑚𝑞 and 𝑚, respectively, with one on the (𝑖, 𝑗)𝑡ℎ position 
and zero elsewhere. Hence, the response model parameter 
vector 𝜃 = (𝑣𝑒𝑐(𝛽)′ 𝜎1∗𝜎2∗. . .𝜎𝑔∗ 𝜔1∗𝜔2

∗ . . .𝜔ℎ
∗ )  and the total 

number of parameters is 𝑚𝑝 + 𝑔 + ℎ. 
Missing data model and likelihood function 

Assume that, for subject 𝑖, 𝐘𝑖 is subject to non-random 
dropout at a certain occasion 𝑑𝑖 > 1;  𝑖 = 1,2, . . . ,𝑁). The 
responses 𝐘𝑖  can be partitioned into two components; the 
observed part 𝐘𝑖o of dimension (𝑑𝑖 − 1) × 𝑚 and missing 
part 𝐘𝑖m  of dimension (𝑛𝑖 − 𝑑𝑖 + 1) × 𝑚 . Also, the 
response matrix using the 𝑣𝑒𝑐 operator can be partitioned 
into two parts; 𝐲�𝑖 = (𝐲�𝑖o 𝐲�𝑖m)′, where 𝐲�𝑖o = 𝑣𝑒𝑐(𝐘𝑖o), and 
𝐲�𝑖m = 𝑣𝑒𝑐(𝐘𝑖m) . Assume that the missing data indicator 
𝐑𝑖 = [𝑟𝑖𝑗𝑘] of dimension 𝑛𝑖 × 𝑚 where 𝑟𝑖𝑗𝑘 is defined as  

𝑟𝑖𝑗𝑘 = �
1        if 𝑦𝑖𝑗𝑘 is observed,
0          if 𝑦𝑖𝑗𝑘 is missing.

� 

For monotone missing data we can define 𝐑𝑖 = (𝟏 𝟎)′, 
where 𝟏 is the matrix of ones of dimension (𝑑𝑖 − 1) × 𝑚 
and 𝟎 is the matrix of zeros of dimension (𝑛𝑖 − 𝑑𝑖 + 1) ×
𝑚.  

The Diggle and Kenward (1994) model has been proposed 
for univariate longitudinal data setting. We extend this 
model to the multivariate longitudinal data of 𝑚 outcomes. 
Assume that the dropout of subject 𝑖  occurs at time 𝑡𝑑𝑖 , 
𝐇𝑖𝑑𝑖 = (𝐡𝑖𝑙𝐡𝑖2. . .𝐡𝑖𝑚)′ denotes the 𝑚 × [𝑑𝑖 − 1] matrix of 
observed responses history of the 𝑚  outcomes up to the 
time 𝑡𝑑𝑖 , where each of 𝐡𝑖𝑘 = (𝐲𝑖1𝑘𝐲𝑖2𝑘. . . 𝐲𝑖(𝑑𝑖−1)𝑘) 
corresponds the row vector of length 𝑑𝑖 − 1 of observed 
responses of 𝑘th  outcome. Diggle and Kenward (1994) 
modeled the probability of dropout in terms of the    
history 𝐇𝑖𝑗′  up to occasion 𝑗′  and the possibly missing 
current response, 𝐲𝑖𝑗′  as 𝑃𝑟(𝐷𝑖 = 𝑗′|𝐇𝑖𝑗′ ,𝐲𝑖𝑗′) = 
𝑃𝑖𝑗′(𝐇𝑖𝑗′ , 𝐲𝑖𝑑𝑖 ,𝜙), 𝑗′ = 2, . . . ,𝑛𝑖 + 1.  This probability is 
computed for each subject across all occasions as follows:  

𝑃𝑟�𝐷𝑖 = 𝑗 ′�𝐇𝑖𝑗 ′ ,𝐲𝑖𝑗 ′� = �
∏  𝑑𝑖−1
𝑗 ′=2 (1 − 𝐏𝑖𝑗 ′)] × 𝐏𝐢𝐝𝐢             𝑑𝑖 ≤ 𝑛𝑖

∏  𝑑𝑖−1
𝑗 ′=2 (1 − 𝐏𝑖𝑗 ′)] × 𝐏𝐢𝐝𝐢      𝑑𝑖 = 𝑛𝑖 + 1,

�, 

(10) 
where the logit transformation that is used to model that 
probability, 𝑃𝑖𝑗′ can be obtained by  

𝜂𝑖𝑗′ = logit(𝐏𝑖𝑗′) = log(
𝐏𝑖𝑗′

1−𝐏𝑖𝑗′
)

= 𝜙0 + 𝜙1𝐲𝑖𝑗′ + 𝜙2𝐇𝑖𝑗′.
   (11) 
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Hence, the dropout probability is obtained via the inverse 
of the logit transformation as:  

𝐏𝑖𝑗′ =
exp𝜂𝑖𝑗′

exp𝜂𝑖𝑗′+1
.              (12) 

The probability 𝐏𝐢𝐝𝐢   can be computed as  

𝐏𝐢𝐝𝐢 = 𝑃𝑟(𝐃𝑖 = 𝑑𝑖|𝐲𝑑𝑖) = 

∫  𝑃(𝐇𝑑𝑖 ,𝐲𝑖𝑑𝑖 ,𝜙)𝑓(𝐲𝑖𝑑𝑖|𝐇𝑑𝑖 ,𝜃)𝑑𝐲𝑖𝑑𝑖 ,     (13) 

where 𝑓(𝐲𝑖𝑑𝑖|𝐇𝑑𝑖 ,𝜃) is the conditional probability of the 
missing given the observed responses. Hence the integral in 
Eq. (13) can be approximated using Monte Carol expectation 
(Gad and Ahmed, 2006).  

