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The Structure of Ceramic Materials

2.1 Atomic structure
       	The atom of any element is known to consist of a positively charged nucleus surrounded by electrons moving into stationary orbits. The motion of an electron can be described by four quantum numbers:
The principal quantum number n represents the rank of the orbit in which the electron moves with respect to the nucleus. The closest orbit to the nucleus with n =1, is labeled K. The next orbit with n = 2 is the L orbit etc.
The orbital quantum number l is related to the shape of the orbit. An orbit with l = 0 is circular, while for l > 0, orbits are elliptical in shape, having higher eccentricities as the value of l increases. An orbit with principal quantum number possesses n values of l: 0, 1, 2, …, n – 1. These define sub-orbits designated: s, p, d, … respectively.
The magnetic quantum number m, represents the orientation of any orbit in space. For any value of l, there are 2l + 1 values of m that is 2.l + 1 different orientation of the orbits. For example, for an orbit with n = 2 and l = 1, there are 3 different space orientations (Figure 2.1) having the following values of m: -1, 0 and +1. Each value of m defines an orbital. In this particular case they are referred to as pxx, pyy and pzz. 
Each orbital can accommodate a maximum of  2 electrons. They spin into two opposite directions about their axes. This defines the spin quantum numbers which takes the values + ½ or – ½ depending on the direction of rotation.
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                                                m = 0
                                               
Fig (2.1) Magnetic quantum numbers

This is in accordance with the Pauli Exclusion Principle according to which no two electrons have the same 4 quantum numbers. So, even if two electrons have the same values of n, l and m, their spins will be in opposite directions. 
Details of atomic structure of different elements are not presented here since they are out of the scope of this work. Details can be found in the cited literature at the end of the chapter.



2.2 Atomic bonding
      	There are three main types of bonds of interest when dealing with ceramics: The ionic, covalent and the Van Der Waal bonds. They are dealt with very briefly in what follows:
2.2.1 The ionic bond
       	Some ceramic crystals consist of ions held in place by strong ionic attractive forces. Such materials are characterized by relatively high melting points and reasonable mechanical properties. They also display a degree of electrical conductivity even at low temperatures (For example KCl).
2.2.2 The covalent bond
       	When the atoms in a molecule share electrons to reach a stable configuration, a covalent bond is formed. Compounds having covalent bonds are also characterized by high melting points but they fail to conduct electricity. However, some of these compounds may exhibit polarity and short range movement of the polarized charges is possible, imparting some electric properties to these materials. The most celebrated example is SiO2.
      	It is to be noted, however, that most ceramic compounds display to various extents both types of bonding. For example, in CaSiO3, the oxygen atoms are linked to silicon atoms through a covalent bond, but the calcium ions are linked to the SiO3-- group by an ionic bond.
2.2.3 Polarization bonds
       	This represents a weak type of bonds that arises from the attraction between unlike polarized charges in some ceramic materials like clays. They are partly responsible for the phenomenon of plasticity, unique to clays. The most important type is the hydrogen bond present in water molecules. A relatively weaker bond is the Van Der Waal bond, usually arising from induced rather than genuine polarization.
2.3 Crystal structure
2.3.1 The coordination number
       	In a crystal, the different ions or atoms are located in specific positions. The number of nearest neighbors of any ion (or atom) is the coordination number C.N. The value of this number regulates to a great extent the crystal structure of any species.
       	Consider Figure (2.2) where a cation, shown in black, is surrounded by three anions B, shown in white. The C.N. of the cation is therefore 3. It was proved that among the three schemes shown in the figure, a minimum stability is reached in case (2), that is if the atoms barely touch each other. The case (1) is unstable and the case (3) is highly stable. Therefore it is possible from simple geometrical calculations to calculate the minimum cation to anion radius necessary to confer equilibrium to this structure. 






 

       

                                                                              
          
     
(1) Unstable configuration          (2) Marginally stable                (3) Stable

Fig (2.2) Stability of a threefold coordination number of a cation

Consider Figure (2.3) showing a marginally stable situation. Let r be the cation radius and R the anion radius. Then r + R is equal to two third the height of the equilateral triangle joining the centers of the anions. The length of a side of this triangle is 2R.
Hence: r + R =     = 1.155R,          
Hence:    = 0.155
                                                                                     
                                            


