

Petri nets

Idea

- Formal representation of concurrent systems
- Formal model and graphical representation are equivalent in classical Petri nets

Remarks

- Developed by Carl Adam Petri, 1962
- Many variations and extensions
- Here: Application for modeling business processes and their analysis

Petri nets

Characterization

- Petri net is a directed graph consisting of places, transitions and directed edges between them
- Petri nets are bipartite graphs, i.e., edges between two places and edges between two transitions are not allowed

Example Petri net

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Definition Petri net

Definition 4.1 A Petri net is a tuple (P, T, F) with

- a finite set P of places
- a finite set T of transitions such that $T \cap P = \emptyset$
- a flow relation $F \subseteq (P \times T) \cup (T \times P)$
- A place $p \in P$ is an input place of a transition $t \in T$, if and only if there exists a directed arc from p to t, i.e., if and only if $(p, t) \in F$. The set of input places for a transition t is denoted $\bullet t$.
- A place p is an output place of a transition t, if and only if there exists a directed arc from t to p, i.e., if and only if $(t,p) \in F$. The set of output places for a transition t is denoted $t \bullet$.
- p• and •p denote the set of transitions that share p as input places or output place, respectively.

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

$$P = \{p1, p2, p3, p4, p5, p6, p7\},\$$

$$T = \{t1, t2, t3, t4, t5\},\$$

$$F = \{(p1, t1), (t1, p2), (p2, t2), (t2, p3), (t2, p4), (p3, t3), (p4, t4), (t3, p5), (t4, p6), (p5, t5), (p6, t5), (t5, p7)\}.$$

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Marking

- The dynamic behavior of a system is represented by tokens in the Petri net
- The state of a Petri net (marking) is described by the distribution of tokens on places

Definition 4.2 The marking (or state) of a Petri (P, T, F) net is defined by a function $M: P \to \mathbb{N}$ mapping the set of places onto the natural numbers, where \mathbb{N} is the set of natural numbers including zero.

Condition Event Nets

- Idea
 - Places represent conditions
 - Transitions represent events
- Consequences
 - A condition is fulfilled IFF a token is in the place
 - At any time, any place holds at most one token

Execution Semantics

Firing transitions

- Transitions can fire when they are enabled
- Transitions are enabled when every input place contains one token
- Firing a transition removes one token from each input place and puts a token on each output place

Note

Different classes of Petri nets have different firing rules

Definition: Condition Event Net

Definition 4.4 A Petri net (P, T, F) is a condition event net, if $M(p) \leq 1$ for all places $p \in P$ and for all states M.

- A transition t is enabled in a state M if M(p) = 1 for all input places p of t and M(q) = 0 for all output places q of t that are not input places at the same time.
- The firing of a transition t in a state M results in state M', where

$$(\forall p \in \bullet t)M'(p) = M(p) - 1 \land (\forall p \in t \bullet)M'(p) = M(p) + 1$$

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Enablement and Reachability

HPI Hasso Plattner Institut

Definition: Enablement and Reachability

Definition 4.3 Let (P, T, F) be a Petri net and M a marking. The firing of a transition is represented by a state change of the Petri net.

- $M \xrightarrow{t} M'$ indicates that by firing t the state of the Petri net changes from M to M'.
- $M \to M'$ indicates that there is a transition t such that $M \xrightarrow{t} M'$.
- $M_1 \stackrel{*}{\to} M_n$ means that there is a sequence of transitions $t_1, t_2, \dots t_{n-1}$ such that $M_i \stackrel{t_i}{\to} M_{i+1}$, for $1 \le i < n$.
- A state M' is reachable from a state M, if and only if $M \stackrel{*}{\to} M'$.

