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Abstract

AN eigenmode projection technique is employed to solve different electromagnetic prob-
lems making use of the solenoidal and irrotational eigenmodes of a canonical cavity.

The technique is adopted to solve two classes of electromagnetic problems.
First, electromagnetic scattering by dielectric objects with complex dielectric constant is

addressed, where a fictitious canonical cavity is chosen to enclose the scatterer, and the fields
are expanded in terms of the complete set of the cavity solenoidal and irrotational eigenmodes.
The fields in Maxwell’s equations inside the enclosed region are then expanded using cavity
eigenmodes. Mode projections are then performed making use of modes orthogonality, where
the scatterer couples the canonical cavity modes. The fictitious cavity surface is regarded as
a port excited by the incident wave, and the cavity fields and the port fields are then matched
on the surface. Finally, a set of equations for the eigenmodes and scattered field amplitudes
are solved together. The frequency independent feature of the eigenmodes, which represents
Fourier type expansion functions, generates frequency independant matrices. This is exploited
to provide a solution over a wide range of frequencies efficiently without the need of filling
and inverting all the system of matrices, and the encountered numerical integrations are only
evaluated once, with their values used at all frequencies. The technique also lends itself to
problems where variations of the same structure are to be analyzed, with modifications that
are not necessarily small as long as they are bound by the baseline canonical cavity with the
encountered numerical integrations evaluated only for the added/subtracted volume.

Second, electromagnetic resonance in an arbitrary conducting cavity is solved, by pro-
jecting the cavity fields on the solenoidal and irrotational canonical modes, ending up with
an eigenvalue problem with direct separation of the physical modes and spurious modes. The
proposed formulation is verified for the special case of body-of-revolution cavities used in
particle accelerators.
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Chapter 1

Introduction

ELECTROMAGNETIC field expansion using cavity modes was first introduced by Slater
in [1], where solenoidal and irrotational cavity eigemodes, forming a complete orthog-

onal set, were used to represent fields inside cavities. Kurokawa [2] then modified Slater’s
work by introducing the irrotational magnetic field. Further investigations of cavity eigen-
mode expansion were made to fully understand its properties in [3–5] and address numerous
applications including microwave filters and high power applications [6].

The concept of modal expansion was previously applied to guided and unguided prob-
lems [7–10]. Also, it was combined with conventional techniques such as the finite-difference
time-domain method (FDTD) [11], the finite element method (FEM) [12], and the integral
equations using moment method (MoM) [13] to produce new hybrid methods for the solu-
tion of electromagnetic problems. Recently, an eigenmode projection technique (EPT) was
introduced to analyze microwave cavities [14] as well as waveguide discontinuities [15], and
proved to be quite efficient in the analysis of such problems with the occurrence, however,
of some spurious (non-physical) modes that appear in the solution of resonance problems of
arbitrary conducting cavities.

In this work, the EPT is applied to problems of electromagnetic scattering from dielectric
objects with complex dielectric constant as well as resonance problems in arbitrary conduct-
ing cavities with direct spurious mode elimination. With available formulations both in time
and frequency domain, the EPT will be shown to have automatic and natural choice of the
basis functions, being the eigenmodes of an enclosing fictitious canonical cavity. In addition,
the EPT has no singularity extraction problems and does not require special treatment for the
domain truncation in case of free-space scattering problems. Also, the solution procedure
involves the generation of a number of matrices, which are generally frequency independent.
This directly translates to efficient analysis over a wide range of frequencies. Moreover, mod-
ifications to a baseline object material and shape enclosed in the same canonical cavity are
readily analyzed by considering only integrals over the added/subtracted geometries.
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This thesis is arranged as follows:
Chapter II: a quick overview on computational electromagnetics, is presented, highlight-

ing the disadvantages of conventional techniques. Then, the eigenmode expansion is intro-
duced illustrating its basic concepts and mathematical framework. Then, a formulation of
Maxwell’s equations in terms of eigemodes projections and surface currents is introduced to
obtain electromagnetic problems solution using the eigenmode projection technique.

Chapter III: electromagnetic scattering by dielectric objects with complex dielectric con-
stant is addressed, where a fictitious canonical cavity is chosen to enclose the scatterer, and
the fields are expanded in terms of the complete set of the cavity solenoidal and irrotational
eigenmodes. The fields in Maxwell’s equations inside the enclosed region are then expanded
using cavity eigenmodes. Mode projections are then performed making use of modes orthog-
onality, where the scatterer couples the canonical cavity modes. The fictitious cavity surface
is regarded as a port excited by the incident wave, and the cavity fields and the port fields are
then matched on the surface. Finally, a set of equations for the eigenmodes and scattered field
amplitudes are resulted and solved together. Unique features of the EPT will be demonstrated.
The technique will also be validated against analytical results as well as results obtained using
other numerical methods.

Chapter IV: resonance of arbitrary-shaped cavities is analyzed in this chapter using the
EPT, where a new approach is introduced with direct and efficient spurious modes separation
by modeling the cavity walls by a highly conductive material. First, the general derivation is
introduced, then results for canonical and arbitrary-shaped cavities are verified using analyti-
cal formulas and CST commercial simulation package solution.

2



Chapter 2

On the Eigenmode Expansion
of Cavity Fields

IN this chapter, a quick overview on computational electromagnetics, highlighting the dis-
advantages in conventional techniques, is presented. Then, the eigenmode expansion is

introduced illustrating its basic concepts and mathematical framework. Then, a formulation
of Maxwell’s equations in terms of eigemodes projections and surface currents is introduced
to obtain electromagnetic problems solution using the eigenmode projection technique.

2.1 Computational Electromagnetics: An Overview
With the advent of high-speed computers with large computational and storage resources,
computational electromagnetic techniques have dramatically evolved and become the norm in
solving electromagnetic problems. The real power of computational electromagnetics (CEM)
is in providing the solution of many problems with no analytical closed solution, which is
the case for most real-life complex problems. CEM are utilized in many applications such as
scattering, resonance problems, microwave filters, high power devices, and optical devices.

Many numerical techniques were proposed utilizing different approaches in solving elec-
tromagnetic problems. Such techniques can be categorized into: partial domain methods,
which require the discretization of only part of the solution domain, such as the integral equa-
tions using moment method [16] and entire domain methods, which require the discretization
of the whole domain including certain absorbing boundaries, such as the FDTD) [17] as illus-
trated below.
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Integral Equations using Moment Method (MoM)

In the MoM, the surface equivalence principle is used by providing equivalent electric and
magnetic surface currents over arbitrary geometries. These currents are then segmented and
basis functions are defined over these segments. Testing functions are then projected over
these basis functions. Finally, a matrix equation comprises the unknown current coefficients
is built and solved using the appropriate basis functions and weighting functions. The use of
Greens functions (in different forms) is essential in this technique. The MoM provides the
solution in frequency domain and is suitable for scattering and antenna problems where no
domain truncation is needed in this method.

For the MoM, the choice of the basis functions is not automatic and there is no way to
know the best basis functions to use specially for general purpose solvers. Also, the matrix
filling process, which incorporates evaluation of singular integrals and singularity extraction,
stands out. Moreover, the frequency dependence of the MoM matrix requires evaluating and
inverting it at each frequency point of the frequency sweep plan, which is a very time con-
suming process if wideband analysis is required.

Finite Difference Time Domain (FDTD)

FDTD is widely used in general purpose solvers. It is a simple and straightforward method
that is based on domain truncation and the representation of Maxwell’s equations in difference
form in the time domain. For the FDTD method, the entire domain of the problem has to be
discretized and properly truncated using absorbing boundaries or matched layers to emulate
unbounded regions in case of solving scattering problems. Also, it requires meshing and
discretization of the whole domain, which results in prohibitively large computations.

Thus, conventional numerical techniques are mainly based on geometrical discretization
and the choice of some basis functions to solve the problem under consideration. Typically,
the choice of the basis functions is arbitrary, especially for general-purpose solvers, not to
mention other problems that depends on the technique such as singularity extraction, domain
truncation. . .etc.

In the next section, the framework of the eigenmode projection technique (EPT) will be
introduced, which will be shown to address many of problems encountered in conventional
techniques, and offers other advantages that come about as a natural consequence of its deriva-
tion.
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2.2 The Eigenmode Expansion
The use of cavity eigenmodes to represent electric and magnetic fields is detailed in this
section, with rigorous mathematical framework, that will lay the foundation for the proposed
EPT.

2.2.1 Helmholtz Theorem
Helmholtz’s theorem [18], also known as the fundamental theorem of vector calculus, states
that any vector field F in three dimensions can be resolved into the sum of an irrotational
(curl-free) vector field and a solenoidal (divergence-free) vector field; this is also known as the
Helmholtz decomposition. The irrotational component is represented by the scalar potential φ ,
while the divergenceless component is represented by the curl of an auxiliary vector potential
A, viz.

F = ∇×A+∇φ (2.1)

which is clearly based on the mathematical identities: ∇×∇φ = 0, ∇ ·∇×A = 0. Generally,
a vector-field is fully described by the two components, to within an arbitrary constant.

2.2.2 Eigenmode Expansion
The eigenmode expansion provides a representation of the electric and magnetic fields in a
certain region in space enclosed by a canonical cavity in terms of the cavity eigenmodes. For
an arbitrary-lossless cavity of volume Vt and bounded by a surface St as shown in Fig. 2.1,
the eigenmodes are divided into two categories: solenoidal and irrotational. The surface St is
assumed to be partly perfect electric conducting SPE and partly perfect magnetic conducting
SPM. From the boundary conditions and the geometry of the cavity, these eigenmodes can be
determined as a set of solenoidal (divergence-free) and irrotational (curl-free) modes forming
a complete orthogonal set [1, 2] that could represent the cavity electric and magnetic fields as

EEE (r; t) = ∑
n

an(t)En(r)+∑
α

fα(t)Fα(r), (2.2)

HHH (r; t) = ∑
n

bn(t)Hn(r)+∑
λ

gλ (t)Gλ (r). (2.3)

where En, Hn are the solenoidal electric and magnetic eigenmodes, while Fα , Gλ are the irro-
tational electric and magnetic eigenmodes.

In general, both the curl and divergence of the electric field are non-zero , and thus it is
expanded in terms of both modes: the solenoidal eigenmodes governed by

5
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Figure 2.1: A general cavity defined by the volume Vt , bounding surface St , and its orthogonal
eigenfunctions.

(
∇2 + k2

n
)

En = 0
∇ ·En = 0

}
, inVt

n̂×En = 0, onSPE

n̂·En = 0, onSPM (2.4)

and the irrotational modes having

lαFα = ∇φα(
∇2 + l2

α

)
φα = 0

∇×Fα = 0

, inVt

n̂×Fα = 0, φα = 0, onSPE

n̂·Fα = 0,
∂φα

∂n
= 0, onSPM (2.5)

where n̂ is the outward normal vector to the canonical cavity surface and kn, lα are the eigen-
values for the solenoidal and irrotational electric field, respectively.

Similarly, using the solenoidal eigenmodes with(
∇2 + k2

n
)

Hn = 0
∇ ·Hn = 0

}
, inVt

n̂ ·Hn = 0, onSPE

n̂×Hn = 0, onSPM (2.6)

and the irrotational ones having
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wλ Gα = ∇ψλ(
∇2 +w2

λ

)
ψλ = 0

∇×Gλ = 0

, inVt

n̂·Gλ = 0,
∂ψλ

∂n
= 0, onSPE

n̂×Gλ = 0, ψλ = 0, onSPM

where kn, wλ are the eigenvalues for the irrotational electric and magnetic fields, respectively.
These eigen modes are frequency independent and represent a sort of spatial fourier ex-

pansion basis functions for the fields inside the cavity with the specified boundary conditions.
The irrotational magnetic eigenmodes were introduced by Kurokawa in [2] as a necessary

component to form a complete expansion for the magnetic field. This can be explained as
follows: due to the truncation of the medium by the canonical fictitious cavity, some magnetic
field closed lines could be truncated by the cavity. These field lines enters the canonical cavity
through a part of St and returns it through the another part of St . Thus to accommodate for
the field lines truncation, a magnetic charge +|n̂ ·BBB| should be placed at the entrance of the
field lines through St , and another charge −|n̂ ·BBB| at their exit from St With the presence of
these magnetic charges, the irrotational eigenmodes of the magnetic field are needed to have
full representation of the magnetic field inside the cavity region.

2.2.2.1 Relation Between the Solenoidal Electric and Magnetic Eigenmodes

The eigenvalues for the solenoidal electric and magnetic eigenmodes, En and Hn are named
kn since they are, in fact, equal [18]. Furthermore, it can be shown that

∇×En = knHn, ∇×Hn = knEn, inVt (2.7)

The curl of the first relation gives

∇×∇×En = ∇(∇ ·En)−∇
2En =−∇

2En = kn∇×Hn = k2
nEn (2.8)

Thus, the solenoidal modes satisfy homogeneous Helmholtz equation, i.e. it is satisfying
Helmholtz equation of electric field

(
∇2 + k2

n
)

En = 0. This can be also shown for the
magnetic field eigenmodes, since

∇×∇×Hn = ∇(∇ ·Hn)−∇
2Hn =−∇

2Hn = kn∇×En = k2
nHn (2.9)

7



2.2.2.2 Orthogonality of Eigenmodes

As proven in [18], the cavity eigenmodes discussed above form a complete orthonormal set
having

∫
Vt

Qm(r) ·Qn(r)dv∫
Vt

UmUndv

}
= δmn (2.10)

where δmn is the Kronecker delta, Q stands for E, H, F, G and U for ψ, φ . Also, projections
between solenoidal and irrotational modes vanish.