                                                                               
                      Fig (2.3) Three-fold coordination
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This represents the minimum r/R ratio for this type of coordination.
For a C.N. of 4, the cation is surrounded by 4 anions in a tetrahedral configuration (Figure 2.4). In this case, the minimum r/R ratio can be proved to equal 0.225.
For a C.N. of 6, the arrangement is said to be octahedral (Figure 2.5) with a minimum r/R ratio of 0.414.
For a C.N. of 8, it is cubic (Fig. 2.6) with a minimum r/R ratio of 0.732.
In Table (2.1) are shown, in pm (10-12m), the ionic radii of some ions

Table (2.1)  Ionic radii (in pm) of some common ceramic ions
	Element
	Li +
	Na +
	K +
	Mg2+
	Ca 2+
	Al 3+
	Fe 3+
	Si 4+
	C 4+
	Cl -
	O 2-

	Radius 
	78
	98
	133
	78
	120
	68
	69
	40
	29
	167
	132



Let us now consider the probable C.N. of Si4+ in a silicate. The bond between Si 4+ and O 2- ions is covalent and, from the above table:  r/R = 40/132 = 0.3. This value lies within the stability region of C.N.= 4 and hence the  Si – O configuration will be tetrahedral.
On the other hand, Al3+ ions in presence of O2- ions will have a C.N.=6 since r/R = 68/132 = 0.515 which is a value in the stability region of that C.N. Hence, the Al – O configuration will be octahedral.                                                                             
Finally, K+ ions in a KCl molecule will show a 8-fold coordination since r/R = 133/167 = 0.796, which is within the stability range of C.N. = 8.
2.3.2 Ceramic crystal structures
(a) The Cesium Chloride structure

                                       Fig (2.7) The Cesium chloride structure


















                                                 Fig (2.8) Rock salt structure
     

This is the simplest structure in which the cation occupies the center of a cube whereas 8 anions are positioned at its vertices as in Figure (2.7). It is clear that compounds having that structure will show a low atomic packing density per unit cell and will therefore have a relatively low density. This is an example of an open structure.
 (b) Closed packed structures
      	Most ceramic materials fall in this category. The most classical example is the rock salt structure (NaCl) shown in Figure (2.8).       
      	In the previous figure, it is clear that all cations (Na+) have octahedral coordination. Their sites are therefore called octahedral sites. On the other hand, anions (Cl-) also have octahedral coordination. In some more complex rock salt – like structures (such as CaF2), anions have a coordination number of 4 and their sites are consequently called tetrahedral sites.
        	Actual structures of a large portion of ceramic materials are similar to rock salt structures except that not all octahedral or tetrahedral sites are filled. For example, ceramic materials having the Rutile structure (TiO2) have only half of their octahedral sites filled, whereas materials having the Zinc blende structure (ZnS) have only half their tetragonal sites filled. That is why most ceramic structures are open, that is, show a lower atomic packing per unit cell than metal.
         	Some materials have much more complex structures although essentially derived from the previous arrangements. One important class consists of mixed oxide compounds having the general formula MO.XO2 or MXO3, like BaTiO3 having the perovskite structure. Another important class is the spinel structure named after the magnesium aluminate material MgAl2O4. These compounds have the general formula   MO.X2O3 or MX2O4. The crystal structure of such materials is also derived from the cubic closed packed structure.

(c) Silicates structure
        	A large portion of ceramic raw materials and products belong to that category. The basic unit of any silicate material is the SiO4 tetrahedron shown in Fig.(2.4) where each silicon ion is surrounded by 4 oxygen ions in covalent bonding. Such tetrahedra are not electrically neutral since they possess a  (– 4)  net charge. These charges, in the simplest case can be neutralized by positive ions attached to a SiO4-4 unit through ionic bonding, like in Ca2SiO4. This class of silicates is called orthosilicates. 
        Another possibility is that two or more tetrahedral units join at their vertices by sharing oxygen atoms in covalent bonding. One situation is shown in Figure (2.9) where three units join together to give a  (SiO3-2)3 unit as in CaSiO3, which is an example of metasilicates. This category also comprises compounds where a single linear chain is formed (Figure 2.9). Asbestos falls in this class. The fibrous nature of this compound is due to its chain structure. In this structure, each unit cell shares 2 oxygen ions with neighboring units corresponding to a SiO3-2 unit.

