Animal brucellosis in Egypt

Gamal Wareth¹,²,³, Ahmed Hikal⁴, Mohamed Refai⁵, Falk Melzer¹, Uwe Roesler², Heinrich Neubauer¹

¹ Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
² Institute of Animal Hygiene and Environmental Health, Free University of Berlin, Berlin, Germany
³ Department of Pathology, Faculty of Veterinary Medicine, Benha University, Qalyobia, Egypt
⁴ Department of Microbiology, Faculty of Veterinary Medicine, Benha University, Qalyobia, Egypt
⁵ Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Abstract
Brucellosis is a highly contagious zoonosis that affects the public health and economic performance of endemic as well as non-endemic countries. In developing nations, brucellosis is often a very common but neglected disease. The purpose of this review is to provide insight about brucellosis in animal populations in Egypt and help to understand the situation from 1986 to 2013. A total of 67 national and international scientific publications on serological investigations, isolation, and biotyping studies from 1986 to 2013 were reviewed to verify the current status of brucellosis in animal populations in Egypt. Serological investigations within the national surveillance program give indirect proof for the presence of brucellosis in cattle, buffaloes, sheep, goats, and camels in Egypt. Serologic testing for brucellosis is a well-established procedure in Egypt, but most of the corresponding studies do not follow the scientific standards. B. melitensis biovar (bv) 3, B. abortus bv 1, and B. suis bv 1 have been isolated from farm animals and Nile catfish. Brucellosis is prevalent nationwide in many farm animal species. There is an obvious discrepancy between official seroprevalence data and data from scientific publications. The need for a nationwide survey to genotype circulating Brucellae is obvious. The epidemiologic situation of brucellosis in Egypt is unresolved and needs clarification.

Key words: brucellosis; biotyping; Egypt; isolation; seroprevalence.

Introduction
Brucellosis is caused by bacteria of the genus Brucella. Brucellae are small Gram-negative, non-motile, non-spore forming, aerobic, facultative intracellular coccobacilli capable of invading epithelial cells, placental trophoblasts, dendritic cells, and macrophages [1]. The genus includes 10 nomo-species based on their different host specificity [2]. The six classical species are B. melitensis biovar (bv) 1–3, mainly isolated from sheep and goats; B. abortus bv 1–6 and 9, primarily isolated from cattle and buffaloes; B. suis bv 1–3, mainly isolated from pigs, bv 4 from reindeer and bv 5 isolated from small ruminants; B. canis isolated from dogs; B. ovis isolated from sheep; and B. neotomae isolated from desert wood rats [3]. Recently, four new species have been described. Two are of marine origin (B. pinnipedialis from seals, and B. ceti from dolphins and whales). B. microti was isolated from the common vole Microtus arvalis [4]. Finally, B. inopinata was isolated from a breast implant wound of a female patient [5].

Brucellosis, caused by B. melitensis, B. abortus, B. suis (except bv 2) and in rare cases B. canis, is a highly contagious and zoonotic disease affecting livestock and humans worldwide. In animals, brucellosis causes tremendous economic losses [6]. The disease provokes abortion, stillbirth, mastitis, metritis, and placental retention in females and orchitis and arthritis in males. Infertility may be seen in both sexes. The true incidence of human brucellosis is not easy to estimate globally, but an estimated 500,000 persons are newly infected every year [7]. The World Health Organization considers brucellosis a neglected zoonosis and classifies Brucellae as risk group III agents because they can be easily transmitted via aerosols [8]. Airborne transmission of B. melitensis infection has been previously described [9], and Brucellae have previously been used as biological agents in weapons of mass destruction [7].
Brucella in Egypt

It is likely that brucellosis has been an endemic disease in Egypt for thousands of years. For example, there is evidence in 5.2% of bone remnants from ancient Egyptians (750 BCE) of sacroiliitis in pelvic bones, and evidence of spondylitis and osteoarthritic lesions have also been found, both common complications of brucellosis [10]. In 1939, brucellosis was reported in a scientific report from Egypt for the first time [11]. Since then, the disease has been detected at high levels among ruminants, particularly in large intensive breeding farms (Refai, personal communication, 20.07.2013). Consequently, a control program including serological surveys and voluntary vaccination of ruminants was established in the early 1980s [12].

Indirect techniques regularly used in diagnosis of *Brucella* are field tests such as the milk ring test (MRT), serological tests such as the standard agglutination test (SAT) and buffered agglutination test, which are confirmed by the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) [13]. Serological diagnosis of Brucellae currently relies mainly on the detection of anti-*Brucella* lipopolysaccharide (LPS) antibodies. In *B. melitensis*, *B. abortus*, and *B. suis*, the LPS is smooth (containing an O-polysaccharide); *B. canis* isolates lack the O-polysaccharide and are considered rough. However, these tests cannot differentiate antibodies originating from vaccine or wild-type strains. The tests are also prone to false-negative and false-positive reactions, the latter caused by cross-reactions with LPS of other Gram-negative bacteria [14].

Isolation of Brucellae is still the gold standard for diagnosis; however, this method often fails due to the delays in symptoms, resulting in incorrect sample types and low bacterial loads in specimens such as blood, milk, or tissue. Biotyping of isolates involves evaluation of a combination of growth characteristics (colonial morphology, oxidase, urease, CO₂ requirement, H₂S production, growth in presence of the dyes fuchsin and thionin), lysis by bacteriophage (Tiblisi and R/C), and agglutination with monospecific A, M, and R anti-sera [2,15]. Although various polymerase chain reaction (PCR) assays have been created to diagnose Brucellae at the species level (e.g., the Abortus, Melitensis, Ovis, Suis AMOS PCR), these assays are most useful when applied to DNA extracted from a positive culture.

A comprehensive, evidence-based assessment of current literature and of officially available data on animal brucellosis is missing for Egypt. The aim of this review is to provide insight regarding brucellosis in Egypt over the last 27 years and to assist observers interested in Brucellosis to more fully understand the situation in Egypt.

