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Motivation

* Check correctness of BPMN models
- Develop new checking algorithms?
- Be smart and benefit from what is already there for Petri nets

« Transformation
- Map high-level and rich concepts of BPMN to P/T Petri nets
- Consider only the required level of abstraction.
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Analysis of BPMN Process models

 |dea

BPMN has no formally defined execution semantics
Use the mapping to Petri-nets for analysis of the resulting nets.
The resulting net is fed into an analysis tool, e.g., Woflan.

To recognize structural problems as well as deadlocks or
improper termination.

e Tool Chain

BPMN -> Petri-Nets

- Petri-Nets -> Woflan (Workflow Analyzer from TU Eindhoven)
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Correctness of BPMN models

 |dea

- In order to decide properties about BPMN diagrams formalization
IS necessary

- More complex than, e.g., Workflow nets, because
» Less limited structure of the diagrams
« Multiple-instance activities and subprocesses
« Exception handling Intermediate Events
« Message flow among processes

« Approach [Dijkmann, Dumas, Ouyang 2007]

- Formalization of a subset of BPMN by mapping to Petri nets and
analyzing these Petri nets
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Subset of BPMN
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Activity Instances

 |dea

Each instance goes through a series of states
At any time it is in exactly one state

States and transitions are represented by a diagram (state
machine)

State transitions occur as response to events

initialize enable begin terminate
| i |

not started | : m
| |

| |

| |

I . I I . I .
_>

' skipped

' N

I
skip
from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007
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Events and States

« State transitions occur as response to events

* Representation by event charts
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from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007
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Activity Instance with exception

completed

.—b- enabled

aborted
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Well formed Process Diagram

 Defined as

Number of incoming / outgoing edges for
« Start Events
* Intermediate Events
 End Events

Successor node of event-based XOR gateways

For Data-based XOR Gateway
e Order of evaluation
« Default condition is the last

Structural Soundness
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Well-formedness

Definition 2 (Well-formed core BPD). A core BPD is well formed iff relation F satisfies

the following requirements:

~ YV s€ &% in(s) =@ A |out(s)| = 1. i.e., start events have an indegree of zero and an
outdeqgree of one,
—Veelt outle) =@ A lin(e)| = 1, i.e., end events have an ouldegree of zero and an

indegree of one,

—VreTu&l lin(x)] = 1 and |out(x)| = 1, i.e., tasks and intermediate events have an
indegree of one and an outdegree of one,

~YgeGrugPugV, lin(g)] =1 A |out(g)| > 1. i.e., fork or decision gateways have an
indegree of one and an outdegree of more than one,

~ Y geGTUGM, |out(g)| =1 A lin(g)| > 1, i.e., join or merge gateways have an outdegree
of one and an indegree of more than one,

— Y geg¥, out(g) C ETUTE ., event-based XOR decision gateways must be followed
by intermediate events or receive tasks,

— Y geGP, 3 an order <4 which is a strict total order over the set of flows {g} % out(g),
and for x € out(g) such that = Itcigywout(q)((9,1)<gf). (g.x) is the default flow among
all the outgoing flows from g.°

— Ve, 3se&%, FJeec &, sFu N xF*e, i.e., every object is on a path from a start
event to an end event.
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Mapping to Petri nets

 |dea

- Activities, events and gateways are mapped to Petri net modules

« Notes

- Activities with attached intermediate event need special handling

- Intermediate event timer will be shown analogous intermediate
message event

- Introduction of non-visible (silent) transitions, e.g. XOR-split
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Activities, Events and Gateways
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Activities with Attached Intermediate B
Events
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Sub-processes

* |dea
- Sub-processes are invoked
- Call and return are modeled by transitions

Subprocess
invocation activity Sl

P\(;,';ll t(sica) Ps
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Pe (s, return) P@:Y)

Figure 4. Calling a subprocess P via a subprocess invocation activity S7.
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Loops

* Idea
- Two types of loops are possible in BPMN

- By "test time" before or after "while" or "repeat-until" loops are

represented
- Sorry, there is an error in the following figure ...

Task T¢ Task T¢

o 1 D o o

ActivityType: Task i | ActivityType: Task
i | LoopType: Standard i | LoopType: Standard

LoopCondition: ¢ LoopCondition: €
TestTime: Before TestTime: After

(a) “while-do” loop (b) “do-until” loop

Figure 10. Macros for structured activity looping.
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MI-Activity

 Remark
- Just considered: Number of instances statically known

- In this case, with (MIl_Ordering = parallel) it can be represented by
an AND-spilt.

Task Tm

PR

|:ActvityType: Task

LoopType: Multilnstance
MI_Condition: n
MI_Ordering: Parallel

Figure 11. Macro for multi-instance activity of which the number of multiple instances
is known at design time.
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(a) Order process
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(b) Travel itinerary process
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Check
credit card
Prepare Ship
products products

(a) Order process

Confirm i%gggm
itinerary Draft
Draft One 2@ itinerary
itinerary
Discuss yes
itinerary ' Discuss
it ol e Change
with client itinerary ()
no with client itinerary
Y
P

(b) Travel itinerary process
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