The complete-data log-likelihood for the 𝑁 subjects can 
be given by  

ℓ𝐶(𝛾) = log 𝐋𝐶(𝛾) = log ∏  𝑁
𝑖=1 (𝑓(𝐘𝑖 ,𝐑𝑖|𝛾))

= log ∏  𝑁
𝑖=1 �𝑓(𝐘𝑖|𝜃) × 𝑓(𝐑𝑖|𝐘𝑖 ,𝜙)�,

  (14) 

where 𝛾 = (𝜃,𝜙) = (𝛽,𝚿,𝚺,𝜙) . Also, it can be 
re-expressed as  

ℓ𝐶(𝛾) = ℓ(𝜃) + ℓ(𝜙)             (15) 
The MLEs of the parameters 𝛾  can be obtained 

maximizing each of the two components in Eq. (15) 
separately. Direct maximization is not feasible because it 
requires multidimensional integration and maximization 
(Jason and Xihong, 2002). Numerical and iterative 
computations are exceedingly required. 

3. The Proposed SEM Approach 
Maximizion of the log-likelihood function can be carried 

using iterative approaches to obtain the maximum-likelihood 
estimates (MLEs) such as Newton-Raphson (NR), Fisher 
Scoring algorithm(FS), Quasi-Newton (QN) and 
Expectation-Maximization (EM). 
Expectation-Maximization algorithm proposed by Dempster 
et al. (1977). It overcomes the difficulties involved with 
obtaining MLEs in the presence of missing values. The EM 
algorithm generally contains of two main steps; an 
Expectation step (E-step) and a Maximization step (M-step). 
For more details see McLachlan and Krishnan (2008). The 
E-step is often difficult to be evaluated. Celuex (1985) 
proposes the SEM algorithm as an alternative to the EM by 
replacing the E-step by a simulation step (S-step). Gad and 
Ahmed (2006) proposed SEM algorithm to fit the univariate 
longitudinal data in the presence of non-ignorable dropout.  

In this article we propose an SEM algorithm to fit the 
multivariate linear mixed model for multivariate longitudinal 
data with non-ignorable dropout. The M-step is implemented 
via two sub-steps. In the first sub-step the Newton-Raphson 
algorithm is developed to obtain the MLEs of the dropout 
parameters 𝜙 . In the second sub-step a new type of 
Quasi-Newton algorithm is proposed to obtain the MLEs of 
the response parameter 𝜃. 
The S-Step (Simulation step) 

Let 𝐘𝑖m = (𝐲𝑖𝑑𝑖  | 𝐘𝑖
m+) denotes the missing components 

of the response matrix 𝐘𝑖 over the 𝑚 outcomes such that 
𝐲𝑖𝑑𝑖 = (𝐲𝑖𝑑𝑖1,𝐲𝑖𝑑𝑖2, . . . , 𝐲𝑖𝑑𝑖𝑚)′,  indicates the first 𝑚𝑖 × 1 
missing vector, while the second matrix of order 𝑚 × [𝑛𝑖 −
𝑑𝑖] is introduced by 𝐘𝑖m+ = (𝐲𝑖(𝑑𝑖+1),𝐲𝑖(𝑑𝑖+2), . . . , 𝐲𝑖(𝑛𝑖)). In 
this step (the S-step), we simulate 𝑚 -vector from 
𝑓(𝐲𝑖m|𝐲𝑖o,𝐑𝑖 ,𝜃(𝑡))  to represent the responses of the 𝑚 
outcomes at the time of dropout 𝑑𝑖 . This conditional 
disribution can be factorized, up to a constant of 
proportionality, as  
𝑓�𝐲𝑖m�𝐲𝑖o,𝐑𝑖 ,𝜃(𝑡)� ∝ �𝐲𝑖m�𝐲𝑖o,𝜃(𝑡)� × 𝑓�𝐑𝑖�𝐲𝑖 ,𝜙(𝑡)�. (16) 
This conditional distribution has no closed form, so direct 

simulation is not possible. Following the idea of Gad and 
Ahmed (2006), we suggest using an accept-reject procedure. 
A vector of length 𝑚  is simulated from 𝑓(𝐲𝑖m|𝐲𝑖o;𝜃(𝑡)) , 
then it is passed through the following accept-reject 
procedure; 
1.  Simulate a candidate 𝑚-vector 𝐲𝑑𝑖

∗ = (𝐲𝑑𝑖1
∗ 𝐲𝑑𝑖2

∗ . . . 𝐲𝑑𝑖𝑚
∗ )′, 

from the conditional distribution 𝑓(𝐲𝑖m|𝐲𝑖o;𝜃(𝑡)) which 
is 𝑚-multivariate normal distribution with parameters 
𝜇(𝑡)  and 𝛀(𝑡) ; the 𝑚 × 1  location vector and the 
𝑚 × 𝑚 dispersion matrix respectively, are given by  

𝜇(𝑡) = 𝜇𝑚
(𝑡) + 𝐕𝑚𝑜

(𝑡)(𝐕(𝑡))𝑜𝑜−1(𝐲𝑖o − 𝜇𝑜
(𝑡)),

𝛀(𝑡) = 𝐕𝑚𝑚
(𝑡) − 𝐕𝑚𝑜

(𝑡)(𝐕(𝑡))𝑜𝑜−1𝐕𝑜𝑚
(𝑡) ,

    (17) 

where (𝐕(𝑡))𝑜𝑜−1  is the variance matrix corresponds of the 
observed response matrix 𝐘𝑖o;  

(𝐕(𝑡))𝑜𝑜 = (𝐈𝑚 ⊗ 𝐙𝑖𝑜) 𝚿𝑜
(𝑡) (𝐈𝑚 ⊗ 𝐙′𝑖𝑜) + (𝚺𝑜

(𝑡) ⊗ 𝐈𝑛𝑖). 

