Some Properties of Random Coefficients Regression Estimators

By
Mohamed Reda Sobhi Abonazel

Supervised by

Prof. Amany Mousa Mohamed
Professor of Applied Statistics
Dept. of Applied Statistics and Econometrics

Prof. Ahmed Hassen Youssef
Professor of Applied Statistics
Dept. of Applied Statistics and Econometrics

A Thesis Submitted to the Department of Applied Statistics and Econometrics
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Applied Statistics

2009
Cairo University
Institute of Statistical Studies and Research

Approval Sheet

Some Properties of Random Coefficients Regression Estimators

By
Mohamed Reda Sobhi Mohamed

A Thesis Submitted to the
Department of Applied Statistics and Econometrics
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Applied Statistics

Approved by the Examining Committee

Name Signature
Prof. Amany Mousa Mohamed
Prof. Sohair Fahmy Higazi
Prof. Sayed Mesheal Elsayed
Prof. Ahmed Hassen Youssef
Date: / / 2009
Contents

Glossary of Notation iii
Acknowledgments iv
Summary v

Chapter 1 Definitions and Notations 1

Chapter 2 Introduction to Random Coefficient Regression Models 14
 2.1 General Linear Model 15
 2.2 Random Coefficient Regression Models 23
 2.3 Literature Review for Random Coefficient Regression Models 27
 2.4 Applications for Random Coefficient Regression Models 30

Chapter 3 Estimation of Random Coefficient Regression Model in Panel Data 31
 3.1 Panel Data Model with Coefficients That Vary over Cross-Sectional Units 32
 3.2 Alternative Estimators for RCR Model 44
 3.3 Mixed Random Coefficient Regression Model in Panel Data 53

Chapter 4 Estimation of Time and Cross-Sectionally Varying Parameter Models 58
 4.1 The Hsiao Model 59
 4.2 The Swamy and Mehta Model 66
 4.3 Other Models with Time Varying Coefficients 77
 4.4 Applications for Time and Cross-Sectionally Varying Parameter Model 78
Chapter 5 Monte Carlo Simulation for Efficiency of Random Coefficient Regression Estimators

5.1 Simulation Study for RCR Estimators 80
5.2 Analysis of Results 84
5.3 Simulation Study for RCR, CP, and MG Estimators 95
5.4 Analysis of Results for Different Estimation Methods 99
5.5 Concluding Remarks 100

Appendix (A) Tables 103
Appendix (B) Figures 133
Appendix (C) Codes of Programs 140

References 144

Arabic Summary
Glossary of Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCOVA</td>
<td>Analysis of Covariance</td>
</tr>
<tr>
<td>AR</td>
<td>Autoregressive</td>
</tr>
<tr>
<td>ARMA</td>
<td>Autoregressive Moving Average</td>
</tr>
<tr>
<td>BLUE</td>
<td>Best Linear Unbiased Estimator</td>
</tr>
<tr>
<td>CP</td>
<td>Classical Pooling</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation Maximization</td>
</tr>
<tr>
<td>FGLS</td>
<td>Feasible Generalized Least Squares</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>GLS</td>
<td>Generalized Least Squares</td>
</tr>
<tr>
<td>MA</td>
<td>Moving Average</td>
</tr>
<tr>
<td>MG</td>
<td>Mean Group</td>
</tr>
<tr>
<td>Mixed RCR</td>
<td>Mixed Random Coefficient Regression</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimator</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MVUE</td>
<td>Minimum Variance Unbiased Estimator</td>
</tr>
<tr>
<td>OLS</td>
<td>Ordinary Least Squares</td>
</tr>
<tr>
<td>RCR</td>
<td>Random Coefficient Regression</td>
</tr>
<tr>
<td>REML</td>
<td>Restricted Maximum Likelihood</td>
</tr>
<tr>
<td>SSE</td>
<td>Sum Square Error</td>
</tr>
<tr>
<td>SUR</td>
<td>Seemingly Unrelated Regression</td>
</tr>
<tr>
<td>TSCS</td>
<td>Time-Series-Cross-Section</td>
</tr>
</tbody>
</table>
Acknowledgments

I’m greatly indebted to Prof. Amany Mousa, Professor of Applied Statistics, Dept. of Applied Statistics and Econometrics, Institute of Statistical Studies and Research for her valuable and generous assistance. My sincere thanks are also dedicated to her for this constructive guidance and warm encouragement throughout the preparation of this thesis.