2.2.2.3 Expansion of the Fields Derivatives using the Eigenmodes and Surface Currents

Assuming non-homogeneous dielectric medium, It was shown in [19], following the same
procedure as in [1] and taking into consideration the irrotational magnetic fields introduced
in [2], that ∇×EEE (r; t) may be carefully obtained using the following relation

∇×EEE (r; t) = ∑
n

[
knan(t)+

∮
St

(EEE (r; t)×Hn(r)) ·ds
]

Hn(r)

+∑
λ

[∮
St

(EEE (r; t)×Gλ (r)) ·ds
]

Gλ (r) (2.11)

and should not be mistakenly obtained in the presence of port fields by taking the curl of the
expansion in (2.2) and making use of (2.7), resulting in ∑n knat

n(t)Hn(r).
Similarly for ∇×HHH (r; t),

∇×HHH (r; t) = ∑
n

[
knbn(t)+

∮
St

(HHH (r; t)×En(r)) ·ds
]

En(r)

+∑
α

[∮
St

(HHH (r; t)×Fα(r)) ·ds
]

Fα(r) (2.12)

In other words, a sum of terms involving surface integrals will appear in the expansion of
∇×EEE (r; t) and ∇×HHH (r; t). In electromagnetic scattering problems (the subject of the next
chapter), these terms will represent the coupling between the (fictitious) cavity eigenmodes
and the outer (port) modes and result from the field discontinuity at the canonical fictitious
cavity surface.

It is to be noted that if the fictitious cavity is considered with PM walls the surface integral
term, containing Hn in (2.11) vanishes. On the other hand, if the fictitious cavity is considered
with PE walls the surface integral term, containing En in (2.12) vanishes. For the case of PM
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wall, although the tangential components of Hn vanish at the surface of the cavity, the port
magnetic field couples to the En fields in (2.12) . Corresponding argument holds for (2.11)
for the case with PE wall.

Also, the divergence of electric and magnetic fields are expanded, in a similar manner, in
terms of scalar potentials as follows:

∇ ·DDD(r; t) = ε0 ∑
α

[∮
St

(εr(r)EEE (r; t)φα(r)) ·ds− lα
∫

Vt

εr(r)EEE (r; t) ·Fα(r)dv
]

φα(r) (2.13)

∇ ·BBB(r; t) = µ0∇ ·µr(r)HHH (r; t) = µ0 ∑
λ

[∮
St

(µr(r)HHH (r; t)ψλ (r)) ·ds

− wλ

∫
Vt

µr(r)HHH (r; t) ·Gλ (r)dv
]

ψλ (r) (2.14)

With the above expressions for the divergence and curl of the electric and magnetic fields,
Maxwell’s equations can be recast in the form that will suit the purpose of this study.

2.2.3 Maxwell’s Equations using the Eigenmode Expansion with

Mode Projections
Maxwell’s equation in the time domain are

∇×EEE (r; t) =−∂BBB(r; t)
∂ t

−MMM (r; t) (2.15)

∇×HHH (r; t) =
∂DDD(r; t)

∂ t
+JJJ i(r; t)+JJJ c(r; t) (2.16)

∇ ·DDD(r; t) = ρe(r; t) (2.17)

∇ ·BBB(r; t) = ρm(r; t) (2.18)

where JJJ i(r; t) and JJJ c(r; t) are the impressed and conduction currents, respectively. With
the above expressions for the divergence and curl of the electric and magnetic fields,
Maxwell’s equations can be recast in the form that will suit the purpose of this study.
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∑
n

[
knan(t)+

∮
St

(EEE (r; t)×Hn(r)) ·ds
]

Hn(r)−∑
λ

[∮
St

(EEE (r; t)×Gλ (r)) ·ds
]

Gλ (r)

=− ∂

∂ t
µ0µr(r)

[
∑
m

bm(t)Hm(r)+∑
λ ′

gλ ′(t)Gλ ′(r)

]
−MMM (r; t) (2.19)

∑
n

[
knbn(t)+

∮
St

(HHH (r; t)×En(r)) ·ds
]

En(r)+∑
α

[∮
St

(HHH (r; t)×Fα(r)) ·ds
]

Fα(r)

=

[
ε0εr(r)

∂

∂ t
+σ(r)

][
∑
m

am(t)Em(r)+∑
α ′

fα ′(t)Fα ′(r)

]
+JJJ i(r; t) (2.20)

∑
α

[∮
St

(εr(r)EEE (r; t)φα) ·ds− lα

[
∑
m

am(t)
∫

Vt

εr(r)Em(r) ·Fα(r)dv

+ ∑
α ′

fα ′(t)
∫

Vt

εr(r)Fα(r) ·Fα ′(r)dv

]]
φα(r) =

1
ε0

ρe(r; t) (2.21)

∑
λ

[∮
St

(µr(r)HHH (r; t)ψλ (r)) ·ds−wλ

[
∑
m

bm(t)
∫

Vt

µr(r)Gλ (r) ·Hm(r)dv

+ ∑
λ ′

gλ ′(t)
∫

Vt

µr(r)Gλ (r) ·Gλ ′(r)dv

]]
ψλ (r) =

1
µ0

ρm(r; t) (2.22)

Projecting (2.19) on Hn and making use of the orthogonality outlines in (2.10) yields a set
of equations

knan(t)+
∮

St

(EEE (r; t)×Hn(r)) ·ds =−µ0

[
∑
n

∂bn(t)
∂ t

∫
Vt

µr(r)Hn(r) ·Hm(r)dv

+ ∑
λ ′

∂gλ ′(t)
∂ t

∫
Vt

µr(r)Hn(r) ·Gλ ′(r)dv

]
−
∫

Vt

MMM (r; t) ·Hn(r)dv (2.23)

Similarly (2.20) is projected on En, (2.21) on φα(r) and (2.22) on ψλ (r), resulting in the
following equations
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knbn(t)+
∮

St

(HHH (r; t)×En(r)) ·ds = ε0

[
∑
m

∂am(t)
∂ t

∫
Vt

εr(r)En(r) ·Em(r)dv

+ ∑
α ′

∂ fα ′(t)
∂ t

∫
Vt

εr(r)En(r) ·Fα ′(r)dv

]
+

[
∑
m

am(t)
∫

Vt

σ(r)En(r) ·Em(r)dv

+ ∑
α ′

fα ′(t)
∫

Vt

σ(r)En(r) ·Fα ′(r)dv

]
+
∫

Vt

JJJ (r; t) ·En(r)dv (2.24)

∮
St

(εr(r)EEE (r; t)φα) ·ds− lα

[
∑
m

am(t)
∫

Vt

εr(r)Em(r) ·Fα(r)dv

+ ∑
α ′

fα ′(t)
∫

Vt

εr(r)Fα(r) ·Fα ′(r)dv

]
=

1
ε0

∫
Vt

ρe(r; t)φα(r)dv (2.25)

∮
St

(µr(r)HHH (r; t)ψλ (r)) ·ds−wλ

[
∑
m

bm(t)
∫

Vt

µr(r)Gλ (r) ·Hm(r)dv

+ ∑
λ ′

gλ ′(t)
∫

Vt

µr(r)Gλ (r) ·Gλ ′(r)dv

]
=

1
µ0

∫
Vt

ρm(r; t)ψλ (r)dv (2.26)

Consequently, (2.23-2.26) represent a system of equations in the eigenmode coefficients an(t),
bn(t), fα(t), and gλ (t).

It is important here to notice that, in case of homogeneously filled cavities, the constitutive
parameters will be constant over the cavity volume, resulting in vanishing coupling between
eigenmodes. For a non-homogenous dielectric profile, however, mode coupling will exist.
In electromagnetic scattering problems, studied in the next chapter, coupling between cavity
eigenmodes and the outer region will be achieved via the surface integrals. This is not the
case in resonance problems, where there is no outer region.
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Chapter 3

Electromagnetic Scattering
Analysis Using the Eigenmode
Projection Technique

ELECTROMAGNETIC scattering by dielectric objects with complex dielectric constant is
addressed in this chapter, where a fictitious canonical cavity is chosen to enclose the

scatterer, and the fields are expanded in terms of the complete set of the cavity solenoidal
and irrotational eigenmodes. The fields in Maxwell’s equations inside the enclosed region
are then expanded using cavity eigenmodes. Mode projections are then performed making
use of modes orthogonality, where the scatterer couples the canonical cavity modes. The
fictitious cavity surface is regarded as a port excited by the incident wave, and the cavity
fields and the port fields are then matched on the surface. Finally, a set of equations for the
eigenmodes and scattered field amplitudes are solved together. Unique features of the EPT
will be demonstrated. The technique will also be validated against analytical results as well
as results obtained using other numerical methods.

3.1 Conceptual Framework
Analysis of electromagnetic scattering problems has received great attention due to their rel-
evance in a wide range of applications. The scattering properties of different objects, ranging
from electrically small to electrically huge ones, have been studied using different techniques
with the goal of solving them both efficiently and accurately.
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As previously illustrated, conventional numerical techniques are mainly based on geo-
metrical discretization and the choice of some basis functions to solve the problem under
consideration.

In this work, the solution domain is divided into two regions: an enclosure that encloses
the scatterer and an outer space. This enclosure is chosen to be a fictitious canonical cavity,
and the fields inside the cavity are expanded in terms of the cavity solenoidal and irrotational
eigenmodes, which forms a complete orthogonal set, with certain mode amplitudes. On the
other hand, the fields in the outer space, outside the fictitious canonical cavity, which consti-
tute the incident and scattered fields are represented using angular harmonics expansion with
another set of amplitudes referred to as the scattered coefficients. The fields in Maxwell’s
equations inside the enclosed region are then expanded using cavity eigenmodes. Mode pro-
jections are then performed making use of modes orthogonality, where the scatterer couples
the canonical cavity modes. The fields at the two regions boundary are then matched. Finally,
a set of equations for the eigenmodes and scattered field amplitudes are resulted and solved
together.

In the next sections, the problem formulation will be described in detail starting with the
field definitions for the inside and outside regions and ending with the required field coeffi-
cients. The frequency independent feature of the eigenmodes, which represent Fourier type
expansion functions, generates frequency independant matrices. This is exploited to provide
an efficient solution over a wide range of frequencies without the need of filling and inverting
all the system of matrices and the numerical integrations are only evaluated once, with their
values used at all frequencies. It will be shown also that the technique lends itself to prob-
lems, where variations of the same structure are to be analyzed, with the modifications not
necessarily small as long as they are bound by the same canonical cavity.

3.2 Problem Formulation
Considering an arbitrarily shaped dielectric object excited by a uniform plane wave or some
impressed sources as illustrated in Fig. 3.1, the solution procedure can be summarized as
follows: First, a fictitious canonical cavity with perfect magnetic (PM) or perfect electric (PE)
conducting boundary is chosen to enclose the scatterer. The cavity is chosen to be either cylin-
drical or spherical according to the problem under consideration, being either two dimensional
(2D) or three dimensional (3D), respectively. Then, the fields are expanded in terms of the
cavity solenoidal and irrotational eigenmodes, which are used in Maxwell’s equations inside
the enclosed region. The fictitious cavity surface is then regarded as a port excited by the in-
cident and scattered waves, and the cavity fields and port fields are then matched by enforcing
the boundary conditions on the cavity surface. The resulting matrix equations are then solved
for the unknown field coefficients.
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Figure 3.1: General scattering problem by an arbitrary dielectric object with permittivity func-
tion εd(r). The object is enclosed by a canonical fictitious cavity with radius a , volume Vt
and outer surface St .

3.2.1 Port Modes
The instantaneous total port field is the summation of the incident (of a plane wave), impressed
(by sources), and the scattered fields at the canonical cavity boundary (port) as follows:

EEE port(a; t) = EEE inc(a; t)+EEE imp(a; t)+EEE scat(a; t) (3.1)

HHH port(a; t) =− 1
µ0

∫ t

0
∇×EEE port(a; t ′)dt ′ (3.2)

where (a; t) = (a,θ ,φ ; t) and EEE imp(a; t) is the field due to the impressed sources that could
be inside or outside the canonical cavity, in the absence of the scatterer. Thus, this field is
obtained using the free-space Green’s function.

The port fields are expanded in terms of spatial angular harmonics with unknown ampli-
tudes for the scattered harmonics.

3.2.2 Cavity Eigenmodes
The fields inside the cavity are represented by the previously mentioned cavity eigenmodes in
(2.2-2.3) as follows:
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EEE cav(r; t) = ∑
n

an(t)En(r)+∑
α

fα(t)Fα(r), (3.3)

HHH cav(r; t) = ∑
n

bn(t)Hn(r)+∑
λ

gλ (t)Gλ (r). (3.4)

It is important to emphasize that the solenoidal part of the electric and magnetic fields
(En, Hn) is this part of the field that shows properties of wave propagation, and is usually
regarded as the radiation field. On the other hand, the irrotational part of the fields (Fα , Gλ )
is similar to the electrostatic field resulting of a known distribution of charge. The only differ-
ence between this and electrostatic problem is that the charge distribution, and hence the field
varies with time [1, pp. 472-473]. Needless to say, the infinite number of modes is truncated
to N solenoidal modes and L, O irrotational electric and magnetic ones, respectively, upon
adopting certain convergence criteria.

