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Abstract 

In this article asset pricing dynamics in artificial financial markets model is studied. The 

financial market is populated with two heterogeneous beliefs of the traders; technical 

trading rule and fundamental trading rule. The agents are loss averse over asset prices 

fluctuations. The loss aversion behaviour depends on previous performance of the trading 

strategy in terms of evolutionary fitness measure. We propose a novel application of the 

prospect theory to an agent-based model, and by simulation, the effect of evolutionary 

fitness measure on adaptive belief system is investigated. Qualitative and quantitative 

validation of our proposed agent-based financial markets model is performed using real 

financial data of the Egyptian Stock Exchange. We find that our framework can explain 

important stylized facts in financial time series, such as; random walk prices, bubbles and 

crashes, fat tails in the returns distribution, mean reversion, excess volatility, and 

volatility clustering.   
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1. Introduction 

Artificial financial markets are models developed for understanding the endogenous 

variables that cause the emergent behaviours and patterns at the macro-level. These 

artificial markets serve as test-beds for policy makers to explore the effect of different 

regulatory policies which improves the decision making process.   

Studying financial markets as complex adaptive systems comprised of heterogeneous 

agents invites for agent based modelling as the most suitable approach, as it provides 

more flexible tools to simulate the real world [1]. This approach implies new challenges 

and opportunities for policy and managing economic crisis. 

Behavioural finance is a new paradigm seeks to link behavioural and cognitive 

psychological theories with finance to understand the bounded rational decisions of 

financial traders. Since 1979, Kahneman and Tversky provoked the idea of the choice 

under uncertainty. They spent many years to study this concept by conducting 

experiments and collecting data about the agents’ behaviour under uncertainty [2, 3, 4, 5]. 

Kahneman and Tversky  propose that, the outcomes of risky prospects are estimated by a value 

function. This function is characterized mainly by; loss Aversion, that is; the function is steeper 

in the negative than in the positive domain. This characteristic describes an asymmetric S-

shaped value function which is concave above a reference point and convex below it.  

Although the prospect theory has been developed since 1979, yet; there is no clear 

definition of gains and losses and how to measure them. Also, there is no clear identification 

of the reference point. Accordingly, its application into financial markets framework is very 

challenging. Our model provides a novel application of the prospect theory, where agents 

recognize their gains and losses in terms of the evolutionary fitness measure. 

Frankel and Froot [2], Taylor and Allen [3], and Menkhoff [4] conducted different 

questionnaire surveys to investigate traders’ main heuristics in order to model their 

behaviours. The studies revealed that traders rely on two trading philosophies; the 

technical analysis and the fundamental analysis, to determine their trading strategies. 

According to chartists, the ones believe that price trend will continue and follow technical 

analysis; they try to maximize their profits by taking advantages of asset price 

fluctuations [5]. Chartists compare the current price with the previous one, they buy (sell) 
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when the asset price increases (decreases). On the other hand, fundamentalists, the ones 

follow fundamental analysis; believe that the asset price will revert to its fundamental 

value [6]. Therefore, fundamentals buy (sell) when the asset price decreases (increases) more than 

its fundamental value. 

Many studies were developed to model the switching dynamics between fundamental 

analysis and technical analysis, such as; Day and Huang [7], Brock and Hommes [8], 

Farmer and Joshi [9], and.Westerhoff [10]. Few authors studied behavioural biases in their 

agent-based financial framework, such as; Feldman [11] and Lovric, et al. [12].  

We explore the agent-based modelling as a tool for studying loss aversion behavioural 

bias introduced by the prospect theory. Our model contributes to behavioural finance 

research by linking the macro and the micro behaviours. This link is ignored in classical 

models studied behavioural finance. To our knowledge no research has been conducted to 

study the impact of loss aversion behavioural bias on the adaptive belief system and asset 

pricing dynamics, which is considered as our main contribution.  

The rest of this article is organized as follows. In Section 2, we introduce an agent-

based financial market model in which the chartist traders are loss averse along with the 

basic parameter settings and model implementation. In Section 3, we investigate the extent 

to which our proposed agent-based model is able to replicate the stylized facts of the real 

financial markets. Also, the simulation results of a large Monte Carlo analysis we 

performed to check the robustness of our results are presented. In Section 4, we summarize 

our results and conclusions.  

2. An Agent-based Model under Loss Aversion 

In this section we introduce an agent-based financial model populated with 

heterogeneous agents with loss aversion behavioural bias. At the beginning we discuss 

the model definition and assumptions. In Subsection 2.2, the detailed model is provided. 

Finally, the parameter setting is depicted in Subsection 2.3.  

2.1 Model Definition and Assumptions 

The main assumptions of the proposed artificial financial market can be summarized as follows; 

 There is only one risky asset to be traded.  
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 There are two types of agents; market maker and traders.  

 There are two heterogeneous beliefs of the traders; technical trading rule and 

fundamental trading rule. It is assumed that fundamental traders can calculate the 

fundamental values. 

 In each time step 𝑡, 𝑡 = 0,1, … , 𝑇, each trader has three alternative actions; either 

to submit orders following technical analysis (chartists), submit orders following 

fundamental analysis (fundamentalists), or abstain from the market. It is assumed 

that at time t = 0, the orders are submitted without knowing the asset price. 