Literature search and data collection

National and international publications on serological investigations and on typing studies of brucellosis from 1986 to 2013 were obtained through PubMed, Science Direct, Google, and from Egyptian university libraries such as The Egyptian National Agricultural Library (ENAL) and the Federation of Egyptian University Libraries. The following search terms were used: brucellosis in Egypt, *Brucella* infection in Egypt, *Brucella* in animals in Egypt, and animal brucellosis in Egypt. Theses dealing with brucellosis available from Egyptian universities were included in this study (1986–2013). The libraries were personally visited or contacted via e-mail. Reports on brucellosis from the General Organization of Veterinary Services in Egypt (GOVS) from January 2006 through December 2011 were investigated. Studies dealing with human infection were excluded.

A full text analysis of each publication was done by at least two reviewers. Publications describing serological investigations were included even if statistical analyses were not sound to avoid loss of data. Publications on cultivation, bio- and genotyping or PCR analyses were included only if state-of-the-art techniques could be verified by the respective material, and if the methods sections and results were clear. To clarify ambiguities, the authors were first contacted by e-mail or phone. If the authors could resolve those ambiguities, the publications were accepted for further assessment. The following data were extracted from the manuscripts, reports, or theses: seroprevalence for brucellosis in host species populations and regional distribution, prevalence of Brucellae in animals or food proofed, and identification of isolates.

Data acquisition

A total of 25 scientific papers on seroprevalence [6,12,16-38] and 18 on isolation of Brucellae [11,16,17,20,22,25,26,29,31,33-35,38-43] were identified by online search. Local scientific papers and 10 theses were obtained from Egyptian universities; 28 of them dealt with seroprevalence [44-71] and 16 dealt with isolation of Brucellae [44,45,48-51,53-55,58,68,72-77]. The official data collection of the General Organization of Veterinary Services (GVOS) was evaluated for the years 1999 to 2011. Two
publications on serology [31,38] and nine on isolation of Brucellae [17,20,35,38,39,41,48,55,58] were finally excluded from evaluation because ambiguities were identified within the materials and methods sections and the authors could not be contacted to resolve these ambiguities.

Serological investigations

Information on serological investigations was provided by the General Organization of Veterinary Service (GOVS), Cairo, Egypt, as official reports from 1999 to 2011. Screening with the Rose Bengal plate agglutination test (RBPT) and Rivanol test followed by confirmatory CFT in screening test-positive animals is the approved technical procedure of the official control program. This procedure is in accordance with the procedures proposed in the World Organisation for Animal Health (OIE) manual of standard diagnostic tests and vaccines. Serological investigations within the national surveillance program give indirect proof for the presence of brucellosis in cattle, buffaloes, sheep, and goats in 22 of 27 governorates. Ismailia, Red Sea, North Sinai, South Sinai, and Matroh did not report seropositive animals. The total number of animals steadily increased during the reporting time (Figure 1). Sheep and goats had a higher seroprevalence than did cattle and buffaloes (Table 1). Peaks were seen in 2002/2003 and 2008/2009/2010 (Figure 2). The number of animals tested was always very low when compared to the total number of animal stocks in Egypt according to the Food and Agriculture Organization (FAO) registers (Table 1). Sampling plans were not made available. It cannot be excluded that sampling is biased; therefore, only tendencies should be read. Based on this data, it can be concluded that brucellosis is present in all governorates in cattle, buffaloes, goats, and sheep. The lowest total percentage of seropositive animals was recorded in 2011 with 0.33%. In 2011, the riots and civil commotions of the Arab Spring lead to a depletion of state resources, resulting in low numbers of animals tested, a decrease of the reimbursement funds for owners, and increased animal movement within villages and governorates.

A total of 53 scientific publications and theses on serological investigations were selected for review. Serological studies were made in Qalyobia, Menufiya, Gharbia, Behira, Alexandria, Kafrelsheikh, Dakahlia, Sharkia, Giza, Fayoum, Beni-Suef, El-Minia, Assuit, New Valley, Sohag, Qina, Luxor, and Aswan in bovines, small ruminants, camels, and Nile catfish, rendering positive results. Assuit, Menufiya, Kafrelsheikh, Giza, and Behira have been studied very well; they have been included in more than five investigations (Supplementary Table 1). Most studies were made in response to clinical events such as notice of late abortion, elevated levels of insemination, and mastitis. As such, these studies do not comply with the standards for epidemiological investigations concerning study design or biostatistics. However, they show that in infected animal herds, the prevalence rate may be high independent of the animal species (1%–100%). In cross-sectional studies, approximately 15% of households in a study area kept animals and within a herd, up to 15% (cattle and buffaloes) or even more (sheep and goats) animals could be expected to be seropositive [6,19,32].

Figure 1. Total number of animals in Egypt, 1999–2011 (FAO, 2013).

Figure 2. Number of seropositive animals according to the General Organization of Veterinary Service (GOVS, 2012).
Table 1. Prevalence of brucellosis in Egypt from January 1999 through December 2011 based on reports from the General Organization of Veterinary Services

<table>
<thead>
<tr>
<th>Year</th>
<th>Cattle</th>
<th>Buffalo</th>
<th>Sheep</th>
<th>Goat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total no. in Egypt</td>
<td>No. tested</td>
<td>% +ve from tested</td>
<td>Total no. in Egypt</td>
<td>No. tested</td>
</tr>
<tr>
<td>1999</td>
<td>3,417,580</td>
<td>108,622</td>
<td>824</td>
<td>0.76</td>
<td>3,329,700</td>
</tr>
<tr>
<td>2000</td>
<td>3,529,720</td>
<td>145,750</td>
<td>1,305</td>
<td>0.90</td>
<td>3,379,410</td>
</tr>
<tr>
<td>2001</td>
<td>3,801,070</td>
<td>152,436</td>
<td>1,378</td>
<td>0.90</td>
<td>3,532,240</td>
</tr>
<tr>
<td>2002</td>
<td>4,081,000</td>
<td>162,309</td>
<td>2,067</td>
<td>1.27</td>
<td>3,717,000</td>
</tr>
<tr>
<td>2003</td>
<td>4,227,000</td>
<td>168,281</td>
<td>2,009</td>
<td>1.19</td>
<td>3,777,000</td>
</tr>
<tr>
<td>2004</td>
<td>4,369,000</td>
<td>154,984</td>
<td>1,406</td>
<td>0.91</td>
<td>3,845,000</td>
</tr>
<tr>
<td>2005</td>
<td>4,485,000</td>
<td>174,673</td>
<td>1,291</td>
<td>0.70</td>
<td>3,885,000</td>
</tr>
<tr>
<td>2006</td>
<td>4,610,000</td>
<td>199,954</td>
<td>982</td>
<td>0.49</td>
<td>3,937,000</td>
</tr>
<tr>
<td>2007</td>
<td>4,932,660</td>
<td>161,206</td>
<td>843</td>
<td>0.52</td>
<td>4,104,810</td>
</tr>
<tr>
<td>2008</td>
<td>5,023,160</td>
<td>182,248</td>
<td>1,186</td>
<td>0.65</td>
<td>4,052,650</td>
</tr>
<tr>
<td>2009</td>
<td>4,524,950</td>
<td>175,750</td>
<td>871</td>
<td>0.50</td>
<td>3,838,720</td>
</tr>
<tr>
<td>2010</td>
<td>4,728,720</td>
<td>183,490</td>
<td>640</td>
<td>0.30</td>
<td>3,818,240</td>
</tr>
<tr>
<td>2011</td>
<td>4,803,000</td>
<td>167,188</td>
<td>592</td>
<td>0.35</td>
<td>3,800,000</td>
</tr>
</tbody>
</table>