3.2.3 Application of Eigenmode Projections to Maxwell’s Equa-

tions Inside the Fictitious Cavity
Applying eigenmode projections to Maxwell’s equations inside the fictitious cavity results in
(2.23-2.26). Casting these equations to the problem under consideration with lossless (σ = 0),
non-magnetic (µr = 1) material, yields the following system of equations

knan(t)+
∮

St

(
EEE port(a; t)×Hn(a)

)
·ds =−µ0

∂bn(t)
∂ t

−
∫

Vt

MMM (r; t) ·Hn(r)dv, (3.5)

knbn(t)+
∮

St

(
HHH port(a; t)×En(a)

)
·ds =

∂

∂ t

[
∑
n′

an′(t)〈En,En′〉+∑
α ′

fα ′(t)〈En,Fα ′〉
]
+∫

Vt

JJJ (r; t) ·En(r)dv, (3.6)

ε0

∮
St

(
EEE port(a; t)φα(a)

)
·ds− lα

[
∑
n′

an′(t)〈En′,Fα〉+∑
α ′

fα ′(t)〈Fα ,Fα ′〉
]
=∫

Vt

ρe(r; t)φα(r)dv, (3.7)
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∮
St

(
HHH port(a; t)ψλ (a)

)
·ds−wλ gλ (t) =

1
µ0

∫
Vt

ρm(r; t)ψλ (r)dv, (3.8)

where 〈X, Y〉=
∫

Vt
ε(r)X(r) ·Y(r)dv with

ε(r) =

εd(r), inside dielectric

ε0, elsewhere

and the impressed currents JJJ and MMM and charges ρe and ρm appear only when there is a
source inside the canonical cavity.

The previous time-domain derivations can be pursued to obtain instantaneous values for
the scattered fields. Since the interest in this work, however, is the exploitation of the features
of the frequency-domain formulation of the EPT, in the rest of this Chapter, a time-harmonic
variation of the form e jωt will be assumed and the frequency domain will be adopted.

Consequently, the scattered electric field in frequency domain will be casted in the form
Escat(r) = ∑p ascat

p ep(r), with ep(r) being the angular harmonics of the scattered fields from
cylindrical or spherical objects in case of 2D or 3D problems, respectively, with p = 1,2, · · ·M
where M is the number of port modes under consideration, and ascat

p the unknown amplitudes
of the scattered harmonics. More details are provided in Appendix A and B for 2D and 3D
problems, respectively.

It is should be cleared that the same letters a, b, f , g will be also used for the cavity field
coefficients in the frequency domain to avoid excessive use of symbols, and it is understood
that these coefficients are different in both formulations in time and frequency domain.

Combining equations (3.5) through (3.7), upon substituting with the port fields, yields a
matrix equation for the unknown amplitudes of the cavity eigenmodes and the port angular
harmonics, of the form

[A]N×N [a]N×1 +[B]N×M
[
ascat]

M×1 = [C]N×1 . (3.9)

The vectors [a]N×1 and [ascat ]M×1 hold as their elements the cavity and scattered electric field
coefficients an and ascat

p , respectively. Expressions for the matrix elements of [A], [B] and [C]

are found in Appendix C.
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3.2.4 Boundary Conditions Between Cavity Modes and Port

Modes
It is to be noted that for scattering problems the complete set of cavity eigenmodes can be
used with the cavity walls either PE or PM, using the choice which simplifies the solution
of the problem. Although the tangential field components of either the eigenmode electric
or magnetic field is zero at the cavity wall, the port field of the same kind (EEE port orHHH port)

couples to the eigenmode field (EEE cav orHHH cav) with non zero tangential component through
surface integral representing surface current, as in (3.5-3.6) . In addition, the matching of
the port and cavity mode fields is applied directly for the field type (EEE cav orHHH cav) with non
zero tangential components for the cavity eigenmodes. A system of equations is generated
from application of tangential field matching by using mode orthogonality of the port angular
harmonic modes, viz. for PM cavity:

∮
St

n̂×Eport(a) ·hp′(a)ds =
∮

St

n̂×
(

∑
n

anEn(a)+∑
α

fαFα(a)
)
·hp′(a)ds (3.10)

and for PE cavity:

∮
St

n̂×Hport(a) · ep′(a)ds =
∮

St

n̂×

(
∑
n

bnHn(a)+∑
λ

gλ Gλ (a)

)
· ep′(a)ds (3.11)

where p′ = 1,2, · · · ,M and hp′(r) = −1
jωµ0

∇× ep′(r). Proof of equations (3.10) and (3.11) is
given in Appendix D.

Depending on the boundary conditions of the fictitious cavity, (3.9) is combined with
either (3.10) for PM or (3.11) and (3.8) for PE boundaries, respectively, to yield

(
[Ω]N×N +[Γ(ω)]N×N

)
[a]N×1 = [ϒ(ω)]N×N ,

[Ω]N×N = [EE]N×N− [EF ]N×L [FF ]−1
L×L [EF ]TL×N (3.12)

where the elements of [EE], [EF ], and [FF ] are the cavity eigenmode projections 〈En, En′〉,
〈En, Fα〉 and 〈Fα , Fα ′〉, respectively. It is obvious that all the elements of [Ω] are integrations
of the cavity mode projections and are thus frequency independent, whereas the elements
of [Γ(ω)] and [ϒ(ω)] contain the frequency-dependent (ka) argument of the used Hankel
functions in ep with k = ω

√
µ0ε0 as detailed also in Appendix C. It is worth mentioning that,

in case of lossy dielectrics, the dielectric constant will be replaced by its complex version
εc(r) = ε(r)+ σ(r)

jω . The involved integrals, however, remain frequency independent since the
frequency acts as a scaling factor only.
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3.3 Obtaining the Solution Over a Wide Range of Fre-
quencies

The solution of (3.12) requires the evaluation of the inverse ([Ω]+ [Γ(ω)])−1, which is eval-
uated in light of the theorem in [20] as follows:

let [ξ1] = [Ω]−1, [ξi+1] = [ξi]−gi [ξi](:,i) [Γi](i,:) [ξi], where [ξi](:,i) is a column vector with
its elements are the ith column of [ξi] and [Γi](i,:) is a row vector with its elements are the
ith row of [Γi], gi = 1/(1+ tr([ξi] [Γi])), and i = 2, . . . ,N. Then, the required inverse may be
obtained using:

([Ω]+ [Γ(ω)])−1 = [ξN]−gN [ξN] [ΓN] [ξN] . (3.13)

It is important to notice that in the previous inversion scheme, the evaluation of [Ω]−1 is
done only once at some reference frequency and is stored. For any other frequency, apply-
ing the previous procedure provides the inverse ([Ω]+ [Γ(ω)])−1 with no further inversion.
Moreover, the inversion scheme is performed in forward not recursive manner avoiding mem-
ory overloading resulting from recursion. Also, by inspecting the matrices in (3.12), it is
found that the matrix [Ω] as mentioned before is frequency independent and thus it is eval-
uated only once, while matrices [Γ(ω)] and [ϒ(ω)] are partially evaluated at the different
frequency points, only for the terms with the surface integral of the port modes, which end up
in a closed analytical form by virtue of the orthogonality which reduces surface integrals to
direct substitution in the field expression. The terms with volume integrals of the eigenmodes
are frequency independent and are evaluated at one frequency point. This results in consider-
able time-saving when the response over a wideband frequency range is to be determined, in
contrast to other frequency-domain techniques, where the solution process (matrix filling and
inversion) is to be conducted for each frequency point. Alternatively, an iterative solver can be
employed to further accelerate the inversion process upon getting the solution at a reference
frequency point.

3.4 Analysis of Geomtry and Material Variations
Starting with some baseline scatterer configuration, it may be required to analyze certain mod-
ifications of the scatterer with the goal of conducting sensitivity analysis concerning scatterer
shape variations or, alternatively, optimization of the scatterer shape. In the proposed EPT, for
the same fictitious canonical cavity, the surface integrals of the port modes remain unchanged,
corresponding again to considerable time-saving. Subsequently, only volume integrals of the
eigenmode projections over the modified regions need to be evaluated numerically.
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Making use of orthogonality properties in Sec. 2.2.2.2 the projections could be simplified
to integral on the dielectric object rather than on the whole cavity volume. Considering the
projections of the electric field solenoidal eigenmodes,

〈En, En′〉base =
∫

Vt

ε(r)En ·En′dv

=ε0

∫
Vt

En ·En′dv+
∫

Vd

(εd(r)− ε0)En ·En′dv

=ε0δnn′+
∫

Vd

(εd(r)− ε0)En ·En′dv (3.14)

where Vt is the cavity volume and Vd the dielectric volume.
Applying this to all eigenmode projections the following relations could be obtained:

〈En, En′〉base = ε0δnn′+
∫

Vd

(εd(r)− ε0)En ·En′dv,

〈Fα , Fα ′〉base = ε0δαα ′+
∫

Vd

(εd(r)− ε0)Fα ·Fα ′dv,

〈En, Fα ′〉base =
∫

Vd

(εd(r)− ε0)En ·Fα ′dv. (3.15)

Then, the modified scatterer will have integrals in the form:

〈En, En′〉mod = 〈En, En′〉base +
∫

Vδ

(εδ (r)− εbase(r))En ·En′dv,

〈Fα , Fα ′〉mod = 〈Fα , Fα ′〉base +
∫

Vδ

(εδ (r)− εbase(r))Fα ·Fα ′dv,

〈En, Fα ′〉mod = 〈En, Fα ′〉base +
∫

Vδ

(εδ (r)− εbase(r))En ·Fα ′dv (3.16)

where Vδ is the added/subtracted volume, εδ (r) the new dielectric constant within Vδ , and
εbase(r) the dielectric constant within the same volume before the modification, as illustrated
in Fig. 3.2.

It should be mentioned that there is no constraint on the modification size as long as the
canonical cavity is maintained. Moreover for the case of changing the dielectric constant of a
given scatterer homogeneously, no integrations will be evaluated at all and the integrals over
Vd in (3.15) will be simply scaled by the ratio of

(
εd,new− ε0

)
/
(
εd,base− ε0

)
.
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Figure 3.2: Illustration of possible modifications to a scatterer: (a) baseline object, (b) modi-
fied object by adding volume, and (c) modified object by subtracting volume.

3.5 Results
Bistatic scattering width (SW), normalized to free space wavelength (λ ) of 2D dielectric ob-
jects is used to verify the proposed technique. In Fig. 3.3, results obtained for a circular
cylindrical dielectric scatterer illuminated by transverse electric TEz plane wave using the
EPT solution in Appendix A.4 are compared with the analytical solution in [21], showing the
convergence of the solution as the number of modes increases. As a rule of thumb, the number
of eigenmodes required to reach convergence are N, L, O = d8kdae with kd being the wave
number of the dielectric material at the operating frequency.

In Appendix A, it will be shown that the solution for Helmholtz equations for the circular
cavity eigenmodes will be in the form of angular harmonics with eigenvalues that are directly
related to either the zeros of Bessel function or its derivative for different orders. The adopted
numbering scheme is by sorting the eigenvalues in ascending order and then use the required
number of eigenmodes according to the rule of thumb.

In Fig. 3.4, results are obtained for circular cylindrical scatterer excited by an electric
line source for two cases: the first with the line source outside the canonical cavity, and
the second with the line source inside the canonical cavity (thus taken into consideration in
(3.6)) following the solutions provided in Appendices A.2 and A.2 , respectively. The results
illustrate that the two solutions converge to the analytical solution provided in [21].
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Figure 3.3: SW for cylindrical dielectric scatterer with εd = 4ε0 and radius = λ illuminated
by TEz plane wave with the canonical cavity touching the dielectric surface.
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Figure 3.4: Scattered field from cylindrical dielectric scatterer with εd = 3ε0 and radius =
0.5λ illuminated by electric line source having E0 = −Ie

ωµ0
4 located at distance λ from the

dielectric scatterer center. The radius of the canonical cavity is a= 0.5λ (Ie outside the cavity)
and a = 1.2λ (Ie inside the cavity).
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Figure 3.5: Scattered field from cylindrical dielectric scatterer with real dielectric constant
of 3ε0, variable loss tangent, and radius = 0.6λ illuminated by TMz plane wave with the
canonical cavity touching the dielectric surface.

Fig. 3.5 shows the results for the case of lossy dielectric by using a complex dielectric
constant in the formulation. The results in Fig. 3.5 are obtained for cylindrical scatterer
excited by TMz plane wave for different loss tangents. The results illustrate that the solutions
converge to the analytical solution provided in [21]. Also, for high loss tangent the results
are in very good agreement with those obtained using the MoM a for PEC cylinder, which
validates the modeling of perfecting conducting objects using high conductivity material in
the EPT.