 Beliefs adaptation rule; the agents are boundedly rational as they tend to choose 

the strategy performed well in the recent past, and therefore display some kind of 

learning behaviour. It is assumed that, the fitness of each trading strategy is available 

and publically known by all agents. 

 The chartist agents are loss aversion so they recognize their losses more than 

double their recognition of gains. So they consider a value function proposed by 

the prospects theory to evaluate the fitness of each trading strategy.  

 The fraction of traders use each strategy is determined via a discrete choice 

model.  

 The market maker correlates the orders and adjusts the asset price according to 

the net submitted orders. The market maker is assumed to be a risk neutral and 

settle the asset prices without intervention.  

 Agents in our market interact indirectly through their impact on price adjustment 

which affects the performance of the trading rules which affects the agent 

decision to select trading strategy and so on. 

2.2 Model Formulation 

The behaviour of the market maker is described as in Former and Joshi [9], where the 

price settlement is formulated as a log-linear price impact function. This function 

measures the relation between the quantity ordered (demand/supply) and the price of the 

asset. Thus, the log-price of the asset in period t+1 is given by; 

𝑝𝑡+1 = 𝑝𝑡 + 𝑎(𝑤𝑡
𝑐𝐷𝑡

𝑐 + 𝑤𝑡
𝑓

𝐷𝑡
𝑓

) + 𝛼𝑡                   (1) 
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where 𝑎 is a positive price settlement parameter, 𝐷𝑡
𝑐 and 𝐷𝑡

𝑓
 are orders submitted by 

chartists and fundamentalists; respectively,  at time t and 𝑤𝑡
𝑐 and 𝑤𝑡

𝑓
 are weights of 

technical strategy and fundamental strategy; respectively, at time t. In order to make our 

assumptions close to the real market, the noise terms 𝛼𝑡 are added to catch any random 

factors affect the price settlement process. It is assumed that, 𝛼𝑡, 𝑡 = 1, 2, … , 𝑇 are IID 

normally distributed random variables with mean zero and constant standard deviation 𝜎𝛼.  

The goal of technical analysis used by chartists is to exploit the price changes [5]. Orders 

exploiting technical trading rules may be written as; 

𝐷𝑡
𝑐 = 𝑏(𝑝𝑡 − 𝑝𝑡−1) + 𝛽𝑡                                                  (2) 

where b is a positive reaction parameter (also called extrapolating parameter) that capture 

the strength of agents’ sensitivity to the price signals. The first term at the right hand side 

of Eq. (2) is representing the difference between current and last price is the exploitation 

of price changes. The second term captures additional random orders of technical trading 

rules. 𝛽𝑡, 𝑡 = 1, 2, … , 𝑇  are IID normally distributed random variables with mean zero 

and constant standard deviation 𝜎𝛽. 

Fundamental analysis assumes that prices will revert to their fundamental values in 

the short run [6]. Orders generated by fundamental trading rules may be formalized as;  

𝐷𝑡
𝑓

= 𝑐(𝐹𝑡 − 𝑝𝑡) + 𝛾𝑡                                                    (3) 

c is a reaction parameter (also called a reverting parameter) for the sensitivity of 

fundamentalists' excess demand to deviations of the price from the underlying 

fundamental value. 𝐹𝑡
1 are log-fundamental values (or simply fundamental values) [7]. 𝛾𝑡 

is introduced to capture additional random orders of fundamental trading rules. 𝛾𝑡, 𝑡 =

1, 2, … , 𝑇  are IID normally distributed random variables with mean zero and constant 

standard deviation 𝜎𝛾. 

The evolutionary part of the model, inspired by Brock and Hommes [8], depicts how 

beliefs are evolved over time. That is, how agents adapt their beliefs and switching 

between strategies; which is mirrored in their fractions 𝑤𝑡 = {𝑤𝑡
𝑐, 𝑤𝑡

𝑓
, 𝑤𝑡

0}, where 𝑤𝑡
0 

                                                           

1 The fundamental value is assumed to be a constant, such that; 𝐹𝑡 = 0. This assumption enables us to refer 

market crashes to price dynamics and eliminate the possibility of fundamental crashes. 
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represents the fraction of inactive agents and 𝑤𝑡
𝑐, 𝑤𝑡

𝑓
 are as indicated in Eq. (1), the 

strategy weights add up to one. Fractions are updated according to evolutionary fitness 

measure (or attractiveness of the trading rules) can be presented as follows; 

𝐴𝑡
𝑐 = (exp(𝑝𝑡) − exp(𝑝𝑡−1))𝐷𝑡−2

𝑐 + 𝑚𝐴𝑡−1
𝑐                         (4) 

𝐴𝑡
𝑓

= (exp(𝑝𝑡) − exp(𝑝𝑡−1))𝐷𝑡−2
𝑓

+ 𝑚𝐴𝑡−1
𝑓

                         (5) 

𝐴𝑡
0 = 0                                                                                            (6) 

where 𝐴𝑡
𝑐, 𝐴𝑡

𝑓
, and 𝐴𝑡

0  are the fitness measure of using chartist strategy, fundamental 

strategy, and no-trade strategy respectively. The inactive traders submit zero orders, so 

they got zero attractiveness of taking such an action. The fitness measure of the other two 

trading rules; technical analysis and fundamental analysis, depends on two components. 