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Execution Semantics

- A Petri net system is a pair (PN,M) with
 - Petri net PN = (P,T,F)
 - Initial Marking M
- Let (({p1,p2,p3}, {t1,t2}, {(p1,t1), (t1,p2), (p2,t2), (t2,p3)}),(1,0,0)) be a Petri net system
 - $M_1 \stackrel{o}{\rightarrow} M_3$ where $o=(t_1t_2)$ transfers Petri net from Marking M_1 to Marking M_3

Reachability

Example

- (0,1,0,0,1) is reachable from (1,1,0,0,0) via o=(t1,t2,t3)
- (0,1,1,0,0) is not reachable from (1,1,0,0,0) because there is no corresponding sequence of transition firing

Process Instances in Petri Nets

- Idea
 - Each process instance is represented by a set of tokens
 - Each token belongs to exactly one process instance
- Problems of classical Petri nets
 - Tokens are not distinguishable
 - Several process instances represented by a Petri net, but C / E nets do not allow independent process progress

Place/Transition Nets

- Idea
 - In each place, an arbitrary number of tokens can reside
 - The output places of an enabled transition may contain tokens
 - Thus, several process instances in a Petri net can be represented
 - What further condition must be met?
 - Edges can be weighted; the firing behavior of transitions depends on the edge weights
- Place/Transition nets
 - Allow many tokens in a place
 - True extension of C/E nets

Place/Transition Nets

Definition 4.5 (P, T, F, ω) is a place transition net if (P, T, F) is a Petri net and $\omega : F \to \mathbb{N}$ is a weighting function that assigns a natural number to each arc, the weight of the arc.

The dynamic behaviour of place transition is defined as follows:

- A transition t of a place transition net is *enabled* if each input place p of t contains at least the number of tokens defined as the weight of the connecting arc, i.e., if $M(p) \ge \omega((p,t))$.
- When a transition t fires, the number of tokens withdrawn from its input places and the number of tokens added to its output places are determined by the weights of the respective arcs.
- From each input place p of t, $\omega((p,t))$ tokens are withdrawn and $\omega((t,q))$ tokens are added to each output place q.
- The firing of a transition t in a state M results in state M', where

$$(\forall p \in \bullet t) M'(p) = M(p) - \omega((p, t)) \land (\forall p \in t \bullet) M'(p) = M(p) + \omega((t, p))$$

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Place/Transition Nets: Example

Workflow Nets

- Idea
 - Using Petri nets to model business processes
- Illustration of concepts
 - Transitions represent activities
 - Places represent states
 - Edges represent the control flow
 - Tokens can carry structured values
 - Process instances' behavior is represented by firing rules

Example Workflow Net

- Activities, conditions, process instances
- Nested activities represented by transitions with double border
- Beispiel
 - XOR-Split expressible by classical firing rule of transitions

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Workflow net: Characterization

- A Workflow net is a Petri net with
 - A specific input place i (the initial place)
 - A specific output place o (the final place)
 - For i, no incoming edges as well as o has no outgoing edges

Remarks

- A token in i represents a not-yet started process instance
- A token in o represents a terminated process instance
- Each process instance is represented by a token flow from i to o

Workflow Nets: Definition

Definition 4.8 A Petri net PN = (P, T, F) is called *workflow net*, if and only if the following conditions hold:

- There is a distinguished place $i \in P$ (called initial place) that has no incoming edge, i.e., $\bullet i = \emptyset$.
- There is a distinguished place $o \in P$ (called final place) that has no outgoing edge, i.e., $o \bullet = \emptyset$.
- Every place and every transition is located on a path from the initial place to the final place.

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Example Workflow Net

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Properties of Workflow Nets

- i is the only initial place: If PN is a Workflow net with initial place i, for all p ∈ P: •p ≠ Ø or p = i
- 2. o is the only final place: If PN is a Workflow net with final place o, for all $p \in P$: $p \in \neq \emptyset$ or p = o
- 3. Let PN be a Workflow net. If we add a transition t*, which connects o to i (i.e. ●t* = {o} and t*●= {i}), the resulting Petri net is strongly connected
- Remark

 A Petri net is strongly connected if for any pair of nodes x,y a path from x to y exists.

Workflow Nets: Property 3

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Control Structures in Workflow Nets

Sequence

AND Split / AND Join

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Analysis of Workflow Nets

- Idea
 - Generic structural correctness criteria for workflow nets.
 - Undesirable behavior of process instances is thus excluded

Basics

- Reachability analysis: Which states can be reached?
- What properties do these states possess?

