
Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 1

Lab 4

Testing

SDLC Models:

There are various software development life cycle models defined and designed which are

followed during software development process. These models are also referred as

"Software Development Process Models". Each process model follows a Series of steps

unique to its type, in order to ensure success in process of software development.

Following are the most important and popular SDLC models followed in the industry:

1-Waterfall Model design

‒ Waterfall approach was first SDLC Model to be used widely in Software Engineering

to ensure success of the project.

‒ In "The Waterfall" approach, the whole process of software development is divided

into separate phases. Typically, the outcome of one phase acts as the input for the

next phase sequentially.

‒ Waterfall development has distinct goals for each phase of development. Each phase

of development proceeds in strict order, without any overlapping or iterative steps.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 2

2-Spiral Model design

‒ The spiral model combines the idea of iterative\incremental development with the

systematic, controlled aspects of the waterfall model.

‒ In the first quadrant of the spiral model each cycle begins with the identification of

objectives for that cycle, the alternatives possible for achieving objectives and the

constraints.

‒ The next step is to evaluate these different alternatives based on objectives and

constraints. The evaluation in this step is based on the risk perception of the project.

‒ The next step is to develop strategies that resolve the risks; this step involves activities

like bench marking, simulation etc.

‒ After this the software is developed keeping in mind the risks and finally next stages are

planned.

‒ The spiral model has four phases:

• Identification: This phase starts with gathering the business requirements in the

baseline spiral. In the subsequent spirals as the product matures, identification of

system requirements, subsystem requirements and unit requirements are all done

in this phase. This also includes understanding the system requirements by

continuous communication between the customer and the system analyst.

• Design: Design phase starts with the conceptual design in the baseline spiral and

involves architectural design, logical design of modules, physical product design and

final design in the subsequent spirals.

• Construct or Build: Construct phase refers to production of the actual software

product at every spiral. In the baseline spiral when the product is just thought of

and the design is being developed a POC (Proof of Concept) is developed in this

phase to get customer feedback.

• Evaluation and Risk Analysis: Risk Analysis includes identifying, estimating, and

monitoring technical feasibility and management risks, such as schedule slippage

and cost overrun. At the end of first iteration, the customer evaluates the software

and provides feedback.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 3

3-Agile Model design

‒ The purpose behind developing agile development methodology was to have agility

which was missing in traditional waterfall models.

‒ Agile methodology uses continuous stakeholder feedback to produce high quality

consumable code through use cases and a series of short time-boxed iterations.

‒ In agile, the tasks are divided to time boxes (small periods) to deliver specific

features for a release. Each build is incremental in terms of features; the final build

holds all the features required by the customer.

‒ Agile methodology has four key features:

1. Stable code

2. Continuous stakeholder feedback

3. Cross functional and Self-directed teams

4. Sustainable pace

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 4

Extreme Programming (XP):

‒ XP is one of the most popular agile methodologies. XP is a disciplined approach to

delivering high-quality software quickly and continuously.

‒ It promotes high customer involvement, rapid feedback loops, continuous testing,

continuous planning, and close teamwork to deliver working software at very

frequent intervals, typically every 1-3 weeks.

‒ Extreme Programming emphasizes teamwork.

‒ XP is a software development methodology which is intended to improve software

quality and responsiveness to changing customer requirements.

‒ As a type of agile software development, it advocates frequent "releases" in short

development cycles, which is intended to improve productivity and introduce

checkpoints at which new customer requirements can be adopted.

‒ The methodology takes its name from the idea that the beneficial elements of

traditional software engineering practices are taken to "extreme" levels.

‒ As an example, code reviews are considered a beneficial practice; taken to the

extreme, code can be reviewed continuously, i.e. the practice of pair programming.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 5

‒ The original XP recipe is based on five simple values – simplicity, communication,

feedback, courage and respect –

‒ Twelve supporting XP practices (four categories):

1st Fine scale feedback

1) Test-Driven Development(TDD): is a software development process that relies on the

repetition of a very short development cycle: first the developer writes an (initially failing)

automated test case that defines a desired improvement or new function, then produces the

minimum amount of code to pass that test, and finally refactors the new code to acceptable

standards.
2) Planning Game: The main planning process within extreme programming is called the

Planning Game. The game is a meeting that occurs once per iteration, typically once a week.

The planning process is divided into two parts:
1-Releasing Planning 2-Iteration Planning

3) Pair Programming: two engineers participate in one development effort at one

workstation. Each member performs the action the other is not currently doing: While one

types in Unit Tests the other thinks about the class that will satisfy the test, for example. A

single, unsubstantiated, unscientific, undergraduate's survey has shown that, after training

for the "People Skills" involved, two programmers are more than twice as productive as one

for a given task.
4) Whole Team: Within XP, the "customer" is not the one who pays the bill, but the one who

really uses the system. XP says that the customer should be on hand at all times and

available for questions. For instance, the team developing a financial administration system

should include a financial administrator.