Table 2. Origin of Brucella isolates in Egypt

<table>
<thead>
<tr>
<th>Location</th>
<th>B. melitensis</th>
<th>B. abortus</th>
<th>B. suis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cairo</td>
<td>[49,50,73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Qalyobia</td>
<td>[22,49,50,73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Memfifya</td>
<td>[76]</td>
<td>[44]</td>
<td>[44]</td>
</tr>
<tr>
<td>Garhara</td>
<td>[26,34,49,73]</td>
<td>[44]</td>
<td></td>
</tr>
<tr>
<td>Behira</td>
<td>[20,22,26,49,73]</td>
<td>[44]</td>
<td></td>
</tr>
<tr>
<td>Alexandria</td>
<td>[22,49,73,74]</td>
<td>[44]</td>
<td></td>
</tr>
<tr>
<td>Kafrelsheikh</td>
<td>[17,34,44,48,50,49,73,74]</td>
<td>[44]</td>
<td></td>
</tr>
<tr>
<td>Demiatta</td>
<td>[49,73]</td>
<td>[44]</td>
<td></td>
</tr>
<tr>
<td>Dakahlia</td>
<td>[34,50]</td>
<td>[74]</td>
<td></td>
</tr>
<tr>
<td>Sharkia</td>
<td>[29,41,49,73]</td>
<td>[49,77]</td>
<td>[77]</td>
</tr>
<tr>
<td>Suez</td>
<td>[49,73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Ismailia</td>
<td>[42]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Port-Said</td>
<td>[49,73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Matrouh</td>
<td>[73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Giza</td>
<td>[16,42]</td>
<td>[25,49]</td>
<td></td>
</tr>
<tr>
<td>Fayoum</td>
<td>[26,44,9,45]</td>
<td>[54]</td>
<td>[44]</td>
</tr>
<tr>
<td>Beni-Suef</td>
<td>[16,40]</td>
<td>[44]</td>
<td>[44]</td>
</tr>
<tr>
<td>El-Minia</td>
<td>[55,73,74]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Assiut</td>
<td>[22,31,35,49,72,73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Sohag</td>
<td>[16]</td>
<td>[44]</td>
<td>[44]</td>
</tr>
<tr>
<td>Qina</td>
<td>[73]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Aswan</td>
<td>[26]</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td>Different locations in Egypt</td>
<td>[39,43,44,51,53,75]</td>
<td>[53]</td>
<td>[73]</td>
</tr>
</tbody>
</table>
Data obtained by sampling animals in slaughterhouses have to be considered biased, as brucellosis-seropositive animals ought to be slaughtered by law. Studies on camels (n=12) demonstrated a high seroprevalence in these animals. It should be noted that camels are imported from Sudan, where brucellosis is endemic.

The prevalence of brucellosis in cattle, buffaloes, sheep, and goats was generally higher in Beni-Suef governorate than in other governorates in upper Egypt [11,22]. In the Delta region, the highest prevalence was reported in Behira governorate. Inadequate preventive measures and uncontrolled transport between Egyptian governorates to and from animal markets may play an important role in the incidence of brucellosis.

Culture and biotyping

Isolation of *Brucella* is still the gold standard for brucellosis diagnostics, but it has several drawbacks such as hands-on time and low sensitivity, especially in chronic cases. Handling of culture material poses a high risk of infection to the operator. Our analysis shows that this technique is restricted to a few laboratories in Egypt. A total of 35 publications on isolation or biotyping of Brucellae were selected for review. In general, these studies were done within outbreak investigations. Most authors of theses described the techniques used very clearly and comprehensively so that results could easily be checked for plausibility. Strains isolated were regularly determined by investigating CO2 requirement, H2S production, growth in the presence of thionin and basic fuchsin dyes, agglutination test with monospecific A and M antisera, and phage lysis test. In contrast, only 15 articles published between 1986 and 2012 followed the complete method of biotyping. *Brucella* strains were isolated from milk, blood, vaginal discharge, and aborted fetuses of infected cattle, buffaloes, sheep, goats, and camels [22,25,72,73], and also from organs including liver, spleen, lung, kidneys, heart, and lymph nodes [22,40,55]. The rationales for sampling, sampling strategy, or statistics of sampling were missing. Hence, the presence of *B. melitensis* bv 1, 2, 3 and *B. abortus* bv 1, 3, and 7 was unambiguously demonstrated. *B. melitensis* bv 3 is the predominant pathovar isolated independent from the host species and bv 1 and 2 were described in a single study in 2004 only. Isolates of *B. melitensis* originated from all farm animal species and also from rats. Vaccine strain Rev. 1 was isolated from ewes in Menufiya in 2007. Only 12 publications describe the presence of *B. abortus* in Egypt; bv 3 was found by four author groups in 1986, 1987, and 1990. Five publications also mentioned bv 7, which was later on removed from the nomenclature list as being erroneous. The presence of *B. abortus* bv 3 has yet to be confirmed. Isolates were obtained from cattle and buffaloes and the erroneous *B. abortus* bv 7 was obtained from a camel one instance. Human pathogenic *B. suis* bv 1 was isolated from pigs in 1996. No Brucellae isolates exist from Red Sea, New Valley, Luxor, North Sinai, or South Sinai. All data are shown in Table 2.