2.  Compute the 𝑚-vector probability of dropout for the 
candidate vector 𝐲𝑑𝑖

∗  based on the dropout model 

logit[𝑃𝑟(𝐃𝑖 = 𝑑𝑖|𝐲𝑑𝑖
∗ ,𝐲𝑑𝑖−1,𝜙)] 

= 𝜙0
(𝑡) + 𝜙1

(𝑡)𝐲𝑑𝑖
∗ + 𝜙2

(𝑡)𝐲𝑑𝑖−1,        (18) 

where 𝐲𝑑𝑖−1  comprises the m-vector of responses at 
(𝑑𝑖 − 1); the occasion precedes the dropout occasion. The 
dropout probability vector, 𝐏𝑖 = (𝑃𝑖1,𝑃𝑖2, . . . ,𝑃𝑖𝑚)′ , is 
evaluated using the inverse transformation in Eq. (12). Then 
define 𝑃𝑖∗ =∥ 𝐏𝑖 ∥.  
3.  Simulate a random m-vector 𝐔  from uniform 

distribution over the interval [0,1], then take 𝐲𝑖m = 𝐲𝑑𝑖
∗  

if ∥ 𝐔 ∥≤ 𝑃𝑖∗, otherwise repeat step 1.  
We argue that the remaining missing values, following the 

first missing value, can be considered as missing at random. 
The M-Step (Maximization step) 

The joint probability function of the pseudo-observed data 
is  

𝑓�𝐲𝑖o,𝐲𝑖𝑑𝑖 ,𝐑𝑖�𝜃,𝜙� = 

∫  𝑓(𝐲𝑖o,𝐲𝑖𝑑𝑖 ,𝐘𝑖
m+|𝜃) 𝑓(𝐑𝑖|𝐲𝑖o,𝐲𝑖𝑑𝑖 ,𝐘𝑖

m+;𝜙)𝑑𝐘𝑖m+,  (19) 

where 𝐘𝑖m+ = 𝑣𝑒𝑐(𝐘𝑖m+) . Since 𝐑𝑖  does not depend on 
𝐘𝑖m+ by construction, the above equation can be simplified 
to  
𝑓(𝐲𝑖o,𝐲𝑖𝑑𝑖 ,𝐑𝑖|𝜃,𝜙) = 𝑓(𝐲𝑖o,𝐲𝑖𝑑𝑖|𝜃) 𝑓(𝐑𝑖|𝐲𝑖o,𝐲𝑖𝑑𝑖;𝜙). (20) 
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Thus the likelihood function for 𝜃  and 𝜙  will be any 
function of 𝜃  and 𝜙  proportional to 𝑓(𝐲𝑖o,𝐲𝑖𝑑𝑖 ,𝐑𝑖|𝜃,𝜙) . 
Moreover, based on the selection model, 𝜃  and 𝜙  are 
assumed to be distinct by definition. Hence, 
𝐿(𝜃,𝜙|𝐲𝑖o,𝐲𝑖𝑑𝑖 ,𝐑𝑖) is the same as likelihood 𝐿(𝜃|𝐲𝑖o,𝐲𝑖𝑑𝑖). 

The M-step of the algorithm comprises two substeps; the 
logistic step (M1-Step), and the normal step (M2-Step): 
The M1-Step (the logistic step): 

In this substep the MLEs of the dropout parameter, 𝜙(𝑡), 
is estimated numerically using Newton-Raphson approach. 
A step halfing algorithm is adopted to guarantee that the 
log-likelihood function increasing toward the maxima over 
the iterations. Moreover, in case when the Hessian matrix of 
𝜙(𝑡)  is not negative definite, the Newton direction 
[−𝐇−1(𝜙𝑡)𝐠(𝜙𝑡)]  may not point in an ascent direction. 
Therefore, a modification is adopted using the 
Levenberg-Marquardt technique, to ensure that the search 
direction is an ascent direction, hence the algorithm guides 
the process to the maximum point (Chong and Zak, 2013). 

The basic Newton-Raphson algorithm is used to obtain the 
MLEs for the dropout parameters of the multivariate logistic 
regression model. The algorithm seeks for optimizing, the 
log-likelihood function 

ℓ(𝜙) = ∑  𝑁−𝑁∗
𝑖=1 [∑  𝑑𝑖−1

𝑗=2 ln(1 − 𝐏𝑖𝑗)  

+ln 𝐏𝑖𝑑𝑖] + ∑  𝑁∗
𝑖=1 ∑  𝑛𝑖

𝑗=2 ln(1 − 𝐏𝑖𝑗),       (21) 

where 𝑁∗ refers to the subjects who complete the study (the 
completers), hence, 𝑁 − 𝑁∗ refers to dropout subjects. The 
probabilities vector 𝐏𝑖𝑗 is computed using Eq. (11) for any 
occasion 𝑗 = 1,2, . . . ,𝑑𝑖 − 1 , and form Eq. (18) at the 
occasion of dropout 𝑗 = 𝑑𝑖 . Implementing the algorithm 
needs computing the gradient 𝐠(𝜙) vector and the Hessian 
matrix 𝐇(𝜙). First, the elements of the gradient vector 𝐠(𝜙) 
are obtained as follow:  

∂ℓ(𝜙)
∂𝜙0

= ∑  𝑁−𝑁∗
𝑖=1 (∑  𝑑𝑖−1

𝑗=2 − 𝐏𝑖𝑗 + [1 − 𝐏𝑖𝑑𝑖]) +

∑  𝑁∗
𝑖=1 ∑  𝑛𝑖

𝑗=2 − 𝐏𝑖𝑗  
∂ℓ(𝜙)
∂𝜙1

= ∑  𝑁−𝑁∗
𝑖=1 (∑  𝑑𝑖−1

𝑗=2 − 𝐏𝑖𝑗𝐲𝐢𝐣 + [1 − 𝐏𝑖𝑑𝑖]𝐲𝐢𝐝𝐢
∗ ) +

∑  𝑁∗
𝑖=1 ∑  𝑛𝑖

𝑗=2 − 𝐏𝑖𝑗𝐲𝐢𝐣  
∂ℓ(𝜙)
∂𝜙2

=

∑  𝑁−𝑁∗
𝑖=1 (∑  𝑑𝑖−1

𝑗=2 − 𝐏𝑖𝑗𝐲𝐢(𝐣−𝟏) + [1 − 𝐏𝑖𝑑𝑖]𝐲𝐢(𝐝𝐢−𝟏)) +
∑  𝑁∗
𝑖=1 ∑  𝑛𝑖

𝑗=2 − 𝐏𝑖𝑗𝐲𝐢(𝐣−𝟏),  

where 𝐲𝐢𝐣 is the 𝑚-vector of the responses at occasion 𝑗. 
The elements of the Hessian matrix are obtained as follow:  