2nd Continuous process

5) Continuous Integration: The development team should always be working on the latest

version of the software. Since different team members may have versions saved locally with

various changes and improvements, they should try to upload their current version to the

code repository every few hours, or when a significant break presents itself. Continuous

integration will avoid delays later on in the project cycle, caused by integration problems.
6) Design Improvement: functional changes start requiring changes to multiple copies of

the same (or similar) code. Another symptom is that changes in one part of the code affect

lots of other parts. XP doctrine says that when this occurs, the system is telling you

to refactor your code by changing the architecture, making it simpler and more generic.
7) Small Releases: The delivery of the software is done via frequent releases of live

functionality creating concrete value. The small releases help the customer to gain

confidence in the progress of the project.

3rd Shared understanding

8) Coding Standards: Coding standard is an agreed upon set of rules that the entire

development team agree to adhere to throughout the project. The standard specifies a

consistent style and format for source code, within the chosen programming language, as

well as various programming constructs and patterns that should be avoided in order to

reduce the probability of defects.
9) Collective Code Ownership: Collective code ownership means that everyone is

responsible for all the code; this, in turn, means that everybody is allowed to change any part

of the code.
10) Simple Design: Programmers should take a "simple is best" approach to software design.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 6

11) System Metaphor: The system metaphor is a story that everyone - customers,

programmers, and managers - can tell about how the system works. For example a library

system may create loan_records(class) for borrowers(class), and if the item were to become

overdue it may perform a make_overdue operation on a catalogue (class). For each class or

operation the functionality is obvious to the entire team.

4th Programmer welfare

12) Sustainable Pace: The concept is that programmers or software developers should not

work more than 40 hour weeks, and if there is overtime one week, that the next week should

not include more overtime. Since the development cycles are short cycles of continuous

integration, and full development (release) cycles are more frequent, the projects in XP do

not follow the typical crunch time that other projects require (requiring overtime).

All the previous design models are in need to be tested some times per each phase or

as a whole system.

The following section will focus in how to test a software and its life cycle.

Software Testing Life Cycle (STLC):

STLC defines the steps/stages/phases in testing of software. Testing software is an integral

part of building a system.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 7

1) Requirements Analysis:

o In this phase, testers analyze the customer requirements and work with developers

during the design phase to see which requirements are testable and how they are

going to test those requirements.

o It is very important to start testing activities from the requirements phase itself

because the cost of fixing defect is very less if it is found in requirements phase

rather than in future phases.

o If the software is based on inaccurate requirements, then despite well written code,

the software will be unsatisfactory. Most of the defects in a system can be traced

back to wrong, missing, vague or incomplete requirements.

o Requirements testing: is testing the requirements whether they are feasible or not.

Because a project depends on a number of factors like time, resources, budget etc.

Before start working on a project it’s important to test the requirement.

� Does each requirement have a quality measure that can be used to test whether any

solution meets the requirement?

� Does the specification contain a definition of the meaning of every essential subject

matter term within the specification?

� Is every reference to a defined term consistent with its definition?

� Is the context of the requirements wide enough to cover everything we need to

understand?

� Have we asked the stakeholders about conscious, unconscious and undreamed of

requirements?

� Have we asked the stakeholders about conscious, unconscious and undreamed of

requirements?

� Is every requirement in the specification relevant to this system?

o When in SDLC? In Analysis Phase

2- White box Testing:

o White box testing is the detailed investigation of internal logic and structure of the code.

o White box testing is a method of testing software that tests internal structures or

workings of an application, as opposed to its functionality (i.e. black-box testing).

o In white-box testing an internal perspective of the system, as well as programming skills,

are used to design test cases. The tester chooses inputs to exercise paths through the

code and determine the appropriate outputs.

o The tester needs to have a look inside the source code and find out which unit/chunk of

the code is behaving inappropriately.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 8

o The tester chooses inputs to exercise paths through the code and determines the

appropriate outputs.

o Internal structure/ design/ implementation of the item being tested is known to the

tester.

o EXAMPLE: A tester, usually a developer as well, studies the implementation code of a

certain field on a webpage, determines all legal (valid and invalid) AND illegal inputs and

verifies the outputs against the expected outcomes, which is also determined by studying

the implementation code.

o When in SDLC? In Implementation Phase

3- Black box Testing:

o Black Box Testing is a software testing method in which the internal

structure/design/implementation of the item being tested is not known to the tester.

These tests can be functional or non-functional, though usually functional.

o Black Box Testing is a software testing method in which the internal structure/ design/

implementation of the item being tested is NOT known to the tester

o This method of test can be applied to virtually every level of software

testing: unit, integration, system and acceptance. It typically comprises most if not all

higher level testing, but can also dominate unit testing as well.

o EXAMPLE

o A tester, without knowledge of the internal structures of a website, tests the web pages

by using a browser; providing inputs (clicks, keystrokes) and verifying the outputs

against the expected outcome.