In the proposed approach making use of the frequency independent feature of the gen-
erated matrices and filling it only once, allows studying the frequency dependent scattering
by the object with the number of modes taken according to the maximum frequency as in
Fig. 3.6. The results obtained for circular cylindrical scatterer, for the forward scattering
width, are compared with the analytical solution in [21] with the number of eigenmodes set
to d8kd,maxae.

To make a comparison between direct solution, i.e., solving at each frequency point with
the corresponding number of modes, and the frequency independent matrix approach, a speed-
up factor is defined as:

Speed-up Factor =
Time for direct approach

Time for accelerated approach
(3.17)
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Figure 3.6: Forward SW for cylindrical dielectric scatterer with εd = 3ε0 and radius = 0.1 m
illuminated by TEz plane wave with canonical cavity touching the dielectric surface.

Fig. 3.7 shows the speed-up factor for the cylindrical scatterer studied in Fig. 3.6. The
number of modes utilized in the direct approach is d8kdae for each frequency points with all
the matrices calculated, while the accelerated technique utilizes d8kd,maxae for all frequency
points with the frequency independent matrices calculated only once. This speed-up factor
accounts for comparison in filling time only, with the matrix inversion conducted using direct
inversion techniques, i.e., without using the approach in (3.13). It is worth noting that the
speed-up factor increases as the number of frequency points increases due to the reduction in
the matrix filling time, even with the direct approach using less number of modes for lower
frequencies. Even at a wide range of frequencies (larger maximum to minimum frequency
ratio fmax/ fmin, the speed-up factor is still greater than unity with a monotonic increase as the
number of sampled frequencies increase.

Fig. 3.8 provides another case for verification by considering a rectangular dielectric scat-
terer illuminated by transverse magnetic TMz plane wave using the EPT solution in Appendix
A.1. Results are compared with those of the MoM and exhibit very good agreement.

The approach for solving a modification of a baseline scatterer is verified by considering
the case in Fig. 3.9, which shows baseline dielectric object in Fig. 3.9(a) and then the solution
is obtained for the modified object in Fig. 3.9(b) making use of the previous solution with the
involved integrations evaluated only for the added area. The results are compared with the
MoM solution in Fig. 3.10.

23



2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

Number of frequency points

S
p
e
e
d
 u

p
 f

a
c
to

r

f
max

/f
min

=2

f
max

/f
min

=4

f
max

/f
min

=8
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It should be noted that to have the benefit of fast perturbation analysis, all shape variations
should be kept within the canonical cavity thus it must be chosen large enough to fit the shape
variations. It should not be excessively large, however, to avoid large number of needed
eigenmodes to solve the problem.

Fig. 3.11 shows another illustration example where the solution is obtained for the di-
electric object in Figure 3.11(a) and then it is required for the dielectric shell in Fig. 3.11(b)
making use of the first solution with the encountered numerical integrations evaluated only
for the subtracted area. The speed up of the solution is shown in Fig. 3.12 for variable inner
radius.

𝐄𝑖𝑖𝑖 

𝐇𝑖𝑖𝑖 

𝐄𝑖𝑖𝑖  

𝐇𝑖𝑖𝑖 

𝜀𝑑 = 3𝜀0 

1𝜆 0.3𝜆 

(a) (b) 

Figure 3.11: (a) Original dielectric cylindrical scatterer (b) Dielectric shell.

In Fig. 3.13 the solution of a cylindrical object is obtained in two cases with a dielectric
constant of 3ε0 and 9ε0. The solution of the latter case obtained with no integrations evaluation
at all and only matrices scaling by a factor of 4 is needed.

To make a comparison between the solution computational resources and accuracy of the
EPT and the MoM, the example illustrated in Fig. 3.9(a) is considered using a canonical cav-
ity of radius a = 0.5λ . First, comparing the size of matrices, the EPT matrix size is d8kdae2

whereas the MoM matrix size, assuming 20 unknowns per wavelength, for electric and mag-
netic currents will be d2×20×perimeter in λ ×

√
εre2. For the specific example under con-

sideration, the MoM matrix is almost 20 times larger! For 3D problems, this ratio is expected
to be significantly increased. This result illustrates a very considerable advantage of the EPT
over the MoM, for having much smaller matrix size. Next, comparing the matrix condition
number of both techniques, the MoM matrix has a condition number of 6.7013× 105, com-
pared to only 150.7927 for the EPT. Finally, and as already mentioned, the EPT has automatic
and natural choice of the basis functions, i.e. the eigenmodes, and no singular integrals, thus
no singularity extraction problems. The latter issues are all inherent problems in the MoM, in
addition to the frequency-dependent nature of the MoM matrix due to the use of the Green’s
function, and the inability to handle perturbations in the object under consideration in an easy
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illuminated by TMz plane wave with an equal-sized cylindrical cavity.
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manner. The numerical integrals are performed with resolution resulting convergence of the
integral.
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Chapter 4

Electromagnetic Cavity
Resonance Analysis Using the
Eigenmode Projection
Technique

RESONANCE of arbitrary-shaped cavities is analyzed in this chapter using the EPT, where
a new approach is introduced with direct and efficient spurious modes separation by

modeling the cavity walls by a highly conductive material. First, the general derivation is in-
troduced, then results for canonical and arbitrary-shaped cavities are verified using analytical
formulas and CST commercial simulation package solution.

4.1 General Problem Formulation
In [14] the eigenmode expansion was utilized in the solution of arbitrary-shaped cavities.
The problem was defined as an arbitrarily-shaped, vacuum PEC cavity of volume V , with
canonical expansion modes defined over the canonical fictitious cavity enclosure domain of
volume Vt , as depicted in Fig. 4.1. The reminiscent volume of the domain δV is considered as
if it is filled with PEC. Using the surface equivalence principle, the PEC is then replaced by
a current on the arbitrary-cavity surface. This current is expressed in terms of the canonical
cavity magnetic field expansion. However, the resulting eigenvalues were differentiated into
two sets. The first set is the physical modes inside V , where the eigenvalue and the eigenvector
corresponds to a natural resonance mode. The other set is the fake (spurious) modes which
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Figure 4.1: Arbitrary-shaped PEC cavity. The geometry of the problem can be interpreted as
a canonical cavity containing PEC.
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Figure 4.2: Arbitrary-shaped cavity. The geometry of the problem can be interpreted as a
canonical cavity containing conducting material.

have zero total energy inside V and near zero eigenvalues. These spurious modes required
exhaustive post processing for separation and this may not be successful in all cases.

The new proposed approach depends on replacing the PEC by a conducting material as
illustrated in Fig. 4.2. This will result in complex eigenvalues (resonance frequencies) and
the spurious modes will be directly separated by comparing the real and imaginary parts of
the eigenvalue of the resulted modes.

The difference between resonance and scattering problems is that in resonance problems
the structure is closed with no ports or interfaces. The solution of the problem using the eigen-
mode projections will be obtained using equations (2.23-2.26). The equations will be casted
to the problem as follows: first, the surface integrals that represent the coupling between outer
modes and canonical cavity eigenmodes vanish due to the fact that this is a closed problems
and there is no outer modes; second, there is no mode matching at the boundaries because this
is a closed problem. Considering homogeneous conducting material the equations will be as
follows in frequency domain:
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knan =− jωµ0bn (4.1)

knbn = jωε0an +σ 〈En, En′〉an +σ 〈En, Fα〉 fα (4.2)

gλ =0 (4.3)

where 〈En, En′〉 and 〈En, Fα〉 represents cavity eigenmode projections.

〈En, En′〉=
∫

δV
En(r) ·En′(r)dv (4.4)

〈En, Fα〉=
∫

δV
En(r) ·Fα(r)dv (4.5)

However, (2.25) will be descarded and the divergence equation (2.17) will be reformulated
considering the conducting material and making use of the continuity equation. The electric
charge density ρe could result from either an impressed charge or the existence of a lossy
conducting material which is the case in our problem. In this case, ρe could be obtained from
the continuity equation as follows

∇ ·J =− jωρe (4.6)

where J in our problem is the conduction current and could be expressed in terms of the
electric field as J = σE with E = 1

ε0
D. Substituting in the continuity equation, the equation

will be as follows

ρe =
−σ

jωε0
∇ ·D = jtanδ (∇ ·D) (4.7)

where tanδ is the loss tangent of the conducting material.

tanδ =

0 inside cavity vaccum

tanδc inside conductor
(4.8)

Substituting from (4.7) into (2.17)

∇ · (D− jtanδD) = 0 (4.9)

Considering homogeneous dielectric constant the equation could be represented in terms
of electric field as follows

∇ · (E− jtanδE) = 0 (4.10)
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Following similar procedure as in Sec. 2.2.3 by projecting the previous equation on φα ,
also the mathematical identity ∇ · (φA) = A ·∇φ +φ∇ ·A will be used as follows

∫
δV

∇ · (E− jtanδE)φαdv = 0∫
δV

∇ · ((E− jtanδE)φα)dv−
∫

δV
(E− jtanδE)∇φαdv = 0 (4.11)

Applying the divergence theorem, the integral in the left will be converted into a surface
integral which vanishes due to the fact that this is a closed problem and the fields vanish at the
boundaries. Substituting with the field expansion and making use of orthogonality in (2.10),
equation (4.11) will be in the following form

fα − j tanδc

[
∑
n

an 〈En, Fα〉+∑
α ′

fα ′ 〈Fα , Fα ′〉
]
= 0 (4.12)

with,

〈Fα , Fα ′〉=
∫

δV
Fα(r) ·Fα ′(r)dv (4.13)

Casting (4.12) in matrix form,

[ f ] = [Z] [a] , [Z] = [I− j tanδc [FF ]]−1 j tanδc [EF ]T (4.14)

where I is an identity matrix, the matrix [FF ] and [EF ] hold as their elements the cavity
eigenmode projections 〈Fα , Fα ′〉 and 〈En, Fα〉, respectively.

Substituting form (4.14) in (4.2) results in the following equation, in matrix form

diag(kn) [b] = jωε0 [a]+σ [EE] [a]+σ [EF ] [Z] [a] (4.15)

where diag(kn) is a diagonal matrix with its elements are kn and [EE] hold as its elements the
cavity eigenmode projections 〈En, En′〉.

Rewriting the system of equations and substituting from (4.1) into (4.15) and doing some
simplification,
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− 1
jωµ0

diag(k2
n) [a] = jωε0 (I− j tanδc [EE]− j tanδc [EF ] [Z]) [a] (4.16)

k2
n [a] = k2 (I− j tanδc [EE]− j tanδc [EF ] [Z]) [a] (4.17)

1
k2 [a] =

1
k2

n
(I− j tanδc [EEnm]− j tanδc [EFnα ] [Z]) [a] (4.18)

(4.18) represents an eigenvalue problem with the eigenvalues are 1
k2 . It should be noted that to

obtain the resonance problem for PEC cavity, the conductivity σ should be chosen with high
value. Thus assuming that the loss tangent tanδc is constant with a high value will give good
results and simplify the solution of the problem at the same time.

In the next section, the proposed solution will be used to obtain the resonance frequencies
of the cavities used in linear accelerators (LINAC) where determination of the resonance
frequencies is necessary to optimize the design. The cavities used in LINAC are body of
revolution cavities (BOR). Assuming that the electron beam is confined at the axis of the
cavity, then there is no need to consider the modes with azimuthal variations as the electron
beam will excite only modes with no azimuthal variations.

4.2 Body of Revolution Cavities with no Azimuthal
Variations

The general problem under investigation is illustrated in Fig. 4.3. It is straight forward that
the most appropriate choice of the canonical cavity in this problem is a finite-lenght circu-
lar cylinder with PEC walls. The cylinder radius (a) and length d are chosen such that it
completely enclose the cavity. In this work, the solution is obtained for TMz arbitrary cavity
modes and the canonical cavity solenoidal and irrotational eigenmodes will be derived in the
following sections.

4.2.1 Solenoidal Eigenmodes
Expanding the two curl equations in (2.7) with ∂

∂φ
= 0 leads to the following equations:
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Figure 4.3: BOR cavity enclosed by cylindrical canonical cavity.

knEnρ = −
∂Hnφ

∂ z
(4.19)

knEnφ =
∂Hnρ

∂ z
− ∂Hnz

∂ρ
(4.20)

knEnz =
1
ρ

∂

∂ρ

(
ρHnφ

)
(4.21)

knHnρ = −
∂Enφ

∂ z
(4.22)

knHnφ =
∂Enρ

∂ z
− ∂Enz

∂ρ
(4.23)

knHnz =
1
ρ

∂

∂ρ

(
ρEnφ

)
(4.24)

It could be noted that the system of equations could be separated to two parts as follows:
equations (4.19), (4.21) and (4.23) represents TMz modes and the rest of the equations rep-
resents TEz modes. Considering TMz modes then equations (4.19), (4.21) and (4.23) are the
system of equations to be solved.