∂2ℓ(𝜙)
∂𝜙 ∂𝜙𝑇

= ∑  𝑁−𝑁∗
𝑖=1 (∑  𝑑𝑖−1

𝑗=2
−𝐏𝑖𝑗

2  (1−𝐏𝑖𝑗)

2𝐏𝑖𝑗−1
𝐘̇𝑖𝑗𝐘̇𝑖𝑗′ +

𝐏𝑑 (1−𝐏𝑑)2

2𝐏𝑑−1
𝐘̇𝑖𝑑𝐘̇𝑖𝑑′ )  

+∑  𝑁−𝑁∗
𝑖=1 (∑  𝑛𝑖

𝑗=2 𝐏𝑖𝑗
2 𝐘̇𝑖𝑗𝐘̇𝑖𝑗′ − [1 − 𝐏𝑖𝑑]2𝐘̇𝑖𝑑𝐘̇𝑖𝑑′ )  

+∑  𝑁∗
𝑖=1 ∑  𝑛𝑖

𝑗=2 (
−𝐏𝑖𝑗

2  (1−𝐏𝑖𝑗)

2𝐏𝑖𝑗−1
𝐘̇𝑖𝑗𝐘̇𝑖𝑗′ + 𝐏𝑖𝑗2 𝐘̇𝑖𝑑𝐘̇𝑖𝑑′ ),  

where 𝐘̇𝑖𝑗 = [𝟏 𝐲𝑖𝑗 𝐲𝑖(𝑗−1)]′ is the response matrix of order 
(𝑚 × 3).  

It is worth noting that at an initial value 𝜙0 that might be 
chosen at which the Hessian matrix 𝐇(𝜙) is not negative 
definite, the Levenberg-Marquardt modification of 
Newton’s algorithm will be adopted. That approach 
approximates 𝐇(𝜙)  with another matrix 𝐇𝑎 , such that 
𝐇𝑎 = 𝐇− 𝜇𝐼, where the scalar 𝜇 is chosen large enough 
such that 𝐇𝑎 is negative definite (Chong and Zak, 2013). 
The M2-Step (the normal step): 

In this substep the MLEs of the parameters, 𝜃(𝑡) =
�𝛽(𝑡),𝚿(𝑡),𝚺(𝑡)�, for the multivariate normal is estimated 
numerically using a new proposed approach of 
Quazi-Newton type. The proposed Quazi-Newton algorithm 
begins with initial values of 𝐇∗ with 𝐇0

∗ = 𝐐̈−1(𝜃0,𝜃0) , 
where 𝐐̈(𝜃0,𝜃0) is computed as  

𝐐̈(𝜃0,𝜃0) = ∂2𝐐(𝜃,𝜃(𝑡))
∂𝜃 ∂𝜃′

|𝜃=𝜃(𝑡)=𝜃0 ,         (22) 

where 𝜃0 is the initial values vector of the parameter 𝜃 and 
the function 𝐐(𝜃,𝜃(𝑡)) as in the EM algorithm. Generally, 
the algorithm proceeds as follows: 

1.  Initiate the algorithm with 𝜃 = 𝜃0, then compute the 
corresponding 𝐇0

∗  and 𝐠0, where 𝐠0 is the gradient 
of the observed log-likelihood function. 

2.  Compute the step direction vector 𝐝 = −𝐇∗𝐠, then 
use the line search algorithm to specify 𝛼  that 
maximizes ℓ(𝜃 + 𝛼𝐝) . The Golden-Section 
algorithm is adopted here to specify the single 
parameter 𝛼  that maximize ℓ(𝜃 + 𝛼𝐝)  along the 
search direction 𝐝 from the point 𝜃.  

3.  Set Δ𝜃 = 𝛼𝐝, and compute Δ𝐠 = 𝐠(𝜃 + Δ𝜃) − 𝐠.  
4.  Based on 𝐇∗,Δ𝜃, and Δ𝐠, Δ𝐇∗ can be evaluated as 

Δ𝐇∗ = (1 + Δ𝐠′𝐇𝑡
∗Δ𝐠

Δ𝐠′Δ𝜃
) Δ𝜃Δ𝜃

′

Δ𝐠′Δ𝜃
− Δ𝜃Δ𝐠′𝐇𝑡

∗+𝐇𝑡
∗Δ𝐠Δ𝜃′

Δ𝐠′Δ𝜃
.  

5.  Replace 𝜃  by 𝜃 + Δ𝜃 , 𝐠  by 𝐠 + Δ𝐠 , and 𝐇∗  by 
𝐇∗ + Δ𝐇∗ and return to step (2) or stop based on a 
stopping criterion. 