The first term of the right hand side of Eq. (4) and Eq. (5) is the performance of the 

strategy rule in most recent time. Notice that, orders submitted in period 𝑡 − 2 are 

executed at the price declared in period 𝑡 − 1. The gains or losses depend on the price 

declared in period t. The second term of the right hand side of Eq. (4) and Eq. (5) 

represents agents’ memory, where 0 ≤ 𝑚 ≤ 1 is the memory parameter that measures the speed 

of recognizing current myopic profits. For 𝑚 = 0, agent has no memory, while for 𝑚 = 1 they 

compute the fitness of a rule as the sum of all observed myopic profits.  

However, in Westerhoff [10]; agents symmetrically perceive gains and losses in 

terms of fitness. Our model proposes a realistic behavioural bias, so that; chartists 

evaluate their strategy fitness in terms of a value function of gains and losses. The 

proposed value function implies that, chartists recognize losses more than twice their 

recognition of gains. As our focus is to study loss aversion, we follow the Tversky and 

Kahneman [13] and Benartzi and Thaler [14] piecewise linear value function proposed by 

the prospect theory. So, the value of the fitness of technical strategy is given by; 

𝑣𝑐 = {

𝐴𝑡
𝑐                                   𝐴𝑡

𝑐 ≥ 0
𝑓𝑜𝑟

 𝐴𝑡
𝑐                                𝐴𝑡

𝑐 < 0
                                   (7) 

where  is the parameter of loss aversion that measures the relative sensitivity to gains and losses.  
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Following Manski and McFadden [15], the market share of each strategy can be 

obtained by the discrete choice model2, as follows; 

𝑤𝑡
𝑐 =

exp (𝑟𝑣𝑐)

exp(𝑟𝑣𝑐) + exp(𝑟𝐴𝑡
𝑓

) + exp (𝑟𝐴𝑡
0)

                                (8) 

 𝑤𝑡
𝑓

=
exp (𝑟𝐴𝑡

𝑓
)

exp(𝑟𝑣𝑐) + exp(𝑟𝐴𝑡
𝑓

) + exp (𝑟𝐴𝑡
0)

                               (9) 

𝑤𝑡
0 =

exp (𝑟𝐴𝑡
0)

exp(𝑟𝑣𝑐) + exp(𝑟𝐴𝑡
𝑓

) + exp (𝑟𝐴𝑡
0)

                              (10) 

The higher attractive strategy will be chosen by the agents. The parameter 𝑟 in Eq. 

(8), Eq. (9), and Eq. (10); is named the intensity of choice and measures the sensitivity of 

mass of agents is selecting the trading strategy with higher fitness measure. In such 

adaptive beliefs, financial market prices and fractions of trading strategies coevolve over 

time. The steps of each simulation run are depicted in Algorithm 1. 

2.3 Basic Parameter Setting  

Model parameter settings are determined following Tversky and Kahneman [13], Winker 

and Gilli [16] Farmer and Joshi [9], and Westerhoff [10]. The values of model parameters 

were chosen so that the model can mimic the dynamics of real financial markets.  

The main idea behind choosing specific values of the parameters can be summarized 

as follows. The reaction parameters of technical and fundamental trading rules 

(multiplied by the price settlement parameter) are between 0 and 0.1 for daily data. 

To keep the autocorrelation3 of raw returns4 close to zero; parameters b and c are chosen 

as follows. The population of the chartists is matched with the population of the 

                                                           

2 A discrete choice model specifies probabilities 𝑃(𝑖|𝑧, 𝜃) for each set of alternatives {𝑖} among which 

decision maker can choose. The exogenous variables z describe observable attributes and characteristics of 

the decision maker and available alternatives to her/him. The parameters 𝜃 are to be estimated from the 

observed choices of a sample of decision makers. The choice probabilities are determined by the 

multinomial logit model as follows; 𝑃(𝑖|𝑧, 𝜃) =
exp𝑉𝑖 (𝑧,𝜃)

∑ 𝑒𝑥𝑝𝑉𝑗(𝑧,𝜃)𝑀
𝑗=1

 where M is the number f available 

alternatives. And 𝑉𝑖  (𝑧, 𝜃) is a summary statistic measuring the attractiveness of alternative i. It has the 

linear form of  𝑉𝑖(𝑧, 𝜃) =  𝑧𝑖 . 𝜃, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑀 [15]. 
3 Autocorrelation Function (ACF) studies the linear dependence between  𝑟𝑡  and its past values  𝑟𝑡−𝑙 . The 

correlation coefficient between 𝑟𝑡  and 𝑟𝑡−𝑙 is named lag- 𝑙 autocorrelation of 𝑟𝑡and it is denoted by ACr
𝑙 , 
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fundamentalists, so the positive short-term autocorrelations induced by the chartists are 

cancelled by the negative short-term autocorrelation of the fundamentalists. Therefore, 

the reaction parameters of technical and fundamental trading rules are set to be the same. 

 

Algorithm 1. Pseudo code for the proposed artificial financial market. 