Isolation of *B. melitensis* from cattle and buffaloes was attributed to mixed rearing of sheep and goats with cattle or buffaloes on holdings or in one flock, contamination of pastures by infected sheep and goats, and spreading of disease by these animals to new areas [22]. However, no proof for this assumption was made via genotyping of strains or tracing back investigations. Alarming is the fact that *B. melitensis* bv 3 was also isolated from 4 out of 65 semen samples from bulls (6.2%) and 3 out of 55 (5.5%) samples from rams, respectively, at the Animal Reproduction Research Institute, Giza [43]. Venereal transmission may be responsible for maintaining a bovine brucellosis cycle based on unhygienic serving methods (i.e., that one bull serves cows of various holdings in different neighboring villages). As a consequence, artificial insemination and semen collection have to be done under strict precautions.

Molecular diagnostics

Because of the shortcomings of culture, the use of new diagnostic techniques for the direct detection of Brucellae was attempted, although no biovar-specific PCR assays exist. Authors of only 15 publications from 1986 to 2012 used PCR. The sensitivity of PCR proved to be higher than cultivation [78], and even small numbers of Brucellae were detected in samples [25]. *B. melitensis* DNA was found in the semen of bulls and rams [43] and in the milk of cattle, buffaloes, sheep, and goats in Menufiya, Gharbia, Behira, Fayoum, Aswan, Beni-Suef, and Sohag governorates [16,26]. Montasser *et al.* and Zahran found DNA of *B. melitensis* in tissue samples of cattle, sheep, and goats in Assiut and El-Minia governorates, respectively [35,55]. *B. abortus* DNA was detected and identified in Fayoum governorate from seropositive cattle [54]. In Menufiya governorate, the use of PCR restriction fragment length polymorphism (PCR-RFLP) identified four strains of *B. melitensis* bv 3 and two strains of *B. melitensis* Rev. 1 vaccine in tissue samples collected.
from six seropositive ewes [33]. The first comprehensive report describing the presence of \textit{B. melitensis} DNA in camel milk dates back to 2002 when it was amplified from a milk sample from Giza governorate [25]. \textit{B. melitensis} DNA was found again in Aswan and Sohag governorates in both milk and serum of camels [26]. PCR is a sensitive tool for the diagnosis of brucellosis. Recently, Wareth et al. identified \textit{B. abortus} and \textit{B. melitensis} DNA in bovine milk collected from apparently healthy animals by species-specific IS711 RT-PCR [79]. These results highlight a special public health hazard for farmers and nomadic peoples who encourage the drinking of raw milk from camels as they believe that it has a soothing and therapeutic effect against digestive tract diseases and liver infections [78].

Environmental contamination with Brucellae

Significant environmental contamination has to be assumed due to local husbandry methods and the lack of effective carcass disposal. Nile catfish have been found to be infected with \textit{B. melitensis}, especially in small tributaries of Nile canals in the governorates of Kafrelsheikh, Menufiya, Gharbiya, and Dakahlia in the Nile Delta region. It was isolated from 5.8%, 4.2%, 5.8%, and 13.3% of liver, kidney, spleen samples and skin swabs, respectively; it was not isolated from samples of farmed fish [34]. It is speculated that disposal of animal waste (carcasses, milk, aborted and parturition materials) into the Nile or its canals plays an important role in the transmission of \textit{Brucella} and is also the reason for the high incidence in these regions. Farmers also wash their animals in these canals or try to reduce the body temperature of diseased animals in the Nile, which may contribute to spreading of Brucellae. Moreover, \textit{B. melitensis} bv 3 was also isolated from rats [44]. Only one study reported Brucellae in fish. This fact is interesting and should be investigated further in the future. The presence of Brucellae in rat and fish indicates high environmental contamination, which is alarming.

Surveillance program

Despite 30 years of work and efforts of the General Organization of Veterinary Services to overcome brucellosis in Egypt by testing female cattle and buffaloes older than six months of age and slaughtering serologically positive animals, the vaccination of calves with \textit{B. abortus} S19 and adults with BR51 vaccines and small ruminants with \textit{B. melitensis} Rev 1 vaccine [11], the results are disappointing and brucellosis is still endemic among humans and ruminants in Egypt. Modeling of the currently applied measures suggests that, at best, 4% of the animal stocks (but not more than 5%) are included in the control program [80]. Our data implies that even this number is overestimated. Several authors proposed that, hotspots are located in the Delta region and in upper Egypt, along the River Nile and south of the Delta containing 32% of the Egyptian large ruminant and 39% of the small ruminant stocks which are often kept in small mixed herds owned by single households [81]. The assumption of hotspots needs further confirmation. A simple sampling bias might be seen. Various authors linked the limited success of the control program to improper diagnosis and spreading of the disease at large animals markets where different animal species of unknown health status from different towns and governorates intermix. Additionally, small ruminant flocks present in high numbers in Egypt are highly migratory [22]. Low compensation for owners results in slaughtering of only 0.2% of seropositive animals [18]. Emotional attachment of owners to animals that they had kept for long time may also be a reason for their unwillingness to slaughter seropositive animals [82].

Summary

In summary, it can only be assumed that brucellosis is prevalent nationwide in all farm animal species, in the environment, and in carrier hosts such as rats. The predominant occurrence of \textit{B. melitensis} bv 3 in bovines is in contrast to Egyptian reports published before 1980 which had described the classic epidemiology of brucellosis with \textit{B. abortus} in cattle and buffaloes and \textit{B. melitensis} in small ruminants, respectively. The question must be raised whether a \textit{B. melitensis} clone was able to cross species barriers and was able to establish a permanent reservoir in cattle and buffaloes. A husbandry system favoring mixed populations of cattle, buffaloes, sheep and goats, limited success of the official control program due to unrealistic high sampling numbers, and poor compliance of livestock farmers has contributed to the emergence of brucellosis in Egypt [18]. The need for a nationwide survey to genotype circulating Brucellae is obvious. Thus, the epidemiologic situation of brucellosis in Egypt is cryptic and needs clarification. Consequently, cultivation and biotyping of \textit{Brucella} isolates has to be made available for all governorates to monitor the effect of control programs and to trace back outbreaks. Future seroprevalence studies must meet scientific standards. The current control program is ineffective and a new strategy to combat brucellosis.
has to be developed, tailored for the parlous situation of Egypt farmers.