First of all, Enz is obtained by solving 2.4 for PE boundary, using ∇2 expression in [22, P.
919],

(
∂ 2

∂ρ2 +
1
ρ

∂

∂ρ
+

∂ 2

∂ z2 + k2
n

)
Enz = 0 (4.25)
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Using separation of variables and substituting by Enz = Eρ(ρ)Ez(z) then (4.25) could be
written as follows:

1
Eρ(ρ)

∂ 2Eρ(ρ)

∂ρ2 +
1

Eρ(ρ)

1
ρ

∂Eρ(ρ)

∂ρ
+ k2

n =−
1

Ez(z)
∂ 2Ez(z)

∂ z2 = k2
z (4.26)

Two separate differential equations are obtained from the previous equation,

ρ
2 ∂ 2Eρ(ρ)

∂ρ2 +ρ
∂Eρ(ρ)

∂ρ
+ρ

2 (k2
n− k2

z
)

Eρ(ρ) = 0 (4.27)

∂ 2Ez(z)
∂ z2 + k2

z Ez(z) = 0 (4.28)

Let k2
c = k2

n− k2
z then the solution of (4.27) will be in the form

Eρ(ρ) = AJ0(kcρ)+BY0(kcρ) (4.29)

and since the function Y0(kcρ) is singular at ρ = 0 then B = 0 , while the solution of (4.28)
will be in the form

Ez(z) =Ccos(kzz)+Dsin(kzz) (4.30)

For PE boundary at z=0, only the cosine variation will considered,

Enz = EnJ0(kcρ)cos(kzz) (4.31)

where En is the magnitude of cavity modes solenoidal electric field which is obtained such that
the fields are normalized with respect to the volume integral of the self terms i.e.

∫
Vt

En.Ends =
1 .

Now after Enz is obtained, the other field components will be driven using its expression.
First, (4.31) is substituted into (4.23) resulting in (4.32),

Hnφ =−kn

kc
EnJ

′
0(kcρ)cos(kzz) (4.32)

then (4.32)is substituted into (4.19) resulting in (4.33).
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Enρ =−kz

kc
EnJ

′
0(kcρ)sin(kzz) (4.33)

Applying the boundary conditions at the cavity surfaces (Enz = 0 at ρ = a and Enρ = 0 at
z = 0, d ) then:

kc =
P0n1

a
kz =

n2π

d

k2
n =

(
P0n1

a

)2

+
(n2π

d

)2
(4.34)

where P0m is the mth root of J0. From previous, the total solenoidal electric field could be
expressed as follows:

En =−
kz

kc
EnJ

′
0(kcρ)sin(kzz)aρ +EnJ0(kcρ)cos(kzz)az (4.35)

4.2.2 Irrotational Eigenmodes
Solving 2.5 with PE boundary at the cavity surface (φα = 0 at ρ = a and at z = 0, d). The
result could be expressed as follows

φα =UαJ0(lα1ρ)sin(lα2z)

Fα =
lα1

lα
UαJ

′
0(lα1ρ)sin(lα2z)aρ +

lα2

lα
UαJ0(lα1ρ)cos(lα2z)az (4.36)

where Uα is the magnitude of the electric scalar potential which is obtained such that the
normalization identity

∫
Vt

UαUαds = 1 is satisfied with

lα1 =
P0α1

a
lα2 =

α2π

d

l2
α =

(
P0α1

a

)2

+
(

α2π

d

)2
(4.37)
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The field eigenmodes expressions are now ready to be used in the solution of the problem
under investigation. In the next section, results for canonical and arbitrary-shaped BOR cavi-
ties with no azimuthal variations are verified using analytical formulas for circular canonical
cavities and CST commercial simulation package for arbitrary-shaped cavities.

4.3 Results

4.3.1 Verification with Canonical Case
First, the technique is verified for circular cylindrical cavity as illustrated in Fig. 4.4. The
solution of circular cavity of radius b is obtained using the eigenmodes of another circular
fictitious canonical cavity of radius a, where a > b.

𝜎 

𝑏 𝑎 

𝑑 

Figure 4.4: cylindrical cavity enclosed by cylindrical canonical cavity.

Fig. 4.5 shows the results of the complex propagation constant for cylindrical cavity or
radius b = 1.5 cm using the eigenmode expansion provided by another canonical cavity with
larger radius of a = 2 cm using 30 eigenmodes.

It is obvious from the results that the eigenvalues are directly separated into two sets:
modes resonating in the conductor and modes resonating inside the cavity.

The first set is equivalent to spurious modes in the solution approach proposed in [14],
while the second set represents the actual required modes.

In this work, the separation of the modes is straight forward by comparing the real and
imaginary parts of the complex propagation constant. The actual modes are the modes with
high real part compared to the imaginary part (10 times larger) for high value of conductivity.

The effect of conductivity is illustrated in Table 4.1 for the first resonance with the same
number of modes at different values of the loss tangent. It is obvious that for the same number
of eigenmodes the resonance frequencies is more accurate for higher conductivity.

Table (4.2) shows the effect of the number of used eigenmodes on the solution accuracy,
illustrating that increasing the number of eigenmodes decreases the solution error.
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Figure 4.5: Complex propagation constant for cylindrical case with b=1.5, a=2 cm.

Theoretical tanδc = 10 tanδc = 102 tanδc = 104

Resonance Frequency 7.6394 GHz 6.9567 GHz 7.4294 GHz 7.6633 GHz
Relative Error % 8.937 % 2.7489 % 0.3128 %

Table 4.1: The effect of conductivity on cavity eigenmodes

The eigenvalue problem results also in the eigenvectors which represents the field coef-
ficients of the eigenmode expansion for each resonance. Figures 4.6, 4.7, and 4.8 illustrates
the field plot inside the cavity using the eigenvectors (coefficients) of TM01, TM02, and TM03

modes with very good agreement with the analytical formula.
Fig. 4.9 shows another result of the complex propagation constant for cylindrical cavity or

radius b = 1 cm. The canonical cavity radius equals a = 2 cm and the number of modes used
equals to 100 with a filling material of tan(δ ) = 104. Also, the plot for TM01 is illustrated in
Fig. 4.10 compared with the theoretical formula.

4.3.2 Verification with Arbitrary Shape
Second, the problem of stepped cavity illustrated in Fig. 4.11 is used as a sample arbitrary-
shaped BOR cavity and it is verified using CST commercial solver. The complex eigenvalues
of stepped cavity with dimensions a = 1.5, b = 2, din = 3.5 and d = 10 cm are illustrated in
Fig. 4.12 with the separation of spurious modes still straight forward.

Table 4.3 illustrates the relative error between the resonance frequencies obtained by the
CST and those of the EPT with 100 eigenmodes. It is obvious that there is a very good
matching exists between the results.
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Relative Error %
N=30 0.3128
N=60 0.0307

N=120 0.0194

Table 4.2: The effect of number of eigenmodes on solution accuracy for loss tangent tanδc =
104.
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Figure 4.6: Field plot versus radial distance for TM01 mode of cavity of radius b=1.5 enclosed
by canonical cavity of radius a=2 cm.

Figures 4.13, 4.14, and 4.15, shows the 2D field plot for the first three modes resonating
inside the cavity using the solution eigenvectors. The figures shows that the field is totally
confined inside the cavity.
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Figure 4.7: Field plot versus radial distance for TM02 mode of cavity of radius b=1.5 enclosed
by canonical cavity of radius a=2 cm.

Relative Error %
1stResonance 0.162441
2ndResonance 1.647522
3rdResonance 0.939483

Table 4.3: The solution relative error of the first three modes for stepped cavity with loss
tangent tanδc = 104.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ (cm)

|E
z|

 

 

EPT
Theoretical

Figure 4.8: Field plot versus radial distance for TM03 mode of cavity of radius b=1.5 enclosed
by canonical cavity of radius a=2 cm.
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Figure 4.9: Complex propagation constant for cylindrical case with b=1, a=2 cm.
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Figure 4.10: Field plot versus radial distance for TM01 mode of cavity of radius b=1.5 en-
closed by canonical cavity of radius a=2 cm.Results (Stepped Cylindrical Cavity)
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Figure 4.12: Complex propagation for stepped case with dimensions a=1.5, b=2, din=3.5 and
d=10 cm.
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Figure 4.13: Field plot for the first TM resonance of cavity with dimensions b=2, din=3.5 and
d=10 cm enclosed by canonical cavity of radius a=2 cm.
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Figure 4.14: Field plot for the second TM resonance with dimensions a=1.5, b=2, din=3.5 and
d=10 cm enclosed by canonical cavity of radius a=2 cm.

43



z (cm)

ρ 
(c

m
)

|E
z
| normalized

 

 

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.15: Field plot for the third TM resonance with dimensions a=1.5, b=2, din=3.5 and
d=10 cm enclosed by canonical cavity of radius a=2 cm.

44



Chapter 5

Conclusion and Suggestions for
Future Work

In this work an eigenmode projection technique was adopted in the solution of two class of
problems: electromagnetic scattering from dielectric objects with complex dielectric constant
and resonance of arbitrary-shaped conducting cavities.

First, the EPT was used in the analysis of electromagnetic scattering and was shown to
have many advantages over the conventional numerical techniques:

• The EPT provides automatic selection of the basis functions using a complete orthogo-
nal functions, being the eigenmodes of an enclosing fictitious canonical cavity having
a geometry matching the used natural modes of free-space scattering.

• The EPT has no singularity extraction problems and does not require special treatment
for the domain truncation.

Also, the unique features of the scattering solution are very useful in many ways:

• The frequency independent feature of the eigenmodes, which represent Fourier type
expansion functions, results in frequency independent generated matrices is exploited
to provide a solution over a wide range of frequencies efficiently without the need of
filling and inverting all the system of matrices, and the encountered numerical integra-
tions are only evaluated once, with their values used at all frequencies.

• The technique also lends itself to problems where variations of the same structure are to
be analyzed, with modifications that are not necessarily small as long as they are bound
by the baseline canonical cavity with the encountered numerical integrations evaluated
only for the added/subtracted volume.
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Second, the EPT was adopted to solve the electromagnetic resonance in an arbitrary-shaped
conducting cavity and provided a solution with direct separation of the physical modes and
fake (spurious) modes emerged in other previous solution approaches.

The EPT could be useful for the application of different problems in the future, and below
are some suggested ideas:

• Analysis of arbitrary-shaped PEC scatterers including thin conducting sheets in free-
space.

• Analysis of the problem of scattering from distant objects.

• More elaboration on the scattering from arbitrary PEC waveguide junctions.

• Analysis of radiation/antenna problems.

• Study of beam dynamics under microwave excitation with application to cavity design
for high power microwave devices.

46



Appendix A

Detailed Formulation for the
Scattering from Two
Dimensional Objects

In this Appendix, the detailed formulation for the scattering from dielectric objects with com-
plex dielectric constant will be proposed. The solution will be shown for TMz and TEz po-
larizations. The objects are excited by an incident plane wave or an impressed current source
that could be inside or outside the selected fictitious canonical cavity. This cavity is chosen to
be circular cavity for the addressed two dimensional problems.

It should be noted that the solenoidal cavity eigenmodes are obtained by solving (2.7)
under the conditions that the differentiation ∂

∂ z = 0 due to dealing with 2D problem.

knEnρ =
1
ρ

∂Hnz

∂φ
(A.1)

knEnφ = −∂Hnz

∂ρ
(A.2)

knEnz = 1
ρ

∂

∂ρ

(
ρHnφ

)
− 1

ρ

∂Hnρ

∂φ
(A.3)

knHnρ =
1
ρ

∂Enz

∂φ
(A.4)

knHnφ = −∂Enz

∂ρ
(A.5)

knHnz =
∂

∂ρ

(
ρEnφ

)
−

∂Enρ

∂φ
(A.6)
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It could be noted that the system of equations could be separated into two sets as follows:
first, equations (A.3-A.5) represents TMz modes and second, equations (A.1-A.2) and (A.6)
represents TEz modes. These sets will be used to couple with incident TMz and TEz waves,
respectively.

A.1 Scattering of TMz Plane Wave

A.1.1 Port modes
In this problem the port modes are the summation of incident and scattered modes as follows:

Eport(a) = Einc(a)+Escat(a) (A.7)

Hport(a) =− 1
jωµ0

∇×Eport(a) (A.8)

Incident Fields For TMz plane wave propagating in a direction making angle φ ′ with x-
direction, the fields could be expressed in terms of angular cylindrical harmonics. This will
allow the analytical formulation. The incident electric field could be expressed as follows [21]:

Einc
z = Eoie− jx = Eoi

∞

∑
p=−∞

j−pJp(kρ)e jp(φ−φ ′)az

= Eoi

∞

∑
p=0

εpj−pJp(kρ)cos(p
(
φ −φ

′))az, εp =

 1

2

p = 0

otherwise
(A.9)

where, E0i is the magnitude of incident electric field and k is the propagation constant.

cos(p(φ −φ ′)) can be decomposed as follows:

cos(p(φ −φ
′)) = cos(pφ

′)cos(pφ)+ sin(pφ
′)sin(pφ) (A.10)

Thus the incident modes could be represented as follows:

Einc
z = Eoi ∑

p
εpj−pJp(kρ)trig(pφ

′)trig(pφ)az (A.11)

where trig(pφ) means that the summation is performed once with cos(pφ) and another time
with sin(pφ) as follows:
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trig(pφ) =



1 p = 0

cos(φ) p = 1

cos(2φ) p = 2

cos(3φ) p = 3
...

...

0 p = 0

sin(φ) p = 1

sin(2φ) p = 2

sin(3φ) p = 3
...

...