1. Initialize 

2. repeat n times 

3. for t = 2 : T do 

4.       submit orders use Eq. (2) or Eq. (3) 

5.       evaluate trading rules use Eq. (4), Eq. (5) & Eq. (6) 

6.       If [𝐴𝑡
𝑐 ≥ 0] then 𝑣𝑐 = 𝐴𝑡

𝑐; 

7.           else 𝑣𝑐 =  𝐴𝑡
𝑐; 

8.       end if 

9.       Calculate weights use Eq. (8), Eq. (9) & Eq. (10) 

10.       Update price use Eq. (1) 

11. end do 

12. end loop 

 

The value of 𝜎𝛽 is assumed to be higher than  𝜎𝛾 to reflect the level of noise 

associated with technical trading rule. The value of m is assumed to be near one, so the 

agents have good memory. Also, the value of r reflects the bounded rationality in 

choosing the trading rule with highest fitness measure. Finally, experiments estimate loss 

aversion parameter to be in the neighbourhood of 2, that is; the utility of losses is twice as 

great as the utility of gains [3, 17]. Experimental estimation of  has been proposed by 

Tversky and Kahneman [17], such as;  = 2.25. The values of model parameters are 

summarised in Table1. In the following section we study the evolutionary dynamics of our 

proposed model. 

                                                                                                                                                                             

which can be found by; ACr
𝑙 =

𝐶𝑜𝑣 (𝑟𝑡,𝑟𝑡−𝑙)

√𝑉𝑎𝑟(𝑟𝑡)𝑉𝑎𝑟(𝑟𝑡−𝑙)
=

𝐶𝑜𝑣 (𝑟𝑡,𝑟𝑡−𝑙)

𝑉𝑎𝑟(𝑟𝑡)
=

𝛾𝑙

𝛾0

, where the property of weak stationarity   

𝑉𝑎𝑟(𝑟𝑡) = 𝑉𝑎𝑟(𝑟𝑡−𝑙)   is  used.  From   the   definition;   ACr
0

= 1,   ACr
𝑙

= ACr
−𝑙

,   and −1 ≤ ACr
𝑙

≤ 1 [28]. 
4 The returns are defined as; 𝑟𝑡 = log(

𝑃𝑡

𝑃𝑡−1
) =  𝑝𝑡 − 𝑝𝑡−1, where 𝑝𝑡 = log (𝑃𝑡), [28]. 
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3. Evolutionary Dynamics 

In this section we discuss the dynamics of our model by simulation. In Subsection 3.1 we 

describe the simulation design. The extent to which our model is able to replicate the 

Table 1. Parameters for the simulation of the financial markets under loss aversion. 

Parameter Value Description of parameter 

𝑎 1 Price settlement parameter 

𝑏 0.04 Extrapolating parameter 

𝑐 0.04 Reverting parameter 

𝑚 0.975 Memory parameter 

𝑟 300 Intensity of choice parameter 

𝜎𝛼 0.01 Standard deviation of the random factors affect the price settlement process 

𝜎𝛽 0.05 Standard deviation of the additional random orders of technical trading  

𝜎𝛾 0.01 Standard deviation of the additional random orders of fundamental trading  

 2.25 Loss aversion parameter 

 

statistical properties, of the real financial markets is investigated in Subsection 3.2.1. The 

results obtained from a large Monte Carlo analysis we performed to validate our model and 

investigate the robustness of our model dynamics are illustrated in Subsection 3.2.2. 

Finally, the micro-macro dynamics and the effect of loss aversion on the adaptive belief 

system and the asset pricing dynamics are investigated in Subsection 3.2.3. 

3.1 Simulation Design 

To implement the proposed model, an agent-based financial market simulation platform 

is developed using Netlogo platform.  NetLogo is the environment for modelling 

problems or systems which have natural or social character [18]. We investigate the 

performance of 5000 simulation runs; each containing 4120 observations. In the 

initialization all parameters of the model can be defined as in Table 1, and the values of 

the other variables, such as; 𝑝𝑡, 𝑝𝑡−1, 𝑤𝑡
𝑐  ,𝑤𝑡

𝑓
, 𝑤𝑡

0,  𝐷𝑡−2
𝑐  , 𝐷𝑡−2

𝑓
 , 𝐷𝑡

𝑐 , 𝐷𝑡
𝑓
, 𝐴𝑡−1

𝑐 , 𝐴𝑡−1
𝑓

, 𝐴𝑡
𝑐, 

and 𝐴𝑡
𝑓
 are set to zero. The steps of our model implementation are summarized in 

Algorithm 1. In the following subsection, the simulation results are indicated. 
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3.2 Simulation Results 

The extent to which our model is able to replicate the stylized facts of real financial 

markets is investigated. The Egyptian Stock Exchange (ESE) main index (EGX 30) is 

used for model validation purposes. The data of the EGX 30 covers the period between 

January 1, 1998 and November 16, 2014 of 4123 daily observations mirroring about 16 

years. The financial data is collected from the Egyptian Stock Exchange website5. We 

apply time series analysis and econometrics using Excel and Eviews software. 