The need for an efficient animal registration and marking system is obvious. The sale of Brucella-infected animals in the open market is increasing in Egypt. The introduction of a Brucella-infected animal into a herd can lead to spread of the infection to the whole herd, causing economic losses. Markets should be controlled by veterinarians and compensation for those selling animals should be satisfied to prevent infected animals from being sold [83]. Slaughter has to be replaced by culling and safe disposal of carcasses to avoid human infection or pollution of the environment. The measures of the control program have to be made mandatory, and a reasonable system of compensation has to be implemented to enhance acceptance. The basic tools for a program such as an adequate number of public veterinarians for field work and state laboratories capable of serological techniques are already available. Information technology solutions and further logistic means such as animal identification techniques are in place in many countries and may be adapted to the special needs of a country like Egypt.

Acknowledgements

We would further like to thank the DAAD (German Academic Exchange Service) for financial support of G.W., grant no. A/11/92495, and the Egyptian Ministry of Higher Education for partial funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

71. Omran E (2007) Epidemiological studies on brucellosis in farm animals as a source of infection to man in New-Valley governorate. MVSc thesis, Department of Zoonoses; Fac of Vet Med; Assiut University; Egypt.
74. Sayour A (1995) An approach towards the use of some unconventional serological tests for the diagnosis of brucellosis. MVSc thesis, Department of Microbiology; Fac of Vet Med, Cairo University; Egypt.

Corresponding author
Gamal Wareh
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health
Institute of Bacterial Infections and Zoonoses
Naumburger Str. 96a, 07743 Jena, Germany
Phone: +49 036418042296
Mobile: +49 015779564050
Email: gamalwareth@hotmail.com; gamal.wareth@fli.bund.de

Conflict of interests: No conflict of interests is declared.
Supplementary Table 1. Serology data arranged in tables according to time of publication