(A.12)

Scattered Fields For the scattered field modes, the Hankel functions of the second kind is
used to express the fields as a traveling outward fields as follows:

Escat
z = ∑

p
ascat

p H(2)
p (kρ)trig(pφ)az (A.13)

where trig(pφ) is a summation over cos(pφ) and sin(pφ) with different coefficients.

Total Port Fields (ρ = a)

Eport =
∞

∑
p=0

[
Eoiεpj−pJP(ka)trig(pφ

′)+ascat
p H(2)

p (ka)
]

trig(pφ)az (A.14)

Hport =
1

jωµ0

(
k
ρ

∞

∑
p=0

p
[
Eoiεpj−pJp(ka)trig(pφ

′)+ascat
p H(2)

p (ka)
]

trig′(pφ)aρ

+ k
∞

∑
p=0

[
Eoiεpj−pJ

′
p(ka)trig(pφ

′)+ascat
p H(2)′

p (ka)
]

trig(pφ)aφ

)
(A.15)

′ =
∂

∂ (kρ)
(A.16)

A.1.2 Cavity Eigenmode Expansion
In this problem circular cavity with PM boundary is used. It will be shown that the choice of
PM boundary eliminates (3.8) while the TMz polarization eliminated (3.7), this will lead to a
simpler solution.
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Solenoidal modes As the excitation in this problem is TMz then the excited modes inside
the cavity will be TMz modes and thus equations (A.3-A.5) are the system of equations to be
solved.

Also it is obvious that Hnρ and Hnφ could be obtained from Enz which is obtained by
solving (∇2 + k2

n)Enz = 0 (or from the above equations) and applying boundary conditions at
cavity surface as follows,

(
∂ 2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂ 2

∂φ 2 + k2
n

)
Enz = 0 (A.17)

The solution of (A.17) could be written as follows,

Enz = (AJn1(knρ)+BYn1(knρ)) trig(n1φ) (A.18)

The function Yn1(knρ) is singular at ρ = 0 then B = 0 then the final expression will be as
follows,

En = EonJn1(knρ)trig(n1φ)az (A.19)

where trig() is once for cos() and another for sin() with different coefficients and E0n is the
magnitude of cavity modes solenoidal electric fields which is obtained such that the fields are
normalized with respect to the surface integral, over the fictitious cavity cross section, of the
self terms i.e.

∫
st

En ·Ends =
∫

st
Hn ·Hnds = 1 .

Obtaining the magnetic field from the electric field equation as described previously will
give the following results,

Hn =−Eon

[
− n1

knρ
Jn1(knρ)

∂

∂φ
trig(n1φ)aρ + J

′
n1
(knρ)trig(n1φ)aφ

]
(A.20)

Applying boundary conditions at cavity surface, then Hφ = 0 at cavity surface
(ρ = a)thus,

J
′
n1
(kna) = 0

kna = P
′
n1n2

kn =
P
′
n1n2

a
(A.21)
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where, P
′
n1n2

is the nth
2 root of J

′
n1

.
It should be noted that the indices n1,n2 are combined into the single index n according

to the adopted numbering/sorting scheme referred to in Sec. 3.5. Similar expressions can be
derived for the other field and potential quantities.

It is important here to highlight that the zero of J′0 at the origin is not to be discarded,
since J0 is non-zero at the origin. This corresponds to a (0,0) mode studied in similar situation
in [23].

It will be shown in the next section that the irrotational electric and magnetic eigenmodes
coefficients vanish thus there is no need to derive them.

A.1.3 Application of Eigenmode Projections to Maxwell’s Equa-

tions
In 2D problems, for equations (3.5-3.8) the volume integrals will be reduced to surface inte-
grals and the closed surface integral will be reduced to integration on closed contour. More-
over, the problem would be much simplified using the characteristics of the current studied
problem as follows:

• Dealing with PM boundary leads to vanishing n×Hn and Ψλ at surface boundary, thus
the surface integral

∮
lt (EEE

port(a; t)×Hn(a)) · n̂dl =
∮

lt (Hn(a)× n̂) ·EEE port(a; t)dl in (3.5)
vanishes. Also, substituting by Ψλ = 0 in (3.8) leads to vanishing irrotational magnetic
field component for non-magnetic materials (µr(r) = 1).

• Adopting TMz the term
∮

lt (EEE
port(a; t)Φα) · ndl will no longer appear because

EEE port(a; t)⊥n thus EEE port(a; t) · n = 0, also noting that En(z)(r) · Fα (ρ,φ)(r) = 0, this
will lead to vanishing of the irrotational electric field component in (3.7)

Thus the system of equations could be simplified as follows,

knan(t) =−µ0
∂bn(t)

∂ t
(A.22)

knbn(t)+
∮

lt

(
HHH port(r; t)×En(r)

)
· n̂dl = ε0 ∑

n′

∂an′(t)
∂ t

〈En,En′〉 (A.23)

where,

〈En,En′〉=
∫

st

εr(r)En(r) ·En′(r)ds (A.24)
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The system of equations could be expressed in frequency domain as follows:

knan =− jωµ0bn (A.25)

knbn +
∮

lt

(
Hport(a)×En(a)

)
· n̂dl = jωε0 ∑

n′
an′ 〈En,En′〉 (A.26)

The term
∮

lt (H
port(a)×En(a)) ·ndl denoted as Ipn becomes

Ipn =
∫ 2π

φ=0

(
Hport(a)×En(a)

)
·aρadφ

=
∫ 2π

φ=0

(
Hport

φ
En,z(a)

)
adφ

=
ka

jωµ0
Eon

∫ 2π

φ=0
∑
p

[
Eoiεpj−pJ

′
p(ka)trig(pφ

′)+ascat
p H(2)′

p (ka)
]

trig(pφ)Jn1(P
′
n1n2

)trig(n1φ)dφ

=
kγn1a
jωµ0

Eon

[
Eoiεn1j−n1J

′
n1
(ka)trig(n1φ

′)+as
n1

H(2)′
n1 (ka)

]
Jn1(P

′
n1n2

) (A.27)

where,

γn1 =



∫ 2π

φ=0 cos(pφ)cos(n1φ) = 2π, trig(n1φ ′) = 1 n1 = p = 0∫ 2π

φ=0 cos(pφ)cos(n1φ) = π, trig(n1φ ′) = cos(n1φ ′) n1 = p 6= 0∫ 2π

φ=0 sin(pφ)sin(n1φ) = π, trig(n1φ ′) = sin(n1φ ′) n1 = p 6= 0

0 otherwise

(A.28)

Rewriting the system of equations and substituting from (A.25) and (A.27) into (A.26)

− 1
jωµ0

k2
nan +

kγn1a
jωµ0

Eon

[
Eoiεn1j−n1J

′
n1
(ka)trig(pφ

′)+as
n1

H(2)′
n1 (ka)

]
Jn1(P

′
n1n2

) =

jωε0 ∑
n′

an′ 〈En,En′〉 (A.29)

k2
nan− (kγn1a)Eon

[
Eoiεn1j−n1J

′
n1
(ka)trig(pφ

′)+as
n1

H(2)′
n1 (ka)

]
Jn1(P

′
n1n2

) =

k2
∑
n′

an′ 〈En,En′〉 (A.30)
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A.1.4 Boundary Conditions Between Cavity Modes and Port

Modes
Enforcing boundary conditions for electric field (non-zero at boundary) between cavity and
port modes and projecting on port angular harmonics hp′ as in Sec. 3.2.4

∮
S

n̂×Eport(a) ·hp′(a)ds =
∮

S
n̂×

(
∑
n

anEn(a)+∑
α

fαFα(a)
)
·hp′(a)ds (A.31)

Evaluating L.H.S,

∮
lt

Eport(a)×hp′(a).aρadφ =
∮

lt

∞

∑
p=0

epz(a)×hp′φ (a).aρadφ =

∞

∑
p=0
−
∮

lt
ep,z(a)hp′,φ (a)adφ

with the integral evaluated as follows:

∮
lt
−ep,z(a)hp′,φ (a)adφ =− ka

jωµ0

∫ 2π

φ=0

[
Eoiεpj−pJp(ka)trig(pφ

′)+ascat
p H(2)

p (ka)
]

[
Eoiεp′j

−p′J
′
p′(ka)trig(pφ

′)+ascat
p′ H(2)′

p′ (ka)
]

trig(pφ)trig(p′φ)dφ

=−
kγp′a

jωµ0

[
Eoiεpj−pJp(ka)trig(pφ

′)+ascat
p H(2)

p (ka)
]

[
Eoiεp′j

−p′J
′
p′(ka)trig(pφ

′)+ascat
p′ H(2)′

p′ (ka)
]

δpp′

∴ L.H.S =−
kγp′a

jωµ0

[
Eoiεp′j

−p′Jp′(ka)trig(p′φ ′)+ascat
p′ H(2)

p′ (ka)
]

[
Eoiεp′j

−p′J
′
p′(ka)trig(p′φ ′)+ascat

p′ H(2)′

p′ (ka)
]

(A.32)

Evaluating R.H.S,
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∮
lt

(
∑
n

anEn(a)+∑
α

fαFα(a)
)
×hp′(a).aρadφ

= ∑
n

an

∮
lt

En(r)×Hp′(a).aρadφ +∑
α

fα

∮
lt

Fα(r)×hp′(a).aρadφ (A.33)

with the integrals evaluated as follows:

∮
lt

Fα,(ρ,φ)(r)×hp′,(φ ,ρ)(a).aρadφ =0 (A.34)

Thus the irrotational modes does not couple to the radiation external field [1].

∮
lt

En(a)×hp′(a).aρadφ =−a
∮

lt
En,z(a)hp′ ,φ (a)dφ

=− ka
jωµ

∫ 2π

φ=0

[
Eoiεp′j

−p′J
′
p′(ka)trig(pφ

′)+as
p′H

(2)′

p′ (ka)
]

EonJn1(P
′
n1n2

)

trig(n1φ)trig(p′φ)dφ (A.35)

=−
kγp′a
jωµ

[
Eoiεp′j

−p′J
′
p′(ka)trig(p′φ ′)+as

p′H
(2)′

p′ (ka)
]

EonJn1(P
′
n1n2

)δp′n1 (A.36)

∴ R.H.S =−
kγp′a
jωµ

[
Eoiεp′j

−p′J
′
p′(ka)trig(p′φ ′)+as

p′H
(2)′

p′ (ka)
]
∑
n

anEonJn1(P
′
n1n2

)δp′n1

(A.37)
Substituting from (A.32) and (A.37) into ((A.31))

−
kγp′a

jωµ0

[
Eoiεp′j

−P′JP′(ka)trig(p′φ ′)+ascat
p′ H(2)

P′ (ka)
]

[
Eoiεp′j

−p′J
′
p′(ka)trig(p′φ ′)+ascat

p′ H(2)′

p′ (ka)
]

=−
kγp′a
jωµ0

[
Eoiεp′j

−p′J
′
p′(ka)trig(p′φ ′)+ascat

p′ H(2)′

p′ (ka)
]
∑
n

anEonJn1(P
′
n1n2

)δp′n1 (A.38)

Thus the scattered coefficients is expressed as follows

ascat
p =

1

H(2)
P (ka)

[
∑
n

anEonJn1(P
′
n1n2

)δpn1−Eoiεpj−PJP(ka)trig(pφ
′)

]
(A.39)
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In matrix form,

[
ascat]

M×1 = diag

(
1

H(2)
P (ka)

)
M×M

[
EonJn1(P

′
n1n2

)δpn1

]
[a]N×1

−E0i

[
εpj−P JP(ka)

H(2)
P (ka)

trig(pφ
′)

]
M×1

(A.40)

where, M and N are the number of port and solenoidal modes under consideration, respec-
tively and diag(vn)is the diagonal matrix with elements of vn on its diagonal.

Substituting from (A.39) into (A.30) then,

k2
nan− (kγn1a)Eon

[
Eoiεn1j−n1J

′
n1
(ka)trig(n1φ

′)+
H(2)′

n1 (ka)

H(2)
n1 (ka)

[
∑
m

amEomJm1(P
′
m1m2

)δn1m1

−Eoiεn1j−n1Jn1(ka)trig(n1φ
′)

]]
Jn1(P

′
n1n2

) = k2
∑
n′

an′ 〈En,En′〉 (A.41)

In matrix form,

[
diag

(
k2

n
)

N×N− k2 [EE]N×N−

(ka)diag

(
γn1

H(2)′
n1 (ka)

H(2)
n1 (ka)

EonJn1(P
′
n1n2

)

)
N×N

[
EomJm1(P

′
m1m2

)δn1m1

]
N×N

]
[a] N×1 =[

(kγn1a)EonEoiεn1 j−n1

[
J
′
n1
(ka)trig(n1φ

′)− H(2)′
n1 (ka)

H(2)
n1 (ka)

Jn1(ka)trig(n1φ
′)

]
Jn1(P

′
n1n2

)

]
N×1

(A.42)

A.2 Electric Line Source Outside cavity
Electric line sources parallel to z-axis transmit electromagnetic waves with TMz polarization,
thus the solution will be much similar to the previous case but with the port field expressed as
follows:
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Eport(a) = Eimp(a)+Escat(a) (A.43)

Hport(a) =− 1
jωµ0

∇×Eport(a) (A.44)

Eimp
z = Eoiaz

∞

∑
p=0

εpH(2)
p (kρ

′)Jp(kρ)trig(pφ
′)trig(pφ) (A.45)

for an impressed field due to a line source Ie located at (ρ ′,φ ′) with E0 = −Ie
ωµ0

4 [21]. This
expression is used under the condition that ρ ′ > ρ which is valid in our case as the port fields
are used to match the cavity modes at ρ = a and as the line source is outside the cavity then
ρ ′ > a, consequently it could be concluded that ρ ′ > ρ [21].

