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The behavior of a double layer arterial transversal section is investigated 

under the effect of radial pulsating pressure. The model considers that the 

radial pressure follows an exponential rise exponential decay biphasic 

periodic function, mathematically represented by a Fourier series, simulating 

the blood pressure on its inner wall. The dependence of the arterial strain 

response on viscoelastic properties of each layer is represented. The 

dissipated power and strain energy rate are computed. The stress-strain 

response is modeled for each layer. Furthermore, the storage and loss moduli 

are deduced for different set of viscoelastic parameters. 

 

Nomenclature 
l : section length 

E1, E2: elasticity modulus of inner (intima media) and outer (adventitia) 

layers 

R01 , R02 inner and outer radii 

K1`, K2`: spring constants of inner and outer layers 

B1` , B2`:friction coefficient of inner and outer layers  

ε1(t), ε2(t) : strain functions of inner and outer layers 

ρℓ1, ρℓ2: linear mass densities for inner and outer layers. 

B1, B2: normalized viscosity coefficients for inner and outer layers. 

K1,K2: normalized elasticity constants for inner and outer layers. 

T: periodic time of pressure pulse 

Po: pressure pulse amplitude 

P1(t), P2(t), P3(t) : blood pressure pulses acting on inner wall, interface and 

outer wall respectively.  

F1(t), F2(t), F3(t): normalized radial force components acting on inner wall, 

interface and outer wall respectively. 

є1(t), є2(t): strain function for inner and outer layers T1, T2: mechanical 

stresses acting on inner and outer wall  

I1, I2,  I3: equivalent time dependent electric currents   

V1, V2, V3:equivalent time dependent electric voltages   
q1, q2, q3 : equivalent time dependent electric charges                

Yeq : equivalent admittance of electric circuit. 

Req: equivalent resistance of electric circuit. 

Xeq: equivalent reactance of electric circuit. 

ediss: dissipated energy per pulse per meter. 

Pdiss: overall power loss.  

Pstr :overall stored power 
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Introduction   

   The study of the viscoelastic properties and response of the blood vessels have been one of the most important and 

biomechanical field of research for quite a while. This study represents an essential step towards controlling the 

efficiency of the blood pulse propagation process. The blood pulse propagates along the axis of the blood vessels, 

namely arteries, with a radial component pulsating on the inner wall. This propagation is similar to the propagation 

of waves in media. The arterial pulse is considered as a pressure wave travelling down the multilayer wall associated 

with a strain wave. The arterial strain response is the main issue here as it can be considered as an energy storage 

element that pushes the blood spurts forward down the artery. The rigidity of the arteries causes the pressure to be 

very high during systole and it would fall to low values during diastole. The blood flow as a result of this would be 

intermittent. Furthermore, the reduced distensibility of the arterial wall has a direct effect on the efficiency of the 

heart making its attack more likely. It is thus extremely important to simulate the pressure wave propagation 

especially its pulsating radial component. The problem is complicated not only because of the non-linearity in blood 

vessels elasticity, but because of the varying nature of the pulse wave as well. The anisotropic, multilayer and 

nonlinear viscoelastic properties of the arterial walls lead to certain mathematical complications when the radial 

dimensions are considered under the effect of pulsating pressure.  

Previous work was concerned with mechanical and mathematical simulation to produce stress-strain relation for 

different soft tissues [1]. Force-deformation relations for different layers of blood vessels were evaluated by 

studying the non- axial symmetric deformation of the vessel wall. Young’s modulus is given for the intima media 

and the adventitial layers of the thoracic artery [1]. The circumferential and axial stretch of abdominal arteries are 

given for different pressure values for both normal and hypertensive patients [2] employing clinical data. 

Mechanical properties are obtained by reliable experimental setups especially for different arterial layers, collagen 

and body tissues [3]. The degree of nonlinearity and blood vessel elasticity was studied by J. Zhou and Y. C. Fung 

[4] introducing a pseudo strain energy function and fitting experimental data to produce its parameters. Furthermore 

the relationship between wall shear stress and intimal thickening for the abdominal aorta was determined [5], using 

the laser photochromic dye tracer technique. 