Many researchers conducted empirical studies to identify a set of common 

characteristics among financial data that are known as stylized facts [21, 22, 23].  These 

main facts can be summarised as follows; crashes and bubbles, random-walk price 

behaviour, fat tail distributions of returns, excess volatility, and volatility clustering.  

3.2.1 Qualitative Results 

Fig. 1 compares directly a snapshot of the dynamics of a representative simulation run 

(the set of panels on the right) and the macro behaviour of the EGX 30 (the set of panels 

on the left), respectively. Fig. 1 is designed as follows. The panel shows from top to 

bottom; the evolution of log-prices (index prices for the EGX 30), the returns, the 

distribution of returns, the behaviour of extreme events in Hill plot of the left tail and the 

right tail, respectively [19]6, and the autocorrelation functions of raw (solid line), squared 

(rounded line), and absolute returns (dashed line), respectively. 

Now, to check the extent to which our model is able to replicate the real financial data; 

we need to look closely at Fig. 1. The first panel in Fig. 1 depicts that, the prices of the model 

fluctuate around their fundamental values. However, our model can generate significant 

bubbles and crashes as those observed in the EGX 30. For example, the snapshot shows a  

                                                           

5 http://www.egx.com.eg/english/indexData.aspx?type=1&Nav=1  

6 Hill estimate of tail-index 𝛼̂𝑘 = (
1

𝑛𝑘
∑ log 𝑅𝑇−𝑖 − log 𝑅𝑇−𝑛𝑘

𝑛𝑘−1
𝑖=1 )

−1

, where k is the percentage of 

observations located in the tail and  𝑛𝑘 = 𝑘 ∗ 𝑇. To apply this estimator the data elements are required to be 

ordered from largest to smallest; such that, 𝑅𝑇 > 𝑅𝑇−1 > ⋯ > 𝑅𝑇−𝑛𝑘
> ⋯ > 𝑅1. This process is applied to the 

right tail and can be reversed to obtain the left tail exponent. The hill plot is obtained by plotting  𝛼̂𝑘 against k. 

However, the value of tail exponent  𝛼̂𝑘 is very sensitive to the choice of k. Thus, Huisman, et al. [29] 

recommend calculating  𝛼̂𝑘 for different values of k then regressing these on k; such as  𝛼̂𝑘 = 𝑐1 + 𝑐2𝑛𝑘 + 𝜖𝑛𝑘
. 

The tail exponent estimate would be given by  𝛼̂𝑘 = 𝑐1, the intercept, with standard error 𝜎𝛼 =
 𝛼̂𝑘

√𝑛𝑘
. 

http://www.egx.com.eg/english/indexData.aspx?type=1&Nav=1
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Fig. 1. The dynamics of the EGX 30 and the simulated stock market 

EGX 30 The Model 

  

  

  

    

  

The panel shows from top to bottom; the evolution of the log-prices (prices for the EGX 30) , the returns, the 

distribution of returns, the behaviour of extreme events in Hill plot of left tail and right tail; respectively, and the 

autocorrelation functions of raw, squared, and absolute returns, respectively. 

 

significant crash between periods 1811and 1972, were the price deviating more than 50 

percent from its fundamental value. Also, we can observe a significant price bubble 

between periods 3600 and 3875. At this period the price deviating more than 50 percent 

from its fundamental value. 
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The second panel of Fig. 1 represents the daily returns; we can observe the clustered 

volatility. The negative events are more pronounced than positive ones. The extreme 

value of daily returns of the model reaches up to ±17.4 percent. The extreme value of 

daily returns of the EGX 30 reaches up to ±17.9 percent. The third panel of Fig. 1 

indicates that, the distribution of simulated returns is fat-tail with high peak. This fact 

also resembles the fat tail distribution of the EGX 30. The fourth panel depicts behaviour 

of the smallest and largest extreme events through the Hill plot of left tail and right tail 

respectively from the left. 

The last panel of Fig. 1 shows that; although there is almost no autocorrelation 

between raw returns (solid line), there is a significant positive autocorrelation between 

the different powers of absolute value of the returns {|𝑟𝑡|,  = 1,2}, squared (rounded line) 

and absolute returns (dashed line) for the first 100 lags.  This fact is stated by Mandelbort 

[20] as large returns often tend to emerge in clusters. To sum up, our model shows a 

remarkable capability to qualitatively replicating the stylized facts of the real Egyptian 

financial market and real financial markets in general.  

Finally, Fig. 2 depicts the dynamics of the adaptive belief system; technical analysis (black 

region), fundamental analysis (grey region), and no-trade (white region). We can observe 

that; although there are swings between the trading strategy weights, there is no one 

strategy dominates the others. The average weights of this particular simulation run are; 

𝑤̅𝑡
𝑐 ≈27 percent, 𝑤̅𝑡

𝑓
≈39 percent, and 𝑤̅𝑡

0 ≈34 percent.  

 

Fig. 2. Dynamics of the adaptive belief system 

 

The figure displays the fraction of chartists (black region), fundamentalists (grey region), and inactive 

traders (white region). 
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The robustness of our results is investigated in Fig. 3 and Fig.4. Fig. 3 represents four 

repetitions of simulation model using different random seeds. The four simulation 

markets have significant price bubbles and crashes. The volatility clustering is obvious in 

all the simulation return series. It is also clear that, there is an endogenous competition 

between the trading strategies in all the simulation runs and no strategy can dominate the 

others. We can also observe that, periods of high volatility are those when the chartist 

traders exist significantly more than the other two types of traders. 

