Transformation of BPMN models to Petri
nets

Hasso
Plattner
Institut

Motivation

* Check correctness of BPMN models
- Develop new checking algorithms?
- Be smart and benefit from what is already there for Petri nets

« Transformation
- Map high-level and rich concepts of BPMN to P/T Petri nets
- Consider only the required level of abstraction.

Mathias Weske 2009/10 POIS2 - 2

Hasso
Plattner
Institut

Analysis of BPMN Process models

 |dea

BPMN has no formally defined execution semantics
Use the mapping to Petri-nets for analysis of the resulting nets.
The resulting net is fed into an analysis tool, e.g., Woflan.

To recognize structural problems as well as deadlocks or
improper termination.

e Tool Chain

BPMN -> Petri-Nets

- Petri-Nets -> Woflan (Workflow Analyzer from TU Eindhoven)

Mathias Weske 2009/10 POIS2 - 3

Hasso
Plattner
Institut

Correctness of BPMN models

 |dea

- In order to decide properties about BPMN diagrams formalization
IS necessary

- More complex than, e.g., Workflow nets, because
» Less limited structure of the diagrams
« Multiple-instance activities and subprocesses
« Exception handling Intermediate Events
« Message flow among processes

« Approach [Dijkmann, Dumas, Ouyang 2007]

- Formalization of a subset of BPMN by mapping to Petri nets and
analyzing these Petri nets

Mathias Weske 2009/10 POIS2 - 4

B e
Subset of BPMN

w O & 0 0 0O O

start start message message timer error end message end
Start Event Intermediate Event End Event

ACTIVITY [:]

Sub-process
Invocation Activity

Parallel Fork Parallel Join Data-based XOR Event-based XOR XOR Merge
Gateway Gateway Decision Gateway Decision Gateway Gateway

Task

receive

SEQUENCE
FLOW

[Note]:
_—

1. Apart from intermediate
error events, intermediate
Exception Flow message or timer events
may also be the source of
exception flows.

Normal Flow

Proc. 1
a
N

. A message flow may link
task to task, end event to
task, task to start event,

and end event to start

Interacting processes

MESSAGE

FLOW -

<]

Proc. 2

Message Flow

Mathias Weske 200971 Figure 1. A core subset of BPMN elements. 01825

Hasso
Plattner
Institut

Activity Instances

 |dea

Each instance goes through a series of states
At any time it is in exactly one state

States and transitions are represented by a diagram (state
machine)

State transitions occur as response to events

initialize enable begin terminate
| i |

not started | : m
| |

| |

| |

I . I I . I .
_>

' skipped

' N

I
skip
from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Mathias Weske 2009/10 POIS2 - 6

Events and States

« State transitions occur as response to events

* Representation by event charts

‘_> _>
\ \ | S
\ \ N
\ \ AN
\ N

I
I

\ I N
I
| ~
|

N
N

o >@ - 4 -
initialize enable begin terminate
(@)
‘—> init » skipped
\ \
\ \
\
\\ \
\ \
\ \
\ \
o -
initialize skip
(b)

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007
Mathias Weske 2009/10 POIS2 -7

Hasso
Plattner
Institut

= A=

Activity Instance with exception

completed

.—b- enabled

aborted

Mathias Weske 2009/10 POIS2 - 8

Hasso
Plattner
Institut

Well formed Process Diagram

 Defined as

Number of incoming / outgoing edges for
« Start Events
* Intermediate Events
 End Events

Successor node of event-based XOR gateways

For Data-based XOR Gateway
e Order of evaluation
« Default condition is the last

Structural Soundness

Mathias Weske 2009/10 POIS2 -9

Hasso
Plattner
Institut

Well-formedness

Definition 2 (Well-formed core BPD). A core BPD is well formed iff relation F satisfies

the following requirements:

~ YV s€ &% in(s) =@ A |out(s)| = 1. i.e., start events have an indegree of zero and an
outdeqgree of one,
—Veelt outle) =@ A lin(e)| = 1, i.e., end events have an ouldegree of zero and an

indegree of one,

—VreTu&l lin(x)] = 1 and |out(x)| = 1, i.e., tasks and intermediate events have an
indegree of one and an outdegree of one,

~YgeGrugPugV, lin(g)] =1 A |out(g)| > 1. i.e., fork or decision gateways have an
indegree of one and an outdegree of more than one,

~ Y geGTUGM, |out(g)| =1 A lin(g)| > 1, i.e., join or merge gateways have an outdegree
of one and an indegree of more than one,

— Y geg¥, out(g) C ETUTE ., event-based XOR decision gateways must be followed
by intermediate events or receive tasks,

— Y geGP, 3 an order <4 which is a strict total order over the set of flows {g} % out(g),
and for x € out(g) such that = Itcigywout(q)((9,1)<gf). (g.x) is the default flow among
all the outgoing flows from g.°

— Ve, 3se&%, FJeec &, sFu N xF*e, i.e., every object is on a path from a start
event to an end event.