To implement the above algorithm, the quantities 
𝐐(𝜃,𝜃(𝑡)), 𝐠(𝜃), 𝐐̇(𝜃0,𝜃(𝑡)), and 𝐐̈(𝜃0,𝜃(𝑡)) are needed. 
Deviations of such quantities are obtained as follows. First, 
the EM-quantity, 𝐐(𝜃,𝜃(𝑡)) = 𝐸[ℓ𝐶|𝜃(𝑡),𝐘𝑖 o], can be easily 
deduced by taking the expectation of the log-likelihood of 
the complete-data given the observed responses 𝐘𝑖 o and the 
current values of the parameter vector 𝜃(𝑡). This function is 
given by  

𝐐(𝜃,𝜃(𝑡)) = −𝑚𝑀
2

log(2𝜋) + 𝑀
2

log|𝚺−1| + 𝑁
2

log|𝚿−1|  

−1
2
∑  𝑁
𝑖=1 log|𝐔𝑖−1| − 1

2
∑  𝑁
𝑖=1 tr(𝐖𝑖𝐓𝑖),    (23) 

where 𝐓𝑖 = 𝐸[vec(𝐘𝑖𝑐 − 𝐗𝑖𝛽)vec(𝐘𝑖𝑐 − 𝐗𝑖𝛽)′|𝜃(𝑡),𝐘𝑖 o] 
and 𝐘𝑖𝑐  indicates the complete-data response matrix. To 
compute this expectation, set 𝐘�𝑖𝑐 = vec(𝐘𝑖𝑐 − 𝐗𝑖𝛽),where 
𝐘�𝑖𝑐~𝑁𝑛𝑖𝑚(𝟎𝑛𝑖𝑚,𝐕𝑖 = 𝐖𝑖

−1) . Further the complete-data 
matrix, 𝐘𝑖𝑐 , is partitioned into [𝐘𝑖 m,𝐘𝑖 o] , similarly, 
𝐘�𝑖𝑐 = [𝐘�𝑖 m,𝐘�𝑖 o] . Based on axioms of conditional normal 
distribution, it can be easily shown that 
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𝐸[𝐘�𝑖𝑐|𝜃(𝑡),𝐘𝑖 o] = 𝐕21𝐕11−1 𝐘�𝑖 o, 
where 𝐕11 is the square submatrix of 𝐕𝑖 corresponding to 
the observed elements, and 𝐕21 is the rectangle sub-matrix 
of covariances between the missing and the observed 
elements. On the other hand, it also can be shown that  

𝐸[𝐘�𝑖𝑐 (𝐘�𝑖𝑐)𝑇|𝜃(𝑡),𝐘𝑖 o] 

=  �
𝐘�𝑖 o(𝐘�𝑖 o)𝑇 𝐘�𝑖 o(𝐘�𝑖 o)𝑇𝐕11−1 𝐕12
𝐕21𝐕11−1𝐘�𝑖 o(𝐘�𝑖 o)𝑇 𝐕22 + 𝐕21𝐕11−1(𝐘�𝑖 o(𝐘�𝑖 o)𝑇 − 𝐕11)𝐕11−1𝐕12

�, 

where 𝐕22 is the square submatrix of covariances between 
the missing elements. 

The gradient of the observed log-likelihood, 𝐠(𝜃) , is 
derived as 

∂ℓ(𝜃)
∂𝑣𝑒𝑐(𝛽)

= −(∑  𝑁
𝑖=1 𝐗̇𝑖′ 𝑊𝑖𝐗̇𝑖)vec(𝛽 − 𝛽�),  

∂ℓ(𝜃)
∂𝜔𝑘𝑠

=
1
2
∑  𝑁
𝑖=1 tr([ 𝚿− 𝐔𝑖 ]

∂𝜓−1

∂𝜔𝑘𝑠
− 𝐫′𝑖𝐖𝑖𝐙̇𝑖𝚿

∂𝜓−1

∂𝜔𝑘𝑠
𝚿𝐙̇′𝑖𝐖𝑖𝐫𝑖),  

∂ℓ(𝜃)
∂𝜎𝑙𝑡

= 1
2
∑  𝑁
𝑖=1 tr(𝑛𝑖𝚺

∂𝚺−1

∂𝜎𝑙𝑡
− 𝐔𝑖[

∂𝚺−1

∂𝜎𝑙𝑡
⊗ 𝐙′𝑖𝐙𝑖] −

𝐫′𝑖𝐖𝑖[𝚺
∂𝚺−1

∂𝜎𝑙𝑡
𝚺 ⊗ 𝐈𝑛𝑖]𝐖𝑖𝐫𝑖),  

where, vec(𝛽�) = (∑  𝑁
𝑖=1 𝐗̇𝑖′ 𝑊𝑖 𝐗̇𝑖)−1(∑  𝑁

𝑖=1 𝐗̇𝑖′ 𝑊𝑖vec(𝐘𝑖)) , 
𝐗̇𝑖 = (𝐈𝑚 ⊗ 𝐗𝑖) , and 𝐙̇𝑖 = (𝐈𝑚 ⊗ 𝐙𝑖) . Further, ∂𝜓

−1

∂𝜔𝑘𝑠
 and 

∂𝚺−1

∂𝜎𝑙𝑡
 are replaced with (2 − 𝛿𝑘𝑠)𝜉𝑘𝑠  and (2 − 𝛿𝑙𝑡)𝜉̇𝑙𝑡 , 

respectively, such that, the scalar 𝛿𝑘𝑠 which is intensively 
known as Kronecker delta, equals 1 when 𝑘 = 𝑠  and 0 
otherwise, where 𝑘 ≥ 𝑠 = 1,2, . . . ,𝑚𝑞 , while 𝑙 ≥ 𝑡 =
1,2, . . . ,𝑚. 