Fig. 4 represents four repetitions of simulation model with changing some parameters 

values, using the same stream of random variables as in Fig. 1. We can observe that, these 

changes have slight effect on our model dynamics. The following section is dedicated to 

check the extent to which our model is able to quantitatively replicate the stylised facts of 

the Egyptian Stock Exchange and the robustness of these results.  

3.2.2 Quantitative Results 

To check the extent to which our model is able to quantitatively replicate the stylized 

facts and the robustness of the model results; we perform a Monte Carlo analysis on 5000 

simulation runs, each containing 4120 observations. The design of all the simulation runs 

is the same as that described in Section 2, but with different random seeds. The 

descriptive statistics of EGX 30 and simulation data are reported in Table 2. Table 2 

reports the mean, maximum, minimum, standard deviation, skewness, kurtosis, and 

Jarque-Bera (JB)7 of EGX 30 and estimates of the mean and the 5 percent, 25 percent, 50 

percent, 75 percent, and 95 percent quantiles of these statistics. 

Table 2 reveals, for instance, estimates of the standard deviation hover between 

0.020 percent and 0.026 percent in 90 percent of the cases. The reported standard 

deviation in the same table for the EGX 30 is quite close to these figures. The two very 

important statistics to be noticed are the normalized third and fourth central moments8; 

the skewness and the kurtosis, respectively.  However, only 25 percent of the cases are 

                                                           

7 The Jarque-Bera (JB) test statistic for normality is defined as follows [28]; 

 𝐽𝐵 = 𝑇 [
𝑆(𝑟𝑡)2

6
+

(𝐾(𝑟𝑡)−3)
2

24
], where 𝑡 = 1,2, … , 𝑇, 𝑆(𝑟𝑡) is the skewness, and 𝐾(𝑟𝑡) is the kurtosis. JB is 

asymptotically distributed as 2(2). 
8 For fat-tail distributions the first and second moments are not enough to describe the data [28]. In large 

samples of normally distributed data, the estimators of skewness and kurtosis are asymptotically 
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Fig. 3. Four repetitions of the simulation using different random seeds 

(a) (c) 

  

  

  

(b) (d) 

  

  

  

Each set of the four panels shows from top to bottom the evolution of stock prices, the asset returns, and the 

market shares of chartists (black region), fundamentalists (grey region), and no-trade (white region), 

respectively. 

                                                                                                                                                                             

converging to normally distribution with means 0 and 3 and variances 6/ T and 24/T respectively for large 

samples, where T represents the daily data sample size. 
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Fig.4. Four repetitions of the simulation using different parameter values 

𝑏 = 0.06, 𝑐 = 0.06  = 2.0 

  

  

  

𝑟 = 400 𝑎 = 0.90 

  

  

  

Each set of the four panels shows from top to bottom the evolution of stock prices, the asset returns, and the 

market shares of chartists (black region), fundamentalists (grey region), and no-trade (white region), 

respectively. 
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Table 2. Descriptive statistics 

 Mean/ 

quantile 

Mean Max. Min. Std. 

Dev. 

Skew. Kurt. JB 

EGX 30  5.39*10-4 0.18 -0.18 0.018 -0.33 12.04 14101.

9 

The 

model 

 

Mean -6.19*10-7 0.14 -0.14 0.023 0.01 4.39 - 

0.05 -6.82*10-5 0.11 -0.18 0.020 -0.25 3.28 - 

0.25 -1.86*10-5 0.13 -0.15 0.021 -0.10 3.85 - 

0.50 -7.31*10-7 0.14 -0.14 0.023 0.01 4.32 - 

0.75 1.57*10-5 0.15 -0.13 0.024 0.01 4.82 - 

0.95 6.08*10-5 0.18 -0.11 0.026 0.27 5.77 - 

The table reports the mean, maximum, minimum, standard deviation, skewness, kurtosis, and Jarque-Bera 

(JB) of the EGX 30 and estimates of the mean and the 5 percent, 25 percent, 50 percent, 75 percent, and 95 

percent quantiles of these statistics for the simulated time series. Computations are based on 5000 time 

series, each containing 4120 observations. 

 

negatively skewed this may due to the fatness of the return distribution.  Finally, 

estimates of the mean and the quantiles of the kurtosis are all greater than 3. This may 

give us an indication about the non-normality of all the simulated return series. 

Table 3  reports  the  Hill   estimates 𝜶̂𝒌for 𝒌 ∈ {𝟐. 𝟓, 𝟓, 𝟏𝟎} percent of the smallest 

returns  (left-tail) and Hill estimates 𝜶̂𝒌 for 𝒌 ∈ {𝟐. 𝟓, 𝟓, 𝟏𝟎} percent of the largest returns 

(right-tail) of the EGX 30 along with estimates of the mean, the 5 percent, 25 percent, 50 

percent, 75 percent, and 95 percent quantiles of these Hill estimates. 