4-Unit Testing:

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 9

o Unit Testing is a level of the software testing process where individual units/components

of a software/system are tested. The purpose is to validate that each unit of the software

performs as designed.

o A unit is the smallest testable part of software. It usually has one or a few inputs and

usually a single output.

o The primary goal of unit testing is to take the smallest piece of testable software in the

application, isolate it from the remainder of the code, and determine whether it behaves

exactly as you expect. Each unit is tested separately before integrating them into modules to

test the interfaces between modules. Unit testing has proven its value in that a large

percentage of defects are identified during its use.

o Method: Unit Testing follows the methodology of while box testing

o When: Unit testing is the first level of testing and is performed prior to Integration

Testing.(Implementation Phase)

o Who? Unit Testing is normally performed by software developers themselves or their peers.

In rare cases it may also be performed by independent software testers.

 5-Integration Testing:

o Integration Testing is a level of the software testing process where individual units are

combined and tested as a group

o It is a different form of testing, in which the interaction between two or more “units” is

explicitly tested. Integration tests verify that the components of your application work

together. You might make sure that an email was actually sent in an integration test.

o It is the phase in software testing in which individual software modules are combined and

tested as a group.

o It occurs after unit testing and before validation testing.

o Integration testing takes as its input modules that have been unit tested, groups them in

larger aggregates, applies tests defined in an integration test plan to those aggregates, and

delivers as its output the integrated system ready for system testing.

o When? Integration Testing is performed after Unit Testing and before System

Testing.(Implementation Phase)

o Who? Either Developers themselves or independent Testers perform Integration Testing.

6- System Testing:

o System Testing is a level of the software testing process where a complete, integrated

system/software is tested.

o It is testing conducted on a complete, integrated system to evaluate the system's compliance

with its specified requirements. System testing falls within the scope of black box testing, and

as such, should require no knowledge of the inner design of the code or logic.

o Ensures that application programs written and tested in isolation work properly when

integrated into the total system.

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 10

o System testing takes, as its input, all of the "integrated" software components that have

passed integration testing and also the software system itself integrated with any applicable

hardware system(s).

o The purpose of integration testing is to detect any inconsistencies between the software

units that are integrated together (called assemblages) or between any of

the assemblages and the hardware.

o System testing is a more limited type of testing; it seeks to detect defects both within the

"inter-assemblages" and also within the system as a whole.

o When? System Testing is performed after Integration Testing and before Acceptance

Testing.(Implementation Phase)

o Who performs it? Normally, independent Testers perform System Testing.

7-Systems acceptance test

o Acceptance Testing is a level of the software testing process where a system is tested for

acceptability.

o A test performed on the final system wherein users conduct a verification, validation, and

audit test.

o Uses real data over an extended time period

o Extensive test that addresses: verification testing, validation testing, and audit testing.

o User acceptance is a type of testing performed by the Client to certify the system with

respect to the requirements that was agreed upon. This is beta testing of the product &

evaluated by the actual end users. The main purpose of this testing is to validate the end-to-

end business flow.

o Method: use black box testing methodology

8-Functional Testing:

o Testing of the functions of component or system is done. It refers to activities that verify a

specific action or function of the code. Functional test tends to answer the questions like

“can the user do this” or “does this particular feature work”.

o This is a type of black box testing that is based on the specifications of the software that is to

be tested.

o It is a way of checking software to ensure that it has all the required functionality that's

specified within its functional requirements.

o It is used to verify that a piece of software is providing the same output as required by the

end-user or business.

o Functional testing involves evaluating and comparing each software function with the

business requirements.

o Some functional testing techniques include smoke testing, white box testing, black box

testing, unit testing and user acceptance testing.

o When in SDLC? In Implementation Phase

Cairo University

Faculty of computers and information

System Analysis and Design 2

Lab 4 11

9- Validation Testing:

o The process of evaluating software during or at the end of the development process to

determine whether it satisfies specified business requirements.

o Are we building the right product?

10- Verification Testing:

o The process of evaluating work-products (not the actual final product) of a development

phase to determine whether they meet the specified requirements for that phase.

o Are we building the product right?

o The evaluation of whether or not a product, service, or system complies with a regulation,

requirement, specification, or imposed condition. It is often an internal process. Contrast

with validation."

o Runs the system in a simulated environment using simulated data.

o Alpha testing

o Simulated environment using simulated data

o Checks for errors and omissions regarding end-use and design specifications

11- Web Accessibility Testing:

o Web accessibility testing is a subset of usability testing where the users under consideration

have disabilities that affect how they use the web. The end goal, in both usability and

accessibility, is to discover how easily people can use a web site and feed that information

back into improving future designs and implementations.

o Accessibility testing is the technique of making sure that your product is accessibility

compliant. There could be many reasons why your product needs to be accessibility

compliant.

o Accessibility testing is a type of systems testing designed to determine whether individuals

with disabilities will be able to use the system in question, which could be software,

hardware, or some other type of system. Disabilities encompass a wide range of physical

problems, including learning disabilities as well as difficulties with sight, hearing and

movement.