Reachability

- Idea
 - A Petri net system determines the reachable states
- Hint
 - Communication with the environment is not considered here
- Representation of the reachability graph
 - Nodes represent states
 - Edges represent state transitions, by firing transitions
 - Multiple outgoing edges: non-deterministic behavior
- Naïve technique
 - Manual creation of the reachability graph and analysis

Example(1)

claim record under consideration ready send letter

pay

 Initial state (3,0,0) is always transferred to the final state (0,0,3)

Example (2)

Enablement and Reachability

Structural Analysis

- Idea
 - Structural analysis of Workflow nets to find errors
- Error possibilities
 - Transitions without in-output places
 - Transitions that can never fire (dead transitions)
 - Deadlocks, which prevent the process progress
 - Endless loops (livelock)
 - Activities that are performed after the end of the process

Structural Errors

Dangling tasks

Deadlock

Mathias Weske 2010

Structural Errors

Livelock

Remaining Tokens

Mathias Weske 2010

Soundness-Property

- Soundness
 - (1) For each token on the initial place exactly one token appears eventually on the final place
 - (2) If a token appears on the final place, all other places are empty
 - (3) Each transition can be enabled
- Soundness based on fairness assumption
 - Each possible decision is finally met
 - Consequence
 - No transition starvation
 - · Based on this assumption, the behavior of CPN is simulated

Definition

Definition 6.2 (States o,i and Relations $\geq,>$) Let PN=(P,T,F) be a workflow net, $i\in P$ its start place and $o\in P$ its end place and M,M' markings.

- o is the state in which there is exactly one token in place $o \in P$ and no tokens in any other place of the workflow net
- i is the state in which there is exactly one token in place $i \in P$ and no token in any other place of the workflow net
- $M \geq M'$, if and only if $M(p) \geq M'(p), \forall p \in P$
- M > M', if and only if $M \ge M' \land \exists p \in P : M(p) > M'(p), p \in P$

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Soundness: Definition

Definition 6.3 A workflow system (PN, I) with a workflow net PN = (P, T, F) is *sound*, if and only if

• For every state M reachable from state i there exists a firing sequence leading from M to o, i.e.,

$$\forall M(i \stackrel{*}{\to} M) \implies (M \stackrel{*}{\to} o)$$

• State o is the only state reachable from state i with at least one token in place o, i.e.,

$$\forall M(i \xrightarrow{*} M \land M \ge o) \implies M = o$$

• There are no dead transitions in the workflow net in state i, i.e.,

$$(\forall t \in T) \; \exists M, M' : i \xrightarrow{*} M \xrightarrow{t} M'$$

from M. Weske: Business Process Management, © Springer-Verlag Berlin Heidelberg 2007

Mathias Weske 2010

Soundness

- Check with Reachability analysis
 - Construction of reachability graph with initial state i
- Check Procedure
 - (1) Check if there is a path from any node to o
 - (2) Check if only in a state o at least one token is only in place o
 - (3) Check if every transition occurs in the reachability graph

- PN1 ist not sound
 - After reaching the final place o, there are remaining tokens in the net
 - The reachable state (0,0,0,0,1,0,1) [Format: (i,1,2,3,4,5,o)] vioaltes condition (2)

- PN2 is not sound
 - No termination
 - State (0,0,0,0,0,0,1,0) is Deadlock-state, violating condition (1)
 - Transition t can never fire, violating condition (3)

POIS 1 - 152 Mathias Weske 2010

- PN3 sound
 - (1), (2) and (3) are fulfilled

Mathias Weske 2010

Relaxed Soundness

Observation

- Soundness is very strong criterion that is not appropriate in every case
- Some times a high degree of freedom in the modeling process is needed
 - This can lead to processes that are not sound
 - Nevertheless, it is meaningful to verify

• Idea

- Weakening soundness so that not all process instances must be sound, but every transition is involved in at least one process instance which is sound.

Motivation

- Process instances can run into deadlocks
- Yet, each task participates in a sound execution

Definition Relaxed Soundness

Definition 6.6 Let S = (PN, i) be a workflow system. Let σ, σ' be firing sequences and let M, M' be states. σ is a sound firing sequence if it leads to a state from which a continuation to the final state o is possible: $i \xrightarrow{\sigma} M$ and $\exists \sigma'$ such that $M \xrightarrow{\sigma'} o$.

Definition 6.7 A workflow system S = (PN, i) is relaxed sound if and only if each transition of PN is an element of some sound firing sequence:

$$\forall t \in T \ \exists M, M' : (i \xrightarrow{*} M \xrightarrow{t} M' \xrightarrow{*} o)$$

 \\$Mathias Weske 2009/10

 \\$POIS2 - 297