The solution is then proceeded in a very similar way as scattering from TMz plane waves
with only changes in the results of the surface integrals due to the change in the excitation
amplitudes.

A.3 Electric Line Source inside cavity
In this case the line source inside the canonical cavity is taken into consideration in Eq. (3.6).

A.3.1 Port Modes
In this problem the port modes are the summation of impressed and scattered modes as fol-
lows:

Eport(a) = Eimp(a)+Escat(a) (A.46)

Hport(a) =− 1
jωµ0

∇×Eport(a) (A.47)

The impressed electric field could be expressed as follows:

Eimp
z = Eoiaz

∞

∑
p=0

εpJp(kρ
′)H(2)

p (kρ)trig(pφ
′)trig(pφ) (A.48)

for an impressed field due to a line source Ie located at (ρ ′ < ρ,φ ′) with E0 =−Ie
ωµ0

4 .
Scattered field are expressed in a similar manner as scattering from TMzplane waves, thus

the total port field at ρ = a could be expressed as follows:
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Eport
z =

∞

∑
p=0

[
EoiεpJp(kρ

′)trig
(

pφ
′)+ascat

p
]

trig(pφ)H(2)
P (kρ) (A.49)

Hport
φ

=
k

jωµ0

∞

∑
p=0

[
EoiεpJp(kρ

′)trig
(

pφ
′)+ascat

p
]

trig(pφ)H(2)′
P (kρ) (A.50)

A.3.2 Cavity Modes
Similar to the case of scattering of TMz plane wave.

A.3.3 Application of Eigenmode Projections to Maxwell’s Equa-

tions
The main difference than the used equations in scattering of TMz plane wave is the existence
of the current component in Eq. (3.6), thus the used equations could be expressed as follows:

knan(t) =−µ0
∂bn(t)

∂ t
(A.51)

knbn(t)+
∮

lt

(
HHH port(a; t)×En(a)

)
· n̂dl = ε0 ∑

n′

∂an′(t)
∂ t

〈En,En′〉+∫
st

JJJ (r; t) ·En(r)ds (A.52)

where,

〈En,En′〉=
∫

st

εr(r)En(r) ·En′(r)ds (A.53)

The system of equations could be expressed in frequency domain as follows:

knan =− jωµ0bn (A.54)

knbn +
∮

lt

(
Hport(a)×En(a)

)
· n̂dl = jωε0 ∑

n′
an′ 〈En,En′〉+∫

st

J(r) ·En(r)ds (A.55)
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where J(r) = Ieδρ ′φ ′ , therefore the integral
∫

st
J(r) ·En(r)ds = IeEn(ρ

′,φ ′).

The term
∮

lt (H
port(a)×En(a)) ·ndl denoted as Ipn becomes

Ipn =
∫ 2π

φ=0

(
Hport(a)×En(a)

)
·aρadφ

=
∫ 2π

φ=0

(
Hport

φ
En,z(a)

)
adφ

=
ka

jωµ0
Eon

∫ 2π

φ=0
∑
p

[
εpJp(kρ

′)trig
(

pφ
′)+ascat

p
]

trig(pφ)Jn1(P
′
n1n2

)trig(n1φ)dφ

=
kγn1a
jωµ0

Eon
[
Eoiεn1Jn1(ka)trig(n1φ

′)+ascat
n1

]
Jn1(P

′
n1n2

) (A.56)

Rewriting the system of equations and substituting from (A.54) and (A.56) into (A.55)

k2
nan− (kγn1a)Eon

[
E0iεn1Jn1(kρ

′)trig(n1φ
′)+as

n1

]
H(2)′

n1 (ka)Jn1(P
′
n1n2

) =

k2
∑
n′

an′ 〈En,En′〉− jωµ0IeEn(ρ
′,φ ′) (A.57)

A.3.4 Boundary Conditions Between Cavity Modes and Port

Modes
Following the same procedure as in Section A.1.4 the resultant equation is as follows:

ascat
p =

1

H(2)
P (ka)

∑
n

anEonJn1(P
′
n1n2

)δpn1−E0iεp′Jp′(kρ
′) (A.58)

In matrix form,

[
ascat]= diag

(
1

H(2)
P (ka)

)
M×M

[
EonJn1(P

′
n1n2

)δpn1

]
M×N

[a]N×1−
[
E0iεp′Jp′(kρ

′)
]

M×1

(A.59)

Substituting from (A.58) into (A.57) then,
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k2
nan− (kγn1a)Eon

[
E0iεn1Jn1(kρ

′)+
1

H(2)
n1 (ka)

∑
m

amEomJm1(P
′
m1m2

)δn1m1−E0iεn1Jn1(kρ
′)

]
H(2)′

n1 (ka)Jn1(P
′
n1n2

) = k2 [EEnm]an− jωµ0IeEn(ρ
′,φ ′) (A.60)

In matrix form,

[
diag

(
k2

n
)

N×N− k2 [EE]N×N−

(ka)∗diag

(
γn1

H(2)′
n1 (ka)

H(2)
n1 (ka)

EonJn1(P
′
n1n2

)

)
N×N

[
EomJm1(P

′
m1m2

)δn1m1

]
N×N

]
anN×1

=
[
− jωµ0IeEn(ρ

′,φ ′)
]

N×1 , E0i =−
k2Ie

4ωε0
(A.61)

A.4 Scattering of TEz Plane Wave
Taking PE boundary for the cavity surface eliminates the surface integral in (3.7), while Hnz

eliminates (3.8) and thus PE boundary simplifies the solution.
The port and cavity field expressions will be the dual of the case of Scattering of TMz

plane wave and thus could be expressed as follows:

A.4.1 Port Modes

Hport =
∞

∑
p=0

[
Hoiεpj−pJP(ka)trig(pφ

′)+ascat
p H(2)

p (ka)
]

trig(pφ)az (A.62)

Eport =
−1
jωε0

(
k
ρ

∞

∑
p=0

p
[
Hoiεpj−pJp(ka)trig(pφ

′)+ascat
p H(2)

p (ka)
]

∂

∂φ
trig(pφ)aρ

+ k
∞

∑
p=0

[
Hoiεpj−pJ

′
p(ka)trig(pφ

′)+ascat
p H(2)′

p (ka)
]

trig(pφ)aφ

)
(A.63)

′ =
∂

∂ (kρ)
(A.64)
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A.4.2 Cavity Modes
It is chosen with TEz polarization as the incident wave thus equations (A.1-A.2) and (A.6)
will be used and the field expressions will be as follows:

Solenoidal modes

Hn = HonJn1(knρ)trig(n1φ)az (A.65)

En =−Hon

[
− n1

knρ
Jn1(knρ)

∂

∂φ
trig(n1φ)aρ + J

′
n1
(knρ)trig(n1φ)aφ

]
(A.66)

where, kn =
P
′
n1n2
a with P

′
n1n2

is the nth
2 root of J

′
n1

.

Irrotational modes solving the wave equation (∇2 + l2
α)φα = 0 and applying boundary

condition at cavity surface φα = 0 (because PE boundary is utilized). The result could be
expressed as follows,

φα =UαJα1(kαρ)trig(α1φ) (A.67)

The irrotational electric field modes is the curl of the electric potential,

Fα =
1
lα

∇φα =
1
lα

[
∂

∂ρ
aρ +

1
ρ

∂

∂φ
aφ

]
φα

=
1
lα

Uα

[
kαJ

′
α1
(kαρ)trig(α1φ)aρ −

α2
1

ρ
Jα1(kαρ)trig′(α1φ)aφ

]
(A.68)

where, Pα1α2 is the α th
2 root of Jα1 , kα =

Pα1α2
a and Uα is the magnitude of cavity modes

electric scalar potential which is obtained such that the fields are normalized with respect to
the surface integral of the self terms i.e.

∫
st

Fα .Fαds =
∫

st
UαUαds = 1 .

It will be shown from Maxwell’s equations that the coefficients gλ (t) will vanish thus
there is no need to derive the irrotational magnetic field.
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A.4.3 Application of Eigenmode Projections to Maxwell’s Equa-

tions
Equations (3.5-3.8) would be much simplified using the characteristics of the current studied
problem as follows:

• Dealing with PE boundary leads to vanishing n×En and φα at surface boundary,
thus the surface integral

∮
lt (HHH

port(r; t)×En(r)) · n̂dl =
∮

lt (En(a)× n̂) ·HHH port(r; t)dl
in (3.6) vanishes. Also, Substituting by φα = 0 leads to the vanishing of the term∮

lt (EEE
port(a; t)Φα) ·ndl in Eq. (3.7).

• Adopting TEz the term
∮

lt (HHH
port(r; t)ψλ (a)) · ndl will no longer appear because

HHH port(r; t)⊥n thus HHH port(r; t) ·n = 0 this will lead to vanishing irrotational magnetic
field component by substitution in Eq. (3.8)

Thus the system of equations could be simplified as follows:

knan(t)+
∮

St

(
EEE port(a; t)×Hn(a)

)
·ds =−µ0

∂bn(t)
∂ t

(A.69)

knbn(t) =
∂

∂ t

[
∑
n′

an′(t)〈En,En′〉+∑
α ′

fα ′(t)〈En,Fα ′〉
]

(A.70)

lα

[
∑
n′

an′(t)〈En′,Fα〉+∑
α ′

fα ′(t)〈Fα ,Fα ′〉
]
= 0 (A.71)

Could be expressed in frequency domain as follows:

knan +
∮

St

(
Eport(a)×Hn(a)

)
·ds =− jωµ0bn (A.72)

knbn = jωε0

[
∑
n′

an′ 〈En,En′〉+∑
α ′

fα ′ 〈En,Fα ′〉
]

(A.73)

lα

[
∑
n′

an′ 〈En′,Fα〉+∑
α ′

fα ′ 〈Fα ,Fα ′〉
]
= 0 (A.74)

The term
∮

lt (E
port(a)×Hn(a)) ·ndl denoted as Ipn becomes
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Ipn =
∫ 2π

φ=0

(
Eport(a)×Hn(a)

)
· ρ̂adφ

=
∫ 2π

φ=0

(
Eport

φ
Hnz(a)

)
adφ

=
−ka
jωε0

Hon

∫ 2π

φ=0

∞

∑
p=0

[
Hoiεpj−PJ

′
P(ka)trig(pφ

′)+as
pH(2)′

P (ka)
]

trig(pφ)Jn1(P
′
n1n2

)trig(n1φ)dφ

=
−kγn1a

jωε0
Hon

[
Hoiεn1j−n1J

′
n1
(ka)trig(pφ

′)+as
n1

H(2)′
n1 (ka)

]
Jn1(P

′
n1n2

) (A.75)

Merging the equations (A.72-A.74) and substituting with Ipn, leads to the following equa-
tion in matrix form:

[
diag(k2

n)− k2 [Z]
]
[b] =

[Z]×
[
(kγn1a)Hon

[
Hoiεn1j−n1J

′
n1
(ka)trig(pφ

′)+ascat
n1

H(2)′
n1 (ka)

]
Jn1(P

′
n1n2

)
]
,

, [Z] = [EE]− [EF ] [FF ]−1 [EF ]T (A.76)

A.4.4 Boundary Conditions Between Cavity Modes and Port

Modes
Enforcing boundary conditions for magnetic field (non-zero at boundary) between cavity and
port modes and projecting on port angular harmonics ep′ as in Sec.3.2.4:∮

S
n̂×Hport(a) · ep′(a)ds =

∮
S

n̂×
(

∑
n

bnHn(a)
)
· ep′(a)ds (A.77)

Following similar procedure as in Section A.1.4, the resultant equation is as follows in
matrix form:

[
ascat]

M×1 = diag

(
1

H(2)
P (ka)

)
M×M

[
HonJn1(P

′
n1n2

)δpn1

]
M×N

[b]N×1

−H0i

[
εpj−P JP(ka)

H(2)
P (ka)

]
M×1

(A.78)

Substituting from (A.78) into (A.76) then the final equation will be as follows,
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[
diag

(
k2

n
)

N×N− k2 [Z]N×N−

(ka)∗diag

(
γn1

H(2)′
n1 (ka)

H(2)
n1 (ka)

HonJn1(P
′
n1n2

)

)
N×N

[Z]N×N

[
EomJm1(P

′
m1m2

)δn1m1

]
N×N

]
[b]N×1 =

[Z]N×N

[
(kγn1a)HonHoiεn1 j−n1

[
J
′
n1
(ka)− H(2)′

n1 (ka)

H(2)
n1 (ka)

Jn1(ka)

]
Jn1(P

′
n1n2

)

]
N×1

(A.79)
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Appendix B

Outline of the Formulation for
the Scattering from Three
Dimensional Objects

In this Appendix, an outline of the formulation for the scattering from three dimensional
objects will be proposed. The solution will be shown for TMr and TEr polarizations. The
fictitious canonical cavity is chosen to be spherical and the solenoidal cavity eigenmodes will
be represented using the vector potentials.