   Imaging the mechanical properties of thrombosis, plaques and arterial wall can aid in the characterizing and 

understanding of the pathogenesis of the cardiovascular disease. Intravascular ultrasound is a widely used method of 

imaging the coronary arteries. Strain and elasticity images are generated to determine mechanical properties of 

arterial tissues [6-8]. T. Shishido et al. developed a new technique by applying minute vibrations at various 

frequencies to evaluate regional myocardial elastance and Young’s moduli at different regions [9]. Blood flow and 

pressure in the larger systemic arteries are modelled by structuring a tree attached to the terminal branches in which 

the root impedance is estimated using an approach based on a linearization of the viscous axisymmetric Navier-

Stokes equations [10].   

    In the present work, periodic pressure pulses are assumed to act in a radial direction on the inner wall of an 

arterial transversal section. The periodic pulses are represented mathematically by a Fourier series. These pulses are 

considered to fluctuate between maximum values of a fraction of the mean arterial pressure. They approximately 

follow the well-known shape of the arterial pulse. Though the in vivo reported arterial pulses show faster rise than 

decay [11], we assume here that they are symmetric pulses. Biaxial symmetry of the artery is assumed as well. The 

radial pressure pulses are assumed to follow the heart beats with the same frequency. Some of the reported values 

concerning mechanical properties of arteries [1], [2], [11] are adopted. An R-L-C double loop circuit is proposed to 

simulate the double layer arterial wall. The flow of electric charge in the circuit is analogous to the strain 

fluctuations, the input voltage to the radial pressure pulses and the current is the pulse velocity. Parameters required 

to implement the mathematical model at hand are changed in appropriate ranges to show arterial stiffness, pulse 

damping, variation of the elasticity constant. Power dissipated and that stored are also computed.          

 

The Model 

   A simplified model, introduced earlier [12], simulates the viscoelastic behaviour of a single layer blood vessel in 

response of the blood pulses acting in a radial direction on its inner wall. The proposed double layer arterial section 

is mechanically modelled as the spring-dash pot circuit shown in Fig.1 

   An arterial section of length, l, is assumed to be a double layer viscoelastic cylindrical tube.  The inner layer is 

assumed to be the intima media layer with elasticity modulus, E1, while the outer one is the adventitial layer with E2 

. The inner radii of the two layers are R01 and R02 .The elastic behaviour of the arterial segment is represented by that 

of a spring with spring constants, K1`and K2`   while its viscous response is represented by that of a dash pot of 

friction coefficients B1` and B2` for the inner and outer layers respectively. 
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  The second degree differential equations that govern the strain functions, ε1(t) and ε2(t)  of both layers and the 

inertial forces on them are as follows: 
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 where B1=B1`/ρℓ1 , K1=K1`/ρℓ1, B2=B2`/ρℓ2 , K2=K2`/ρℓ2, are normalized viscosity coefficients and elasticity 

constants, to the linear mass densities, ρℓ1, ρℓ2  for inner and outer layers respectively.  

F1(t) and F2(t) are defined as the normalized radial components of the force acting on inner and outer layers 

respectively. These forces are generated due to radial blood pressure pulses, P1(t), pulsating on the inner layer  

producing successive pulses P2(t), on the interface between the layers. Hence: 

)(
1

tF =2π R01 / ρℓ1×P1(t)          

)(
2

tF =2π R02 / ρℓ2 ×P2(t)                                                                        (2) 

 

Fig.1. Double layer mechanical model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematical Analysis 

 

   Starting with the mathematical representation of pressure, P1 (t), assuming it takes the waveform of a biphasic 

exponential rise exponential decay periodic function, is given below:  
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 The proposed model assumes the same time interval, T, for the rise and decay pulse components and hence equal 

decay constants.  It is assumed that the pulses fluctuate between equal values ±Po . 

A Fourier series is deduced to represent P1(t). The coefficients of the Fourier series, produced by integration on the 

two time intervals given in Eq.(3), give a final form of:  
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  Fig. (2) shows the pressure periodic waveform. The maximum value P0, is assumed to be a 10% of the mean arterial 

pressure in adults. 

 
                          

 

 An equivalent electric model, is introduced as a double loop R-L-C circuit to be analogous to the mechanical model 

above. Analogy between the mechanical system and the equivalent electrical circuit is shown in appendix 1. We 

should note that the stress on each layer is the difference in pressures on the bounding interfaces. Thus the stress on 

the inner layer, T1, is difference in pressure (P1-P2) and the stress, T2, on the outer layer is (P2-P3) where P1 is the 

pressure on the inner wall, P2 on the interface between the two layers and P3 is that on the outer wall. 