<table>
<thead>
<tr>
<th>Reference</th>
<th>Serology tests</th>
<th>Animals tested</th>
<th>Sample no.</th>
<th>Sample type</th>
<th>Prevalence</th>
<th>Location</th>
<th>Isolates</th>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>[16]</td>
<td>BAPAT RBT TAT TAT Riv.T MRT PCR</td>
<td>Cows Buffaloes Cows Buffaloes Cows Buffaloes</td>
<td>32 18 96 54</td>
<td>Serum Serum Milk Milk</td>
<td>100% 100% 87.5% 83.3%</td>
<td>Sohag, Beni-Suef, Giza</td>
<td>B. melitensis</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[26]</td>
<td>RBT MRT ELISA PCR DBH</td>
<td>Cows Buffaloes Sheep Goats Camels Cows Buffaloes Sheep Goats Sheep She-camels</td>
<td>660 482 194 198 151 302 321 73 121 64</td>
<td>Serum Serum Serum Serum Milk Milk Milk Milk Milk</td>
<td>45.8% 66.6% 37.6% 61.1% 42.1% 51% 49.8% 56.2% 36.4% 34.4%</td>
<td>Menufiya, Gharbia, Behira, Fayoum, Aswan, Sohag</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation and trade (camel)</td>
</tr>
<tr>
<td>[12]</td>
<td>STAT RBT</td>
<td>Cattle Buffaloes Camel Mares Ewes Does Cattle Sheep Goats She-camels</td>
<td>305 1,103 381 36 70 40</td>
<td>Serum Serum Serum Serum Serum</td>
<td>7.86% 4.35% 7.61% 61.1% 51%</td>
<td>Different localities in lower Egypt</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[36]</td>
<td>BAPAT RBT TAT ELISA LAT ICA</td>
<td>Cattle Sheep Goats</td>
<td>376 106 158</td>
<td>Serum Serum Serum</td>
<td>5.32% 9.43% 8.86%</td>
<td>Menufiya</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[24]</td>
<td>RBT BAPAT Riv.T TAT CFT</td>
<td>Group 1 cows Group 2 free cows</td>
<td>180 125</td>
<td>Serum Serum</td>
<td>77.2% 1.6% 4.35% 72.8%</td>
<td></td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[45]</td>
<td>BAPAT Brucella card CFT</td>
<td>Cattle Buffalo-cows Sheep Goats Cattle bulls Buffalo bulls</td>
<td>549 338 404 336 217 152</td>
<td>Serum Serum Serum Serum Serum</td>
<td>14.57% 25.4% 30.9% 6.9% 3.9%</td>
<td>Menufiya, Beni-Suef Assuit, Giza, Gharbia, Sharkia, Behira</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[30]</td>
<td>RBT SAT ELISA PCR</td>
<td>Sheep</td>
<td>300</td>
<td>Serum</td>
<td>29.3% 27% 28.3% 39%</td>
<td>Kafrelsheik, Gharbiya</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[31]</td>
<td>Positive serum samples</td>
<td>Cattle Sheep Goats</td>
<td>32 69 5</td>
<td>L.N Spleen</td>
<td>28.13% 36.23% 100%</td>
<td>Assuit</td>
<td>B. melitensis bv 3</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[38]</td>
<td>RBT</td>
<td>Swine</td>
<td>230</td>
<td>Serum</td>
<td>12.61%</td>
<td>Cairo</td>
<td>B. suis</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[29]</td>
<td>BAPAT RBPT M.P.A.T Riv.T 2MT ELISA</td>
<td>Cattle Buffalo-cows Sheep Goats Cattle Bulls Buffalo Bulls</td>
<td>967 462 591 539</td>
<td>Serum Serum Serum Serum</td>
<td>6.72% 5.62% 7.61% 10.95%</td>
<td>Sharkia</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[35]</td>
<td>BAPAT RBT SAT Riv.T</td>
<td>Cattle Sheep Goats</td>
<td>715 1323 100</td>
<td>Serum Serum Serum</td>
<td>4.5% 5.2% 5%</td>
<td>Assiut</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[18]</td>
<td>RBT CFT</td>
<td>Cattle Buffalo Sheep Goats Household</td>
<td>Total 120,077</td>
<td>Serum data from GOVS</td>
<td>0.79% 0.13% 1.16% 0.44% 1.2%</td>
<td>Beni-Suef, El-Minia, Assiut, Sohag, Qina, Luxor, Aswan</td>
<td>B. melitensis bv 3</td>
<td>Official data</td>
</tr>
<tr>
<td>Reference</td>
<td>Serology tests</td>
<td>Animals tested</td>
<td>Sample no.</td>
<td>Sample type</td>
<td>Prevalence</td>
<td>Location</td>
<td>Isolates</td>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>[19]</td>
<td>RBT, CFT, iELISA</td>
<td>Cattle</td>
<td>188</td>
<td>Milk</td>
<td>15.1%</td>
<td>Kafrelsheikh</td>
<td>B. melitensis bv 3</td>
<td>A cross-sectional study was carried out among dairy cattle, buffaloes, sheep and goats and a multistage random sampling strategy was used to select cattle milk tanks and individual sheep and goats within the governorate. The first-level sampling unit in this study was the village, the second-level sampling units were the cattle milk tanks and the individual sheep/goat.</td>
</tr>
<tr>
<td>[6]</td>
<td>iELISA</td>
<td>Cattle</td>
<td>109</td>
<td>Milk</td>
<td>Total n = 22 14.6%</td>
<td>Menufiya</td>
<td>B. melitensis bv 3</td>
<td>A cross-sectional study was carried out in a village. The village was selected due to convenience. The study population comprised all households with lactating cattle and buffalo in the village. There was no sampling frame in the village and all lactating cattle and buffaloes were sampled.</td>
</tr>
<tr>
<td>[34]</td>
<td>RBT, Riv T PCR</td>
<td>Nile catfish</td>
<td>120 from Nile 120 from Farm</td>
<td>Serum Skin Liver Kidney Spleen</td>
<td>8.3% Only from Nile</td>
<td>Kafrelsheikh Menufiya, Gharbiya, Dakahlia, Behira</td>
<td>B. melitensis</td>
<td>Samples collected from 17 sites in small tributaries of Nile canals. 120 catfish were collected from 7 fish farms from Kafrelsheikh, Behira and Dakahlia governorates unlikely to be exposed to water contaminated by carcasses and other contaminated animal materials.</td>
</tr>
<tr>
<td>[64]</td>
<td>RBT SAT iELISA</td>
<td>Buffaloes</td>
<td>452</td>
<td>Serum</td>
<td>12.83% 11.28% 19.25%</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
<td>A cross-sectional study was carried out on different governorates. In each region, blood samples were taken from herds/flocks without previous history of vaccination against Brucella. The number of samples was collected in simple and/or systemic random sampling as follows: animals from each herd were randomly selected using a table of random digits. Only female cows older than 6 months of age were sampled. The herds were stratified into three herd sizes: small herds (≤50), medium herds (50-150) and large herds (>150).</td>
</tr>
<tr>
<td>[27]</td>
<td>RBT, iELISA</td>
<td>Sheep</td>
<td>Total 1670</td>
<td>Serum</td>
<td>21.20% 14.2% 2.16% 26.66% 18.88% 21.6%</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
<td>A cross-sectional study was carried out on different governorates. In each region, blood samples were taken from herds/flocks without previous history of vaccination against Brucella. The number of samples was collected in simple and/or systemic random sampling as follows: animals from each herd were randomly selected using a table of random digits. Only female cows older than 6 months of age were sampled. The herds were stratified into three herd sizes: small herds (≤50), medium herds (50-150) and large herds (>150).</td>
</tr>
<tr>
<td>[28]</td>
<td>CFT</td>
<td>Camels</td>
<td>340</td>
<td>Serum</td>
<td>7.35%</td>
<td>Behira</td>
<td>B. melitensis B. abortus</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[48]</td>
<td>BAPAT RBT, Riv T</td>
<td>Cattle</td>
<td>7,112 2,895</td>
<td>Serum</td>
<td>0.20-0.37% 0.11-0.38%</td>
<td>Kafrelsheikh</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[23]</td>
<td>SAT BAPAT RBT Riv T SAT BAPAT</td>
<td>Cattle friesian breed</td>
<td>57</td>
<td>Serum</td>
<td>8.77% 10.53% 10.53% 8.77%</td>
<td>Egypt</td>
<td>Breed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cattle charolaise</td>
<td>43</td>
<td>Serum</td>
<td>6.68% 9.30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Serology tests</td>
<td>Animals tested</td>
<td>Sample no.</td>
<td>Sample type</td>
<td>Prevalence</td>
<td>Location</td>
<td>Isolates</td>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>[22]</td>
<td>BAPAT</td>
<td>Cattle, Buffalo</td>
<td>1,966</td>
<td>Milk</td>
<td>5.44%</td>
<td>Beni-Suef, Assiut, Alexandria, Giza, Behira Qaliobia, Menufiya.</td>
<td>B. melitensis bv 3</td>
<td>No brucellosis history</td>
</tr>
<tr>
<td></td>
<td>RBT, SAT Riv T</td>
<td>Sheep, Goat</td>
<td>1,237</td>
<td>Tissue</td>
<td>4.11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>813</td>
<td></td>