B.1 Solenoidal Fields in terms of Vector Potentials
Solenoidal fields are related by the following equations:

∇×Hn = knEn (B.1)

∇×En = knHn (B.2)

let

Hn = ∇×A (B.3)

Substituting by (B.3) into (B.1),

∇×∇×A = knEn (B.4)

Substituting by (B.3) into (B.2),
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∇×En = kn∇×A (B.5)

∇× (En− knA) = 0 (B.6)

Using the vector identity ∇× (∇ψ) = 0, where ψ is an arbitrary scalar potential the
following equation is obtained:

En− knA = ∇ψ (B.7)

En = knA+∇ψ (B.8)

Substituting by Eq. (B.8) into Eq. (B.4) the following equation is obtained

∇×∇×A− k2
nA = kn∇ψ (B.9)

For the TMr polarization the solenoidal modes are constructed by letting the magnetic and
electric vector potentials be equal to A(r) = ârAr(r) and F(r) = 0, respectively.

∇×∇×A =ar

[
− 1

r2 sin(θ)
∂

∂θ
sin(θ)

∂Ar

∂θ
− 1

r2 sin2(θ)

∂ 2Ar

∂ 2φ

]
+

aθ

[
1
r

∂ 2Ar

∂ r∂θ

]
+aφ

[
1

r sin(θ)
∂ 2Ar

∂ r∂φ

]
(B.10)

∇ψ = ar
∂ψ

∂ r
+aθ

1
r

∂ψ

∂θ
+aφ

1
r sin(θ)

∂ψ

∂φ
(B.11)

Substituting by equations (B.10-B.11) into (B.9) results in the following equations:

− 1
r2 sin(θ)

∂

∂θ
sin(θ)

∂Ar

∂θ
− 1

r2 sin2(θ)

∂ 2Ar

∂ 2φ
− k2

nAr = kn
∂ψ

∂ r
(B.12)

1
r

∂ 2Ar

∂ r∂θ
= kn

1
r

∂ψ

∂θ
(B.13)

1
r sin(θ)

∂ 2Ar

∂ r∂φ
= kn

1
r sin(θ)

∂ψ

∂φ
(B.14)

The last two equations (B.13-B.14) are satisfied simultaneously if

ψ =
1
kn

∂Ar

∂ r
(B.15)

Substituting by Eq. (B.15) into Eq. (B.12)
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1
r2 sin(θ)

∂

∂θ
sin(θ)

∂Ar

∂θ
− 1

r2 sin2(θ)

∂ 2Ar

∂ 2φ
− k2

nAr =
∂ 2Ar

∂ r2 (B.16)

∂ 2Ar

∂ r2 +
1

r2 sin(θ)
∂

∂θ
sin(θ)

∂Ar

∂θ
+

1
r2 sin2(θ)

∂ 2Ar

∂ 2φ
+ k2

nAr = 0 (B.17)

and can also be written in the form

(
∇

2 + k2
n
) Ar

r
= 0 (B.18)

Similarly, For the TEr polarization the solenoidal modes are constructed by letting the
magnetic and electric vector potentials be equal to A(r) = 0 and F(r) = ârFr(r), respectively
with Fr(r) satisfying Helmholtz equation of the form:

(
∇

2 + k2
n
) Fr

r
= 0 (B.19)

and En = ∇×F

B.2 Three Dimensional Solution Framework
In this case, the natural choice of the cavity will be a PE or PM spherical cavity and the
eigenmodes are classified as either TMr or TEr. For the TM polarization, the solenoidal modes
are constructed by letting the magnetic and electric vector potentials be equal to A(r)= r̂Ar(r)
and F(r) = 0, respectively [21]. The magnetic potential satisfies the Helmholtz equation of
the form [24]:

(
∇

2 + k2
n
) Ar(r)

r
= 0 (B.20)

for which the solution is given by

Ar,uv(r,θ ,φ) = Ĵu (kvr)Pu
v (cos(θ))e juφ , (B.21)

where Ĵn (x) is the Riccati Bessel function and equals x jn (x), jn is the spherical Bessel func-
tion of order n and Pm

n is the associated Legendre functions. The solenoidal magnetic field
can be readily obtained using Hn = ∇× (r̂Ar(r)) that is proved in the next section and the
other field components could be obtained by substitution in (2.7). Similar expressions can
be derived for scalar potentials irrotational fields. The eigenvalues kn, lα , wλ are obtained
by applying the boundary conditions in (3.10-3.11). Similar treatment is used for the TEr

polarization starting from the r-component of the electric vector potential. For the scattered
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field modes, the spherical Hankel functions of the second kind is used to express the outgoing
potentials as:

Ascat
r,p (r,θ ,φ) = Ĥ(2)

p1 (kr)Pp2
p1
(cos(θ))e jp2φ (B.22)

Fscat
r,p (r,θ ,φ) = Ĥ(2)

p1 (kr)Pp2
p1
(cos(θ))e jp2φ (B.23)

where Ĥ(2)
p1 (x) = xh(2)p1 (x) and h(2)p1 is the spherical Hankel function of the second kind and rep-

resents outgoing waves. The spherical wave transformations are used to represent the incident
plane wave as illustrated in detail in [21,24], for example an x-polarized wave propagating in
the negative z-direction could be represented as

Einc(r) = x̂E0e jkz = x̂E0e jkr cos(θ) = x̂
∞

∑
p=0

jp(2p+1) jp (kr)Pp (cos(θ)) (B.24)
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Appendix C

General Matrix Elements for
the Scattering Problem
Solution

Details of the matrices [A] and [B], and the vector [C] are given in (C.3-C.5), also details
of [Γ(ω)] and [ϒ(ω)] are illustrated in (C.6-C.8) and (C.9-C.11) for PM and PE cavities,
respectively. It should be noted that these expressions are in the general case and could be
much simplified making use of the canonical cavity boundary conditions (3.10-3.11) and the
special treatment of the problem under consideration. Also, the quantity Eexc and Hexc is
defined as

Eexc(a) = Einc(a)+Eimp(a) (C.1)

Hexc(a) =
−1

jωµ0
∇×Eexc(r)|a (C.2)

[A]N×N =
[
[EE]N×N− [EF ]N×L [FF ]−1

L×L [EF ]TL×N

]
−diag

(
k2

n

ω2µ0

)
N×N

(C.3)

[B]N×M =
ε0

lα
[EF ]N×L [FF ]−1

L×L

[∮
S
(ep(a)φα(a)) ·ds

]
L×M

− 1
ω2µ0

[∮
S
(ep(a)× knHn(a)) ·ds

]
N×M
− 1

jω

[∮
S
(hp(a)×En(a)) ·ds

]
N×M

(C.4)
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[C]N×1 =
1

ω2µ0

[∫
V

M(r) · knHn(r)dv
]

N×1
− 1

jω

[∫
V

J(r) ·En(r)dv
]

N×1

+
1

ω2µ0

[∮
S
(Eexc(a)× knHn(a)) ·ds

]
N×1

+
1
jω

[∮
S
(Hexc(a)×En(a)) ·ds

]
N×1

− [EF ]N×L [FF ]−1
L×L

[
ε0

∮
S

(
Eexc(a)

1
lα

φα(a)
)
·ds−

∫
V

ρe(r)
1
lα

φα(r)dv
]

L×1
(C.5)

[Γ(ω)]N×N = [B]N×M [Z1]
−1
M×M

[[∮
S

n̂×En(a) ·hp′(a)ds
]

M×N

−
[∮

S
n̂×Fα(a) ·hp′(a)ds

]
M×L

[FF ]−1
L×L [EF ]TL×N

]
−diag

(
k2

n

ω2µ0

)
N×N

(C.6)

[ϒ(ω)]N×1 = [C]N×1− [B]N×M [Z1]
−1
M×M

[[∮
S

n̂×Fα(a) ·hp′(a)ds
]

M×L
[FF ]−1

L×L×[
ε0

∮
S

(
Eexc(a)

1
lα

φα(a)
)
·ds−

∫
V

ρe(r)
1
lα

φα(r)dv
]

L×1
−[∮

S
n̂×Eexc(a) ·hp′(a)ds

]
M×1

]
(C.7)

[Z1]M×M =

[∮
S

n̂× ep(a) ·hp′(a)ds
]

M×M
−

ε0

[∮
S

n̂×Fα(a) ·hp′(a)ds
]

M×L
[FF ]−1

L×L

[∮
S

(
ep(a)

1
lα

φα(a)
)
·ds
]

L×M
(C.8)

[Γ(ω)]N×N =
−1

jωµ0
[B]N×M [Z2]

−1
M×M

[∮
S

n̂× knHn(a) · ep′(a)ds
]
−diag

(
k2

n

ω2µ0

)
N×N

(C.9)
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[ϒ(ω)]N×1 = [C]N×1− [B]N×M [Z2]
−1
M×M×[

−1
jωµ0

[∮
S

n̂×Hn(a) · ep′(a)ds
]

M×N

[∮
S
(Eexc(a)×Hn(a)) ·ds+

∫
V

M(r) ·Hn(r)dv
]

N×1

+

[∮
S

n̂×Gα(a) · ep′(a)ds
]

M×O

[∮
S

(
Hexc(a)

1
wλ

ψλ (a)
)
·ds− 1

µ0

∫
V

ρm(a)ψλ (r)dv
]

O×1

−
[∮

S
n̂×Hexc(a) · ep′(a)ds

]
M×1

]
(C.10)

[Z2]M×M =

[∮
S

n̂×hp(a) · ep′(a)ds
]

M×M
+

1
jωµ0

[∮
S

n̂×Hn(a) · ep′(a)ds
]

M×N

[∮
S
(ep(a)×Hn(a)) ·ds

]
N×M
−[∮

S
n̂×Gλ (a) · ep′(a)ds

]
M×O

[∮
S

(
hp(a)

1
wλ

ψλ (a)
)
·ds
]

O×M
(C.11)

and the matrices [EE]N×N , [EF ]N×L and [FF ]L×L hold as their elements the cavity eigenmode
projections 〈En, En′〉, 〈En, Fα〉 and 〈Fα , Fα ′〉, respectively.
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Appendix D

Boundary Conditions between
Cavity Eigenmodes and Port
Modes

For the cavity field expansion (3.3-3.4) to be used directly inside the surface integral in (3.10-
3.11), the following relation will be proved for canonical cavity with PE boundary:

∮
S

n̂×Eport(a) ·hp′(a)ds =
∮

S
n̂×

(
∑
n

anEn(a)+∑
α

fαFα(a)
)
·hp′(a)ds (D.1)

Before arriving at the equations resulting from the boundary conditions, it is important to
emphasize that the expansion,

Ecav(r) = ∑
n

anEn(r)+∑
α

fαFα(r) (D.2)

is understood in the volume-integral sense, i.e. (D.2) means that for an arbitrary bounded
vector function F, ∫

V
Ecav ·Fdv =

∫
V

(
∑
n

anEn +∑
α

fαFα

)
·Fdv (D.3)

A closed surface integral can be transformed into a volume integral using the divergence
theorem as ∮

S
n̂×Ecav ·hp′ds =

∫
V

(
∇×Ecav ·hp′−Ecav ·∇×hp′

)
dv (D.4)

Now the expansion for Ecav and ∇×Ecav can be substituted in the volume integral. Similar
to the field expansion for Ecav in (D.2), the expansion for ∇×Ecav, after some manipulation
[1, 2] can be written as,
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∇×Ecav = ∑
n

(
knan +

∮
S

n×Ecav ·Hnds
)

Hn +∑
α

(∮
S

n×Ecav ·Gαds
)

Gα (D.5)

Using the boundary conditions in (3.10) for PM cavity, (D.5) can be simplified to,

∇×Ecav = ∑
n

knanHn = ∑
n

an∇×En = ∇×
(

∑
n

anEn +∑
α

fαFα

)
(D.6)

where the fact that the irrotational eigenmodes are curl-free was used to reach the previous
expression.

Substituting with the expansions of ∇×Ecav and Ecav, equations (D.2) and (D.6), respec-
tively, into the volume integral in (D.4), yields

∮
S

n̂×Ecav ·hp′ds=
∫

V

[
∇×

(
∑
n

anEn +∑
α

fαFα

)
·hp′ −

(
∑
n

anEn +∑
α

fαFα

)
·∇×hp′

]
dv

=
∫

V
∇ ·
[(

∑
n

anEn +∑
α

fαFα

)
×hp′

]
dv (D.7)

The divergence theorem can be applied to (D.7), which gives

∮
S

n̂×Ecav(a) ·hp′(a)ds =
∮

S
n̂×

(
∑
n

anEn(a)+∑
α

fαFα(a)
)
·hp′(a)ds

Hence the proof is complete. It can be proved similarly that for canonical cavity with PE
boundary

∮
S

n̂×Hport(a) · ep′(a)ds =
∮

S
n̂×

(
∑
n

bnHn(a)+∑
λ

gλ Gλ (a)

)
· ep′(a)ds (D.8)
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