 

Consequently, the strain is calculated as:      

                                                                                є1(t) = q1- q2 

є2(t) = q2 -q3                                        (5) 

   where q1, q2 and q3 are the equivalent time dependent electric charges in analogous circuit.               

        Since P1, P2 and P3 are analogous to V1, V2 and V3, thus we can deduce the involved quantities in the s-domain 

as follows: 

)(1)()(1 sVseqYsI                        (6) 

where Yeq represents the total admittance of the two circuit section. 
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Furthermore, the equivalent resistance, Req, can be introduced as the impeadance component responsible for the 

dissipated energy per pulse per meter, ediss. Whereas the equivalent reactance, Xeq, is the impeadance component 

responsible for the stored energy per pulse per meter, est . These can be deduced as follows:   
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  Results 

     The stress and the strain waveform for each layer is produced by Eqs.(5-7). The strain pulses follow those of the 

applied radial pressure having the same frequency with a slight time delay. They fluctuate between maximum 

minimum values of ± є 0.  

    The strain response is calculated as the difference between strains of boundary interfaces. The computed values 

are represented graphically for normal viscoelastic wall performance. Table1 shows the results of three computer 

runs using three different sets of properties. The periodic time, T, for one pressure pulse is 1s while P0 is 1.6 kPa. 

The first parameter set, set1, simulates normal performance with elasticity constants similar to those of the intima 

media and advetitia layers of a real arterial section.   

(4) 

Fig. 2. Rise and fall of the radial pressure in Pa 

P (Pa) 
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ρℓ1, ρℓ2 are assumed to be 25g/m and 12g/m respectively.  Whereas B1, B2 are adjusted by computation to be 0.4s
-1

 

and 0.417s
-1

 respectively.  

  Figs. (3a, 3b, 4a, 4b) show the complex stress-strain response for the inner layer, intima media. Whereas  

Figs. (5a, 5b, 6a, 6b) show the complex stress-strain response for the outer layer, adventitia. The latter show higher 

elastic response (about 3%) than the former layer. 

 

                 Fig.3a                                                                                                   Fig.3b   

The stress waveform acting on the inner layer: a) real and b) imaginary components (kPa) vs. time (s) 
T1r 

 
T1i 

                     Fig.4a                                                                                                         Fig.4b   

         The strain waveform acting on the inner layer: a) real and b) imaginary components vs. time 

(s)                                                 є 1r ×10
-5

 є 1i ×10
-5

 

Fig.5a                                                                                                  Fig.5b 

The stress waveform acting on the second layer: a) real and b) imaginary components (kPa) vs. time (s) 

T2r 

T2i

 

Fig.6a                                                                                            Fig.6b    

The strain waveform acting on the second layer: a) real and b) imaginary components vs. time(s) 

Є 2r  Є 2i 
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Fig. (7a) represents the real component, Pdiss, corresponding to the overall power loss. Fig. (7b) represents the 

imaginary component, Pstr, the overall stored power calculated in mw/mm. The storage and loss moduli are 

computed, using assumed viscoelastic properties for each layer, given in Table 1. 

 

 

 
 

 

 

 

 

 

  

 

 

 

 

DISCUSSION: 

 

    Though the proposed model assumes linear stress-strain relationship and biaxial isotropy of the blood vessel, it still 

offers a new perception towards the understanding of the mechanism of arterial pulsating nature. The results show non 

identical strain responses for each layer corresponding to its elasticity constant. I computed the elasticity modulus as 

the quotient of the stress and the strain complex functions for each layer with average value tabulated, Table1. The 

mathematical model constructed herein is tested to give strain response for a stiffer arterial section, set 2, and a highly 

elastic one, set 3. The elasticity constants produced in this work are non-linear complex functions of time.  The real 

component represents the loss modulus and the imaginary represents the storage modulus. 
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APPENDIX 1 

The second order differential equations that govern the electrical charge Q with circuit components and input 

voltage V0 is:   

                               )(
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/)(02
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LCdt
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LtV
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tQd
         (9) 

By analogy between the two systems, mechanical and electrical, note that: 

         V0(t) ↔2π P1(t),  

         R/L ↔ B 

        1/LC ↔K ,    L ↔ ρℓ 