<td>5.41%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>366</td>
<td></td>
<td>3.55%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[17]</td>
<td>BAPAT</td>
<td>Baladi does</td>
<td>577</td>
<td>Serum</td>
<td>3.11%</td>
<td>Kafrelsheikh</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>RBT, TAT Riv T</td>
<td></td>
<td></td>
<td></td>
<td>5.71%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[32]</td>
<td>BAPAT</td>
<td>Livestock</td>
<td>350</td>
<td>Serum</td>
<td>12.38%</td>
<td>Gharbiya</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBT, TAT Riv T</td>
<td>Cattle</td>
<td>77</td>
<td>Serum</td>
<td>11.63%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffalo</td>
<td>35</td>
<td>Serum</td>
<td>4.65%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheep</td>
<td>29</td>
<td>Serum</td>
<td>5.44%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goat</td>
<td>18</td>
<td>Serum</td>
<td>4.11%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[63]</td>
<td>MRT, wTAT</td>
<td>Cattle</td>
<td>210</td>
<td>Raw milk</td>
<td>12.38%</td>
<td>Assiut</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>wRBT, Riv T</td>
<td>Buffalo</td>
<td>50</td>
<td>Raw milk</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[33]</td>
<td>SAT, RBT</td>
<td>Ewes native</td>
<td>32</td>
<td>Serum</td>
<td>31.25%</td>
<td>Menufiya</td>
<td>B. melitensis bv 3</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>Riv T, CFT</td>
<td>breed</td>
<td></td>
<td></td>
<td>25.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCR</td>
<td></td>
<td></td>
<td></td>
<td>21.88%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.88%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[61]</td>
<td>RBPT, BAPAT</td>
<td>Cattle</td>
<td>197</td>
<td>Serum</td>
<td>3.6%</td>
<td>Assiut</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>TAT, Riv T, ELISA</td>
<td>Sheep</td>
<td>129</td>
<td>Serum</td>
<td>11.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffalo</td>
<td>32</td>
<td>Serum</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dairy cow</td>
<td>41</td>
<td>Milk</td>
<td>7.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[71]</td>
<td>BAPAT, RBT</td>
<td>Cattle</td>
<td>180</td>
<td>Serum</td>
<td>7.22%</td>
<td>New Valley</td>
<td></td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>SAT, Riv T, ELISA</td>
<td>Sheep</td>
<td>180</td>
<td>Serum</td>
<td>10.56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goats</td>
<td>100</td>
<td>Serum</td>
<td>2.22-3.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camel</td>
<td>100</td>
<td>Serum</td>
<td>6-7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheep</td>
<td>15</td>
<td>Milk</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goat</td>
<td>16</td>
<td>Milk</td>
<td>6.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camel</td>
<td>36</td>
<td>Milk</td>
<td>6.25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Milk</td>
<td>2.78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>9.30%</td>
<td>Sohag</td>
<td></td>
</tr>
<tr>
<td>[57]</td>
<td>RBPT, BAPT</td>
<td>Ewes Rams</td>
<td>450</td>
<td>Serum</td>
<td>9.47%</td>
<td>Assiut</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>TAT, Riv T</td>
<td>Does</td>
<td>300</td>
<td>Serum</td>
<td>5.26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bucks</td>
<td>220</td>
<td>Serum</td>
<td>9.47%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ewes Rams</td>
<td>180</td>
<td>Serum</td>
<td>6.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does</td>
<td>105</td>
<td>Serum</td>
<td>9.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bucks</td>
<td>70</td>
<td>Serum</td>
<td>25.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>9.30%</td>
<td>Sohag</td>
<td></td>
</tr>
<tr>
<td>[65]</td>
<td>RBPT, STAT</td>
<td>Local camels</td>
<td>95</td>
<td>Serum</td>
<td>9.47%</td>
<td>Halaieb, Shalateen, Abo-Ramad triangle</td>
<td>No outbreak investigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELISA, ELISA</td>
<td>Imported camels</td>
<td>31</td>
<td>Serum</td>
<td>5.26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBPT, SAT, ELISA</td>
<td></td>
<td></td>
<td></td>
<td>9.47%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELISA, DIA</td>
<td></td>
<td></td>
<td></td>
<td>6.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[46]</td>
<td>RBPT, TAT</td>
<td>Camels</td>
<td>300</td>
<td>Serum</td>
<td>3.04%</td>
<td>Assiut</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>BAPT, Riv T</td>
<td></td>
<td></td>
<td></td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[60]</td>
<td>RBPT, SAT, MET</td>
<td>Camels</td>
<td>80</td>
<td>Serum</td>
<td>0.0-2.5%</td>
<td>Giza</td>
<td>No outbreak investigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIA, Riv T</td>
<td>in closed farm</td>
<td>94</td>
<td>Serum</td>
<td>8.5-11.70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Serology tests</td>
<td>Animals tested</td>
<td>Sample no.</td>
<td>Sample type</td>
<td>Prevalence</td>
<td>Location</td>
<td>Isolates</td>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>[54]</td>
<td>TAT PCR</td>
<td>Camels kept with animals</td>
<td>72</td>
<td>Serum</td>
<td>6.94-11.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[37]</td>
<td>RBT BAPT TAT MET Riv T ELISA</td>
<td>Friesian cattle</td>
<td>124</td>
<td>Serum</td>
<td>29.8%</td>
<td>Fayoum</td>
<td>B. abortus</td>
<td>Animals were not subjected to any vaccination.</td>
</tr>
<tr>
<td>[34]</td>
<td>RBPT TAT MET Riv T</td>
<td>Camels</td>
<td>430</td>
<td>Serum</td>
<td>7.67%</td>
<td>Assiut</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[55]</td>
<td>RBT, SAT Riv T, PCR</td>
<td>Cattle Buffaloes Sheep Goats</td>
<td>1,783</td>
<td>Serum</td>
<td>8.5%</td>
<td>El-Minia</td>
<td>B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[25]</td>
<td>SAT, RBPT MRT PCR</td>
<td>Cattle Sheep Goats Camels</td>
<td>52</td>
<td>Milk</td>
<td>n = 29</td>
<td>Giza</td>
<td>B. abortus bv 1 B. melitensis bv 3</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[20]</td>
<td>SAT, MRT, WRBPT, WRiv T</td>
<td>Cattle</td>
<td>150</td>
<td>Serum</td>
<td>10%</td>
<td>Behira</td>
<td>B. melitensis bv 3</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[53]</td>
<td>BA PT, RBPT CFT, SAT</td>
<td>Camels</td>
<td>750</td>
<td>Serum</td>
<td>3.9%</td>
<td>Egypt</td>
<td>B. melitensis bv 3 B. abortus bv 1,7</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[56]</td>
<td>RBT, BAPT TAT, Riv T</td>
<td>Cattle Sheep Goats</td>
<td>6,495</td>
<td>Serum</td>
<td>0.46-0.61</td>
<td>Assiut</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td>[52]</td>
<td>BA PT, RBPT ELISA, CFT TAT, MRT</td>
<td>Milky cattle Dry cows Aborted cows Calves Bulls Milky cattle</td>
<td>238</td>
<td>Serum</td>
<td>28.51%</td>
<td>Sharkia</td>
<td>Isolation from milk was negative</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[69]</td>
<td>BA PT RBPT TAT Riv T</td>
<td>Sheep</td>
<td>21,776</td>
<td>Serum</td>
<td>1.6%</td>
<td>Assiut</td>
<td></td>
<td>Samples collected officially</td>
</tr>
<tr>
<td>[66]</td>
<td>BA PT RBPT TAT Riv T</td>
<td>Goats</td>
<td>16,285</td>
<td>Serum</td>
<td>0.33%</td>
<td>Assiut</td>
<td></td>
<td>Samples collected officially</td>
</tr>
<tr>
<td>[67]</td>
<td>BA PT RBPT TAT Riv T</td>
<td>Cattle</td>
<td>8,774</td>
<td>Serum</td>
<td>0.89%</td>
<td>Assiut</td>
<td></td>
<td>Samples collected officially</td>
</tr>
<tr>
<td>[70]</td>
<td>BA PT SAT, MRT SAT MRT</td>
<td>Lactating buffaloes Lactating buffaloes Dry buffaloes Bulls</td>
<td>295</td>
<td>Serum</td>
<td>19.9%</td>
<td>Giza</td>
<td>B. abortus</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td>[68]</td>
<td>SAT MET BA PAT</td>
<td>Swine</td>
<td>288</td>
<td>Serum</td>
<td>29.2%</td>
<td>B. suis bv 1</td>
<td>No outbreak investigation</td>
<td></td>
</tr>
</tbody>
</table>