The second derivatives of the EM-𝑄 function are needed. 
The computation of the first and the second derivative of the 
EM-𝑄 function are 

∂𝐐(𝜃,𝜃(𝑡))
∂vec(𝛽)

= −(∑  𝑁
𝑖=1 𝐗̇𝑖′ 𝑊𝑖𝐗̇𝑖)vec(𝛽 − 𝛽̇),  

∂𝐐(𝜃,𝜃(𝑡))
∂𝜔𝑘𝑠

=
1
2
∑  𝑁
𝑖=1 tr([ 𝚿− 𝐔𝑖 ]

∂𝜓−1

∂𝜔𝑘𝑠
−𝐖𝑖𝐙̇𝑖𝚿

∂𝜓−1

∂𝜔𝑘𝑠
𝚿𝐙̇′𝑖𝐖𝑖𝐓𝑖),  

∂𝐐(𝜃,𝜃(𝑡))
∂𝜎𝑙𝑡

= 1
2
∑  𝑁
𝑖=1 tr(𝑛𝑖𝚺

∂𝚺−1

∂𝜎𝑙𝑡
− 𝐔𝑖[

∂𝚺−1

∂𝜎𝑙𝑡
⊗ 𝐙′𝑖𝐙𝑖]  −

𝐖𝑖[𝚺
∂𝚺−1

∂𝜎𝑙𝑡
𝚺 ⊗ 𝐈𝑛𝑖]𝐖𝑖𝐓𝑖),  

where vec(𝛽̇) = (∑  𝑁
𝑖=1 𝐗̇𝑖′ 𝑊𝑖 𝐗̇𝑖)−1(∑  𝑁

𝑖=1 𝐗̇𝑖′𝑊𝑖 𝐓̇𝑖)  and 
𝐓̇𝑖 = 𝐸[vec(𝐘𝑖𝑐)|𝜃,𝐘𝑖 o]. 

∂2𝐐(𝜃,𝜃(𝑡))
∂vec(𝛽)∂(vec(𝛽))′

= −∑  𝑁
𝑖=1 𝐗̇𝑖′ 𝑊𝑖 𝐗̇𝑖,  

∂2𝐐(𝜃,𝜃(𝑡))
∂𝜔𝑘𝑠 ∂(vec(𝛽))′

= ∂2𝐐(𝜃,𝜃(𝑡))
∂𝜎𝑙𝑡 ∂(vec(𝛽))′

= 0,  

∂2𝐐(𝜃,𝜃(𝑡))
∂𝜔𝑘′𝑠′ ∂𝜔𝑘𝑠

= −1
2
∑  𝑁
𝑖=1 tr([𝜓 ∂𝜓−1

∂𝜔𝑘′𝑠′
𝜓 ∂𝜓−1

∂𝜔𝑘𝑠
] −

[𝐔𝑖
∂𝜓−1

∂𝜔𝑘′𝑠′
𝐔𝑖

∂𝜓−1

∂𝜔𝑘𝑠
]  

+2𝐖𝑖𝐙̇𝑖𝚿
∂𝜓−1

∂𝜔𝑘′𝑠′
𝚿𝐙′̇ 𝑖𝐖𝑖𝐙̇𝑖𝚿

∂𝜓−1

∂𝜔𝑘𝑠
𝚿𝐙′̇ 𝑖𝐖𝑖𝐓𝑖  

−2𝐖𝑖𝐙̇𝑖𝚿
∂𝜓−1

∂𝜔𝑘′𝑠′
𝚿 ∂𝜓−1

∂𝜔𝑘𝑠
𝚿𝐙′̇ 𝑖𝐖𝑖𝐓𝑖)  

∂2𝐐(𝜃,𝜃(𝑡))
∂𝜔𝑘𝑠 ∂𝜎𝑙𝑡

= −1
2
∑  𝑁
𝑖=1 tr([−𝐔𝑖

∂𝜓−1

∂𝜔𝑘𝑠
𝐔𝑖(

∂𝚺−1

∂𝜎𝑙𝑡
⊗ 𝐙𝑖′𝐙𝑖)]  

+2𝐖𝑖𝐙̇𝑖𝚿
∂𝜓−1

∂𝜔𝑘𝑠
𝚿𝐙′̇ 𝑖𝐖𝑖(𝚺

∂𝚺−1

∂𝜎𝑙𝑡
𝚺⊗ 𝐈𝑛𝑖)𝐖𝑖𝐓𝑖) 

∂2𝐐(𝜃,𝜃(𝑡))
∂𝜎𝑙′𝑡′ ∂𝜎𝑙𝑡

= −1
2
∑  𝑁
𝑖=1 tr(𝑛𝑖𝚺

∂𝚺−1

∂𝜎𝑙′𝑡′
𝚺 ∂𝚺−1

∂𝜎𝑙𝑡
  

−𝐔𝑖(
∂𝚺−1

∂𝜎𝑙′𝑡′
⊗ 𝐙𝑖′𝐙𝑖)𝐔𝑖(

∂𝚺−1

∂𝜎𝑙𝑡
⊗ 𝐙𝑖′𝐙𝑖)  

+2𝐖𝑖(𝚺
∂𝚺−1

∂𝜎𝑙′𝑡′
𝚺 ⊗ 𝐈𝑛𝑖)𝐖𝑖(𝚺

∂𝚺−1

∂𝜎𝑙𝑡
𝚺 ⊗ 𝐈𝑛𝑖)𝐖𝑖𝐓𝑖  

−2𝐖𝑖(𝚺
∂𝚺−1

∂𝜎𝑙′𝑡′
𝚺 ∂𝚺−1

∂𝜎𝑙𝑡
𝚺 ⊗ 𝐈𝑛𝑖)𝐖𝑖𝐓𝑖),  

For a parameter 𝜃, the SEM estimates is taken as the mean 
of the sequence {𝜃(𝑡)} as  

𝜃� = 1
𝑇−𝑇0

∑  𝑇
𝑗=𝑇0+1 𝜃

(𝑗),            (24) 

where 𝑇 is the total number of SEM iterations while 𝑇0 is 
the length of burn-in period. 