From Table 3 we can notice that, the model’s average Hill estimators of the tail-index 

for the largest and smallest 10 percent observations are in line with the EGX 30 

estimators. For instance, taking the largest 5 percent of observations into account; the 

reported value for the EGX 30 (3.32) lays within the lower and upper quartile (3.28 and 

3.74, respectively) of the estimated tail indices. Also, taking the smallest 5 percent of 

observations into account; the reported value for the EGX 30 (3.72) lays within the lower 

and upper quartile (3.28 and 3.74, respectively) of the estimated tail indices. Moreover, 

most estimated tail indices from real financial markets always range between 2 and 5 as 

indicated by Lux [21]. Accordingly, the estimated  Hill  tail  indices of  our  model  match  

the  Hill  tail  indices  not  only for the EGX 30 but also for other real financial markets.  
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Table 3. The Hill tail index estimator  𝛂̂𝐤 for the left and right tails 

  Left-tail exponent Right-tail exponent 

 Mean/quantile  α̂2.5%  α̂5%  α̂10%  α̂2.5%  α̂5%  α̂10% 

EGX 30  3.39 

(0.077) 

3.32 

(0.038) 

3.47 

(0.020) 

3.56 

(0.063) 

3.72 

(0.032) 

3.92 

(0.025) 

The model 

 

 

Mean 3.27 3.52 3.40 3.38 3.61 3.46 

 0.05 2.68 2.97 2.96 2.68 2.97 2.96 

 0.25 3.01 3.28 3.21 3.01 3.28 3.20 

 0.50 3.25 3.50 3.39 3.25 3.50 3.39 

 0.75 3.52 3.74 3.59 3.52 3.74 3.59 

 0.95 3.90 4.13 3.90 3.90 4.13 3.90 

The table reports, the Hill tail index estimators 𝛼̂𝑘 for 𝑘 ∈ {2.5,5,10}  percent of the smallest (left-tail) 

and largest (right-tail) returns of the EGX 30 along with estimates of the mean, the 5 percent, 25 percent, 

50 percent, 75 percent, and 95 percent quantiles of these statistics for the model, with asymptotic standard 

errors  shown in brackets. Computations are based on 5000 time series, each containing 4120 observations. 

 

To continue investigating the robustness of our results Table 4 reports the statistical 

properties of the EGX 30 and our model. Table 4 contains the autocorrelation function of 

raw returns ACr
𝑙  for lags 𝑙ϵ{1,2,3}, and the autocorrelation function of absolute returns 

AC|r|
𝑙  for lags 𝑙ϵ{1,20,50,100} of the EGX 30 along with estimates of the mean, the 5 

percent, 25 percent, 50 percent, 75 percent, and 95 percent quantiles of the same statistics.  

The reported autocorrelation coefficients of simulated raw returns in Table 4 reveal 

that, price increments are mainly uncorrelated. Although autocorrelation coefficient for 

the EGX 30 shows a value of 0.18 for the first lag, the price increments do not last for the 

second lag. However, in most real financial markets future prices cannot be predicted [22]. 

Also, autocorrelation coefficients of simulated absolute returns show a median value of 0.28 

for the first lag  that  seems  to  be  quite  close  to  that of the EGX 30 (0.29). However, our 

model has a longer memory than that of the EGX 30 as the autocorrelation of the 

simulated absolute returns lasts for the 20th lag. 

To summarize our results, the illustrated figures and the performed large Monte Carlo 

analysis show that, our model can replicate detailed stylized facts of real financial 

markets. These properties include; fat-tailed distribution, absence of autocorrelation 

between raw returns, excess volatility, and volatility clustering. 
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Table 4. The autocorrelation functions of raw and absolute returns 

 
Mean/ 

quantile 
ACr

1 ACr
2 ACr

3 AC|r|
1  AC|r|

20  AC|r|
50 AC|r|

100 

EGX 30  0.18 0.02 0.04 0.29 0.09 0.05 0.03 

The 

model 
Mean 0.02 0.005 0.004 0.28 0.17 0.08 0.02 

 0.05 -0.02 -0.04 -0.04 0.23 0.11 0.02 -0.03 

 0.25 0.004 -0.01 -0.01 0.26 0.15 0.05 -0.001 

 0.50 0.02 0.01 0.004 0.28 0.17 0.08 0.02 

 0.75 0.04 0.02 0.02 0.30 0.20 0.11 0.04 

 0.95 0.07 0.05 0.05 0.33 0.23 0.15 0.09 

The table contains, the autocorrelation function of raw returns ACr
l  for lags lϵ{1,2,3}, and the 

autocorrelation function of absolute returns AC|r|
l  for lags lϵ{1,20,50,100} for the EGX 30 along with 

estimates of the mean, the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent quantiles of these 

statistics for the model. Computations are based on 5000 time series, each containing 4120 observations. 

 

3.2.3 Micro-Macro Dynamics 

For the sake of checking the robustness of our model dynamics evolution, we perform a 

Monte Carlo study on the volatility (to measure volatility we follow Guillaume, et al., [23] 

and calculate the average absolute returns), distortion (dist =
1

T
∑ |Ft − pt|T

t=1 ), and the 

fraction of agents follow each strategy; wt
c, wt

f, and wt
0. Table 5 reports estimates of the 

mean and the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent quantiles of 

these statistics.  