Prof. Ahmed Hassen, Professor of Applied Statistics, Dept. of Applied Statistics and Econometrics, Institute of Statistical Studies and Research, deserves my deepest gratitude and appreciation for his kind supervision, continuous help and active discussions during the preparation of this thesis.

I would like to express my thanks to Prof. Sohair Higazi, Professor of Applied Statistics, Dept. of Applied Statistics, Tanta University for her generous acceptance of discussion of this thesis, and to Prof. Sayed Mesheal, Professor of Applied Statistics, Head of the Department of Applied Statistics and Econometrics, Institute of Statistical Studies and Research for his continuous help and his generous acceptance of discussion of this thesis.
Summary

An important assumption of the General Linear Model (GLM) is that the vector of regression coefficients is fixed vector, so the model will be called “Fixed Model”. But when we assumed that the regression coefficients are random variables, so the model will be called “Random Coefficient Regression (RCR) Model” examined by Swamy in several publications (Swamy 1970, 1971, 1973, and 1974). And if the regression coefficients in model contain both random and fixed coefficients, so the model will be called “Mixed Random Coefficient Regression (Mixed RCR) model”.

In this thesis, we studied the properties of RCR and Mixed RCR models. And also we studied the Swamy’s estimator (RCR estimator) for RCR model in panel data, and we proposed the alternative estimators for RCR model, such as unit by unit OLS, Mean Group (MG), Classical Pooling (CP), and Stein-rule estimators.

In this thesis, we used the Monte Carlo simulation to study the behavior of the Swamy’s estimator in small, medium and large samples in panel data. The parameters were set at several values, to allow the study of estimators under several situations, to know when the RCR model will be properly and improperly. This simulation provides some insight into how well the RCR estimator performs in different samples size. Also, we used the Mote Carlo simulation again for comparison between the behavior of RCR, CP, and MG estimators in three models (RCR, fixed, and Mixed RCR models). And we used the R language to conduct the Monte Carlo simulation study.
The thesis includes five chapters:

Chapter 1: Definitions and Notations

This chapter involved some definitions which be used in this thesis.

Chapter 2: Introduction to Random Coefficient Regression Models

This chapter presented an introduction to the general linear model estimators under the classical assumptions in section (2.1). While section (2.2) discussed RCR model for panel data, and we estimated the random coefficients by the generalized least square method. The literature review for RCR models in section (2.3). Finally, section (2.4) introduced the applications for RCR models.

Chapter 3: Estimation of Random Coefficient Regression Model in Panel Data

This chapter presented the RCR model in panel data when regression coefficients are viewed as invariant over time, but varying from one unit to another in section (3.1). While section (3.2) discussed the alternatives estimators for RCR model. Finally, in section (3.3) we proposed the Mixed RCR model as special case of the RCR model.

Chapter 4: Estimation of Time and Cross-Sectionally Varying Parameter Models

In this chapter, an introduction for the time and cross-sectionally varying parameter models and we proposed the Hsiao model in section (4.1). While in section (4.2), we discussed the estimation and tests of hypotheses for the random coefficients of Swamy and Mehta model. In section (4.3), we proposed other models with time varying coefficients. Finally, section (4.4)
introduced the applications for time and cross-sectionally varying parameter models.

Chapter 5: Monte Carlo Simulation for Efficiency of Random Coefficient Regression Estimators

In this chapter, we used the Monte Carlo simulation to study the behavior of the Swamy’s estimator in small, medium and large samples in panel data in section (5.1). While in section (5.2), we explained the results of simulation study. We used the Monte Carlo simulation again for comparison between the behavior of RCR, CP, and MG estimators in section (5.3). While in section (5.4), we explained the simulation results for the three estimators. Ending with section (5.5), we focused on displaying the concluding remarks of the Monte Carlo simulation studies.

Finally, the Monte Carlo simulation results suggest that the RCR estimators perform well in small samples if the coefficients are random but it does not in fixed or Mixed RCR models. But if the samples sizes are medium or large, the RCR estimators performs well for the three models. While CP estimators perform well in the fixed model only. But the MG estimators perform well if the coefficients are random or fixed. So, we can say that the MG method is the general estimation method for fixed, RCR, and Mixed RCR models.