In the above derivations of the gradient vector and the 
derivatives of the EM-Q function, the quantities; ∂𝜓

−1

∂𝜔𝑘𝑠
 and 

∂𝚺−1

∂𝜎𝑙𝑡
 are replaced with (1 − 0.5𝛿𝑘𝑠)[𝑒𝑘𝑒′𝑠 + 𝑒𝑠𝑒′𝑘]  and 

(1 − 0.5𝛿𝑙𝑡)[𝑒𝑙𝑒′𝑡 + 𝑒𝑡𝑒′𝑙], respectively. The scalar 𝛿𝑘𝑠  is 
Kronecker delta which equals 1 when 𝑘 = 𝑠  and 0 
otherwise, where 𝑘 ≥ 𝑠 = 1,2, . . . ,𝑚𝑞. Similarly the scalar 
𝛿𝑙𝑡 is defined for 𝑙 ≥ 𝑡 = 1,2, . . . ,𝑚. The vector 𝑒𝑘 is the 
basis vector of length 𝑚𝑞 with 𝑘𝑡ℎ element equals 1 and all 
other elements are zeros.  

4. Simulation Study 
The aim of this simulation is to evaluate the performance 

of the proposed approach. The evaluation criteria is the 
relative bias.  
Simulation Setting and data generation  

Two sample sizes were assumed; 𝑁1 = 25, and 𝑁2 = 50 
to generate data. The number of outcomes for each subject is 
assumed to be three outcomes; 𝑚 = 3. The number of time 
points is fixed at 10; 𝑛𝑖 = 10. The number of replications is 
chosen as 200. It is assumed that subjects are allocated to one 
of three treatments A, B, and C. Hence, there are a matrix of 
dimension 3 × 3 of fixed-effects 𝛽 of the three covariates 
across the three outcomes. The subject-specific design 
matrix is assumed to have two columns (𝑞 = 2); the random 
intercept and slope. Such that, the two subject-specific 
covariates (𝑧1𝑖 , 𝑧2𝑖) = (1 0) , for odd subject, and 
(𝑧1𝑖 , 𝑧2𝑖) = (1 1), for even subjects. Also the random design 
matrix 𝐙𝑖  is assumed to be time-invariant. Consequently, 
the individual level matrix of random-effect parameters is 𝐛𝑖 
is of order (2 × 3) . It represents the parameters of 
random-effects across outcomes. This matrix is generated for 
each subject as 
𝑣𝑒𝑐(𝐛𝑖) = (𝑏01𝑖 𝑏02𝑖 𝑏03𝑖 𝑏11𝑖 𝑏12𝑖 𝑏13𝑖)′~𝑀𝑉𝑁6(𝟎,𝚿) , 
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where 𝚿 is of dimension 6 × 6 assumed to be unstructured 
matrix. The measurement errors associated with the three 
outcomes are assumed to be independent over the repeated 
measure having a common unstructured variance-covariance 
matrix 𝚺 of dimension 3 × 3. Hence, for each subject the 
matrix 𝜀𝑖 is generated from a matrix normal distribution of 
parameters 𝑀𝑉𝑁(10×3)(𝟎,𝚺𝑖 = 𝚺⊗ 𝐈10). The true value of 
the elements of the parameter matrices; 𝛽,𝚺, and 𝚿  are 
assumed as 

𝛽 = �
1 2 3
−3 −2 −1
2 3 4

� ,𝚺 = �
 3.5 0.2 −2.2
0.2 0.5 1.1
−2.2 1.1 4.7

� , and 

𝚿 =

⎣
⎢
⎢
⎢
⎢
⎡
7.2 −0.9 4.8 0.2 1 2.2
−0.9 5.3 −0.1 0.1 0.4 1.6
4.8 −0.1 6.3 2.4 0.1 1.7
0.2 0.1 2.4 5.1 −2.5 0.4
1.0 0.4 0.1 −2.5 3.6 0.9
2.2 1.6 1.7 0.4 0.9 3.4⎦

⎥
⎥
⎥
⎥
⎤

. 

The response matrix 𝐘𝑖 , for each subject, is generated 
from the model  

𝐘𝑖 = 𝐗𝑖𝛽 + 𝐙𝑖𝐛𝑖 + 𝜀𝑖 , 𝑖 = 1,2, . . . ,𝑁𝑠, 𝑠 = 1,2.   (25) 
The missing data model is 

logit(𝐏𝑖𝑗) = 𝜙0 + 𝜙1𝐲𝑖𝑗 + 𝜙2𝐲𝑖(𝑗−1),      (26) 

where each of 𝐏𝑖𝑗 ,𝐲𝑖𝑗 ,  and 𝐲𝑖(𝑗−1)  is a 3-column vector, 
indicates the probabilities of dropout at the occasion 𝑗 
associated to the vector of responses, the vector of responses 
that were planned to be measured at occasion j, and the 
vector of responses at the previous occasion (𝑗 − 1) , 
respectively. However, if the dropout occasion, for a subject 
𝑖, is specified as 𝑑𝑖, then the dropout probability is computed 
as a probability of the dropout time 𝐷𝑖  at all possible 
occasion as follow  

𝑃𝑟(𝐷𝑖) = ([∏  𝑑𝑖−1
𝑗=2 (1 − 𝐏𝑖𝑗)] × 𝐏𝐢𝐝𝐢)𝐼(𝐷𝑖)[𝑑𝑖≤10]  

+(∏  10
𝑗=2 (1 − 𝐏𝑖𝑗))𝐼(𝐷𝑖)[𝑑𝑖=11].  

For each subject, the response matrix generated in the 
previous step is exposed to a non-random dropping process 
on the occasion level. Precisely, at occasion 𝑗 , after the 
baseline (𝑗 ≥ 2), the response vector 𝐲𝑖𝑗 has been checked 
to be whether retained or dropped as follow:  

1.  The initial values for the parameter vector of logistic 
dropout model is assumed to be  
𝜙 = [−0.4 2.4 − 2.7].  

2.  The probability vector 𝑃𝑖𝑗 is computed based on Eq. 
(26).  

3.  A random variable 𝑈 is generated from uniform (0,1).  
4.  The response vector 𝐲𝑖𝑗  is dropped if ∥ 𝑃𝑖 ∥≥ 𝑈 , 

otherwise it is retained.  
Simulation Results  

The proposed approach introduced has been applied to 
data. For each of the two maximization steps the stopping 
criterion that is suggested in Demidenko (2004) is used. 
Precisely, the iteration will be terminated if the norm value 
of the absolute difference of two successive values of the 
gradient vector at fixed parameter values is less that 0.0001. 