We note from Table 5 that, the average value of volatility of 1.60 percent is considered 

to be slightly higher than the 1.23 percent of the EGX 30. The distortion hovers between 

8.02 percent and 16.44 percent in 90 percent of the cases. These values of distortion 

indicate a substantial boom-bust cycles in almost all simulation runs. 

Now, the most important part is analysing the fraction of traders following each 

strategy. Generally speaking, all estimates of the mean and quantiles reveal that agents 

prefer to follow the fundamental analysis the most, then no-trade strategy, and the 

technical analysis the least. Is the technical analysis least appealing due to the loss 

aversion behavioural bias? What is the effect of loss aversion on the adaptive belief 
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system and on the pricing dynamics? To answer these questions we run the model with 

the chartists symmetrically perceiving losses and gains. That is, when  = 1. 

 

Table 5. Statistical properties and evolutionary dynamics of our agent-based model  

Mean/ 

quantile 
Volatility Distortion wt

c wt
f wt

0 

Mean 1.60 11.53 29 38 33 

0.05 1.40 8.02 23 35 29 

0.25 1.50 9.65 26 37 32 

0.50 1.59 11.07 29 38 33 

0.75 1.68 12.91 31 39 35 

0.95 1.82 16.44 35 41 37 

The table contains estimates of the mean, the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent 

quantiles of the volatility, distortion, and the weights of agents follow each trading strategy, in percentage values. 

 

Table 6. Statistical properties and evolutionary dynamics of the model with chartists 

symmetrically perceiving gains and losses. 

Mean/ 

quantile 
Volatility Distortion wt

c wt
f wt

0 

Mean 1.70 12.44 34 35 30 

0.05 1.51 8.80 29 33 27 

0.25 1.61 10.46 32 34 29 

0.50 1.70 12.02 34 36 31 

0.75 1.79 13.96 36 37 32 

0.95 1.92 17.80 40 38 34 

The table contains estimates of the mean, the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent 

quantiles of the volatility, distortion, and the weights of agents follow each trading strategy, in percentage values. 

 

Table 6 reports the results of the Monte Carlo analysis we performed where chartists 

symmetrically perceiving gains and losses. Table 6 contains the same statistics as Table 5 

and reveals, for instance, that the average volatility of 1.70 percent is higher than that of 

our model. Also, the distortion hovers between 8.80 percent and 17.80 percent in 90 

percent of the cases. Also, we can notice that, for example; the median of weights of the 

three trading strategies are ( wt
c = 34 percent, wt

f = 36 percent, and wt
0 = 31 percent). 

These values of weights are very close, indicating that; the three trading strategies are 

equally preferred by the agents. However, in our model agents prefer to follow 
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fundamental analysis more than technical analysis due to the loss aversion behavioural 

bias. The distortion and volatility in the market populated with symmetrical perception of 

gains and losses seems to be higher than our model. Obviously, loss aversion behavioural bias 

decreases the market volatility and price deviation from fundamental value. This shows that 

loss aversion can improve the quality of the market9.  

4. Conclusions 

In 1979, Kahneman and Tversky proposed their famous psychological theory; the 

prospect theory in order to understand the psychological motivations for traders’ 

behaviours. The prospect theory considers loss aversion to be one of the main 

behavioural biases that affect traders’ decisions. This implies that, traders recognize their 

losses more than twice their recognition of gains.  

To increase our understanding of traders’ behaviours and their adaptive beliefs, we 

develop an agent-based financial market model. Agent-based modelling provides the link 

between macro and micro behaviours. In our model, agents can trade following either 

stochastic technical trading rules or stochastic fundamental trading rules. While technical 

analysis builds decisions upon past price trends, fundamental analysis advises betting on 

mean reversion. Since traders are loss averse, any losses following technical analysis cause 

a rapid switching to fundamental analysis or staying in-active. Price adjusted by the market 

maker according to the net submitted orders without any intervention from her/him. 

Our model provides a remarkable capability to replicate many detailed stylized facts 

of real financial markets. These facts include; random walk price dynamics, bubbles and 

crashes, fat-tailed returns distribution, excess volatility, and volatility clustering.  

The dynamics of our model can be summarized as follows. The farther the asset prices 

deviate from their fundamental value, the more aggressive the chartists will become. The 

increase in market shares of the chartists will increase the volatility causing a bubble or a 

crash to emerge. However, the loss aversion behavioural bias improved the market by 

minimizing its volatility and distortion. As the distortion reaches its maximum value the 

fundamental analysis becomes more appealing for traders to follow. The increase in 

switching to the fundamental analysis will pull asset prices to their fundamentals and the 

                                                           

9 Distortion and volatility are considered to be important determinants of market quality [24]. 
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volatility diminishes. Due to the market dynamics, no trading strategy dominates the others. 

This causes substantial long memory effects in returns volatility. 

To sum up, loss aversion directly affects the adaptive belief system; as recognized 

losses stimulate chartists to adopt fundamental trading or stay inactive. This adaptation 

works for the market stability and prices efficiency. The proposed agent-based model and 

simulation results successfully replicate the macro-behaviour of real financial markets 

and can help us to understand asset pricing dynamics in these markets. 
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