          
 




          Fig (2.9) Structure of metasilicates

                                       
       Fig (2.10) The sheet structure

 
     	If now, every Si – O tetrahedron shares three oxygen ions, we reach a sheet structure as shown in Figure (2.10). In this case, the unit cell is SiO2.5-1 or Si2O5-2, which means that the ionic character has greatly diminished since there is only one negative charge to be neutralized for each silicon ion in the unit cell.                                                                                      
      	Compounds like Na2Si2O5 do have that structure, but perhaps the most important ceramic raw materials to possess that structure are clays. In the case of clays, the structure is more complex owing to the presence of hydroxyl groups. For example, the mineral kaolinite has the formula Al2O3.2SiO2.2H2O which can also be written in the form: Al2Si2O5.(OH)4. 
(d) Three dimensional networks
      If now all O--ions are linked to silicon ions, a three dimensional network will be formed as in the case of silica where the bonds are purely covalent.
2.4 Defects in ceramic lattices
      	In the previous section, when dealing with ceramic structures, it was assumed that these structures were ideal. This means that all ions are in their “theoretical” positions. In practice, this is never the case and there are always crystal imperfections. There are generally five types of lattice imperfections which are summarized in what follows.
2.4.1 Point imperfections
(a) Frenkel defects
          Above absolute zero temperature all atoms (or ions) in a crystal lattice show thermal vibration about their equilibrium positions. So, some atoms will acquire enough energy to leave their position and go interstitial (Figure 2.11a). This causes the formation of vacancies. This defect is known as a Frenkel defect.









 Fig (2.11)       (a) Frenkel defect                                       (b) Schottky defect

(b) Schottky defects
      	If the atom (or ion) acquires enough energy to leave its equilibrium position and migrate to the surface, then the defect is known as a Schottky defect as is shown in Figure (2.11b). In an ionic lattice, as a cation leaves to the surface, an anion has to leave as well, as a result of charge neutrality. In that case, two vacancies are formed, known as a Schottky pair. This defect is particularly found in ionic compounds with high coordination numbers and where the difference in size between cations and anions is small.

(c) Interstitial solid solutions
     	If the material under consideration contains a small fraction of foreign impurities, then the impurity atoms will generally go into the interstices of the crystal (Figure 2.12a). In that case, there is a maximum amount of foreign atoms that can be allowed into the lattice without impairing its stability. If more atoms are forced, the impurity species will show as a separate phase.
(d) Substitutional solid solutions
      	Under some conditions, the host lattice can accommodate a large fraction of foreign atoms. In that case, the guest atoms can substitute those of the host atoms as shown in Figure (2.12b). Generally, the probability of formation of a substitutional solid solution is higher when both the guest and host atoms are close in size and have the same valence (For example FeO and NiO). In some cases, the substitutional solid solution can exist over the whole range of compositions of the two oxides, as in the case of NiO and CoO.









Fig (2.12)  (a) Interstitial solid solution                    (b) Substitutional solid solution

(e) Non – stoichiometry
        	Some compounds do not obey the law of constant proportions. For example, the mole ratio of Fe:O in wüstite (FeO) is not 1:1. There are vacancies in the Fe positions due to the fact that some Fe ions are trivalent rather than divalent so that this oxide should rather be written as Fe1-xO. Vacancies can also be formed in the anion positions as in TiO2-x. In some rarer instances, there is an excess in either the cations or anions. These extra ions introduce themselves interstitially. This is the case of UO2+x. 
	For example, consider the non-stoichiometric form of wüstite Fe0.9O in which x ions of Fe are divalent (Fe+2) and 1 – x ions are trivalent (Fe+3). A total charge balance yields:
0.9×[2x + 3(1 – x)] = 2
Accordingly: x = 0.78.
This means that 78% of the iron ions have a valence = 2 while 28% are of valence = 3.
2.4.2 Line defects
       	By line defect, is meant the defect known as dislocations. These are formed as some planes slide over other planes in what is known as a slip mechanism. Different materials show different slip directions and the slip mechanism is very close to the same phenomenon in metals. There are actually two types of dislocations: the edge type and the screw type illustrated in Figure (2.13).
	These figures show that edge dislocations move in a perpendicular direction to that of the applied shear stress, while screw dislocations move parallel to that stress.
[image: نتيجة بحث الصور عن ‪edge and screw dislocations‬‏][image: نتيجة بحث الصور عن ‪edge and screw dislocations‬‏]
Fig (2.13)    (a) Edge dislocation				          (b) Screw dislocation

2.4.3 Planar defects
       	The main planar defect consists of grain boundaries. As crystallization takes place, for example from a melt, atomic planes are formed. These atomic planes have different orientations. Sets of planes having the same orientation intersect with other planes of different orientation in boundaries. The set of atomic planes having the same orientation form a grain (Figure 2.14). As will be explained later,   the grains tend to increase in size on firing. This affects negatively the mechanical properties of the material.












Fig (2.14) Grain boundaries
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