Mathias Weske 2009/10 POIS2 - 10

Mapping to Petri nets

 |dea

- Activities, events and gateways are mapped to Petri net modules

« Notes

- Activities with attached intermediate event need special handling

- Intermediate event timer will be shown analogous intermediate
message event

- Introduction of non-visible (silent) transitions, e.g. XOR-split

Mathias Weske 2009/10 POIS2 - 11

Activities, Events and Gateways

Mathias Weske 2009/

BPMN Object Petri-net Module BPMN Object Petri-net Module
Start s Ps ts Py End e P(x, e) te Pe
xy [e EI xy [T
Message E P (x, E1) P (€1,) Task T Px,m) P(r,y)
t P (F1, 1) P (x1, 1)
v . AT X1 - tu .
: {7 | e
y2 | pic N X2)
Fork Ft P (x, F1) N/ Join 1 NS P(J1 y)
P (F1,y2) P (x2, J1)

to1,y1) Po1,y1)

c — -
y1 O
i 2 B

P(x1 ,) t (w1, x1)

——» X1 :\ —>| ’\ B
; y) Lo
Mo] .r’"-‘\ x2 l'—‘\\ ~--f
{Data-based] P (x; D;)\\‘_— b.\ ',} Merge M1 :\‘ ’,I' b | | {“1 y)
Decision D1 tony) Py P(x2, m1) (w1, x2)
P{E1 y1)
y1 E1 | [Note]:
X ,'"Y/' I ‘\‘__-r' X, X1 or X2 represents an
W) input object, and y, y1 or
{Event-based) 2 P (;‘;,‘1)\‘ ™ e “‘. y2 represents an output
Decision V1 y ’ o, object.
Receive task T1 P (T1,y2)

POIS2 -

12

Hasso
Plattner
Institut

Activities with Attached Intermediate B
Events

Q’

:enable

1:’

®’ #

Mathias Weske 2009/10 POIS2 - 13

Sub-processes

* |dea
- Sub-processes are invoked
- Call and return are modeled by transitions

Subprocess
invocation activity Sl

P\(;,';ll t(sica) Ps

Hasso
Plattner
Institut

Pe (s, return) P@:Y)

Figure 4. Calling a subprocess P via a subprocess invocation activity S7.

Mathias Weske 2009/10

POIS2 - 14

Hasso
Plattner
Institut

Loops

* Idea
- Two types of loops are possible in BPMN

- By "test time" before or after "while" or "repeat-until" loops are

represented
- Sorry, there is an error in the following figure ...

Task T¢ Task T¢

o 1 D o o

ActivityType: Task i | ActivityType: Task
i | LoopType: Standard i | LoopType: Standard

LoopCondition: ¢ LoopCondition: €
TestTime: Before TestTime: After

(a) “while-do” loop (b) “do-until” loop

Figure 10. Macros for structured activity looping.

Mathias Weske 2009/10 POIS2 - 15

MI-Activity

 Remark
- Just considered: Number of instances statically known

- In this case, with (MIl_Ordering = parallel) it can be represented by
an AND-spilt.

Task Tm

PR

|:ActvityType: Task

LoopType: Multilnstance
MI_Condition: n
MI_Ordering: Parallel

Figure 11. Macro for multi-instance activity of which the number of multiple instances
is known at design time.

Mathias Weske 2009/10 POIS2 - 16

Hasso
Plattner
Institut

(a) Order process

Mathias Weske 2009/10 POIS2 - 17

yes .| Confirm
"\ itinerary .
.

Discuss
itinerary
with client

(b) Travel itinerary process

Mathias Weske 2009/10

Hasso
Plattner
Institut

POIS2 - 18

Hasso
Plattner
Institut

Check
credit card
Prepare Ship
products products

(a) Order process

Confirm i%gggm
itinerary Draft
Draft One 2@ itinerary
itinerary
Discuss yes
itinerary ' Discuss
it ol e Change
with client itinerary ()
no with client itinerary
Y
P

(b) Travel itinerary process

Mathias Weske 2009/10 POIS2 - 19