To accelerate the algorithm the study adopted the 
Levenberg-Marquardt technique to modify each of the 
Hessian matrix of the dropout parameters and the second 
derivative matrix of the Q function of the model precision 
parameters, to be negative definite. The SEM algorithm is 
iterated for 500 iterations with a burn-in period of 250 
iterations. The MLEs for the parameters were taken as the 
averages of the last 250 iterations. The performance of the 
proposed approach is evaluated via the relative bias (RB) of 
its obtained MLEs, which was computed as follow:  

𝑅𝐵(𝜃�) = |𝜃�−𝜃|
|𝜃|

 ×  100.  

The parameter estimates are displayed in Table (1) for 
𝑁 =25 and Table (2) for 𝑁 =50.  

Table (1).  Parameter estimates for N = 25 

Parameter True Values Estimates Relative Bias (%) 

𝛽01 1.0 1.3 30.7 

𝛽11 -3.0 -2.4 21.0 

𝛽21 2.0 2.1 3.2 

𝛽02 2.0 2.3 13.4 

𝛽12 -2.0 -1.1 44.1 

𝛽22 3.0 3.0 1.0 

𝛽03 3.0 3.6 21.0 

𝛽13 -1.0 -0.6 42.1 

𝛽23 4.0 3.9 1.9 

𝜙0 -0.4 -0.5 17.3 

𝜙1 2.5 2.5 0.9 

𝜙2 -2.7 -2.7 0.9 

Table (2).  Parameter estimates for N = 50 

Parameter True Values Estimates Relative Bias (%) 

𝛽01 1.0 0.6 42.6 

𝛽11 -3.0 -3.1 2.6 

𝛽21 2.0 2.5 27.0 

𝛽02 2.0 1.8 9.7 

𝛽12 -2.0 -1.9 7.3 

𝛽22 3.0 3.5 16.7 

𝛽03 3.0 2.9 1.8 

𝛽13 -1.0 -1.3 27.2 

𝛽23 4.0 4.0 0.8 

𝜙0 -0.4 -0.4 1.9 

𝜙1 2.5 2.6 2.0 

𝜙2 -2.7 -2.8 2.0 

The results show similar performance for the dropout 
parameter estimates based on the two settings of sample 
sizes. However, the estimates of the intercept parameter (𝛽01) 
of the first outcome show maximum bias in both tables 
(30.7%, and 42.6%). For sample size 𝑁 =25, the estimate of 
the effect of the first treatment on the second and third 
outcomes show somewhat large bias (44.1%, and 42.1% 
receptively). Generally, the second table show less bias for 
most parameters (except for the estimate of the first 
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intercept). It almost does not exceed 27.0% approximately. 
Thus, the proposed approach show higher performance with 
large sample sizes. 

5. Conclusions and Future Research 
The study introduces a new estimating approach for 

modeling multiple outcomes longitudinal data under the 
multivariate linear mixed model (MLMM) in the presence of 
non-ignorable missingness. The missing pattern was 
assumed to be monotone, such that the 𝑚 outcomes have the 
same pattern of dropout, while the covariates were assumed 
to be fully observed. To obtain valid estimates of the model 
parameters, the study incorporates the model of missing data 
into the estimation process via the logit selection model. The 
SEM algorithm is used as estimation approach. The S-Step 
of the algorithm was implemented via accept-reject principle 
for simulating the 𝑚 -vector of outcomes at the dropout 
occasion from the specified distribution. The algorithm 
suggested two maximization steps; M1-Step to maximize the 
likelihood function of the dropout parameters of the 
multivariate logistic model, and M2-Step to maximize the 
likelihood function of the response model parameters. The 
study proposed a novel algorithm to implement the second 
maximization which is a new form of Quasi-Newton 
algorithm that incorporates EM-related quantity which is the 
Q function. The resulted proposed approach is a QN of 
EM-type.  

The proposed approach in efficient in at least major two 
respects. It suggested using a new version of Quasi-Newton 
algorithm that embedded with some EM quantities. It takes 
the advantage of the EM algorithm in handling incomplete 
data by augmenting the missing and the observed 
observation to produce better estimates. However, it avoids 
complicated computation of the EM algorithm due to its 
iterating on the E-step which is infeasible with models with 
multi-parameters. So, it suggested computing the matrix of 
the second derivatives of the 𝑄 function with respect to the 
current guess of the precision parameters only once to 
initiate the basic Quasi-Newton algorithm.  

Some possible extensions to the current study are 
recommended for further investigation. The current study 
could be extended assuming the intermittent pattern. 
Consequently, different likelihood function for the missing 
data mechanism parameters should be derived to fit such 
pattern. Moreover, it is very practically to violate the 
assumption that all outcomes have the same pattern of 
missingness. Violating such assumption will cause a 
considerable modification in the computation of the 𝑄 
function. One further extension is to admit possible missing 
covariates. This will motivate incorporating missing data 
mechanism of the covariates into the estimation process.  

It is very common to assume that the measurement errors 
within subjects are autocorrelated. It is possible to extend the 
variance structure of the errors from 𝚺𝑖 = 𝚺⊗ 𝐈𝑛𝑖  to be 
𝚺𝑖 = 𝚺⊗ 𝐑𝑖 , where the matrix 𝐑𝑖  can take a simple 

autoregressive pattern. However, this will imply estimating 
more parameters.  

The performance of the proposed approach is evaluated by 
a simulation study assuming three outcomes. The study is 
needed to be extended to check its applicability for a higher 
number of outcomes.  
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