References:

- [54] TAT PCR
- [37] RBT BAPT TAT MET Riv T ELISA
- [34] RBPT TAT MET Riv T
- [55] RBT, SAT Riv T, PCR
- [25] SAT, RBPT MRT PCR
- [20] SAT, MRT, WRBPT, WRiv T
- [53] BA PT, RBPT CFT, SAT
- [56] RBT, BAPT TAT, Riv T
- [52] BAP PT, RBPT ELISA, CFT TAT, MRT
- [69] BAP T PT RBPT TAT Riv T
- [66] BAP T PT RBPT TAT Riv T
- [67] BAP T PT RBPT TAT Riv T
- [70] BAP T SAT, MRT
- [68] SAT MET BAP T

Details:

- **Camels**: Animals tested were camels kept with other animals. Sample number: 72, Sample type: Serum, Prevalence: 6.94-11.1%, Location: Fayoum. Isolates: B. abortus. Animals were not subjected to any vaccination.
- **Friesian cattle**: Sample number: 124, Sample type: Serum, Prevalence: 29.8%. Location: Behira. Inclusion criteria: No outbreak investigation.
- **Camels**: Sample number: 430, Sample type: Serum, Prevalence: 7.67%. Location: Assiut. Inclusion criteria: No outbreak investigation.
- **Cattle Buffaloes Sheep Goats**: Sample number: 1,783, Sample type: Serum, Prevalence: 8.5%. Location: El-Minia. Isolates: B. melitensis bv 3. Outbreak investigation.
- **Cattle Sheep Goats Camels**: Sample number: 52, Milk n = 29, Prevalence: 7.0%. Location: Giza. Isolates: B. abortus bv 1, B. melitensis bv 3. Outbreak investigation.
- **Cattle**: Sample number: 150, Serum: 10%, Milk: 8%. Location: Behira. Isolates: B. melitensis bv 3. No outbreak investigation.
- **Camels**: Sample number: 750, Serum: 3.9%. Location: Egypt. Isolates: B. melitensis bv 3, B. abortus bv 1,7. No outbreak investigation.
- **Cattle Sheep Goats**: Sample number: 6,495, Serum: 0.46-0.61. Location: Assiut. No outbreak investigation.
- **Milky cattle Dry cows Aborted cows Calves Bulls Milky cattle**: Sample number: 238, Serum: 28.51%. Location: Sharkia. Isolation from milk was negative. Outbreak investigation.
- **Sheep**: Sample number: 21,776, Serum: 1.6%. Location: Assiut. Samples collected officially.
- **Goats**: Sample number: 16,285, Serum: 0.33%. Location: Assiut. Samples collected officially.
- **Cattle**: Sample number: 8,774, Serum: 0.89%. Location: Assiut. Samples collected officially.
- **Lactating buffaloes Lactating buffaloes Dry buffaloes Bulls**: Sample number: 295, Serum: 19.9%. Location: Giza. Isolates: B. abortus. Outbreak investigation.
- **Swine**: Sample number: 288, Serum: 29.2%. Location: B. suis bv 1. No outbreak investigation.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Serology tests</th>
<th>Animals tested</th>
<th>Sample no.</th>
<th>Sample type</th>
<th>Prevalence</th>
<th>Location</th>
<th>Isolates</th>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>[49]</td>
<td>SAT, MET</td>
<td>Cattle</td>
<td>1,683</td>
<td>Serum</td>
<td>8.2%</td>
<td>Alexandria, Assiut, Cairo, Giza, Behira, Demiatta, Fayoum, Gharbiya, Kafrelsheik, Qaliobia, Menufiya, Suez, Port-Said, Sharkia</td>
<td>B. melitensis</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>BAPAT</td>
<td>Buffaloes</td>
<td>1,286</td>
<td>Serum</td>
<td>11.4%</td>
<td></td>
<td>B. abortus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheep</td>
<td>2,257</td>
<td>Serum</td>
<td>5.1%</td>
<td></td>
<td>bv 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goats</td>
<td>532</td>
<td>Serum</td>
<td>11.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[59]</td>
<td>RBPT</td>
<td>Cattle</td>
<td>176</td>
<td>Serum</td>
<td>2.27%</td>
<td>Kafrelsheikh</td>
<td></td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffaloes</td>
<td>97</td>
<td>Serum</td>
<td>3.09%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheep</td>
<td>169</td>
<td>Serum</td>
<td>4.73%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goats</td>
<td>20</td>
<td>Serum</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[58]</td>
<td>TAT</td>
<td>Camels</td>
<td>1,500</td>
<td>Serum</td>
<td>5.3%</td>
<td>Egypt</td>
<td>B. abortus</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>MT TAT CFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bv 7</td>
<td></td>
</tr>
<tr>
<td>[47]</td>
<td>STA, RBPT 2ME</td>
<td>Friesian cattle</td>
<td>533</td>
<td>Serum</td>
<td>4.48%</td>
<td>Menufiya</td>
<td></td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>MRT CFT Riv T</td>
<td>Native cattle</td>
<td>302</td>
<td>Serum</td>
<td>6.43%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffaloes</td>
<td>547</td>
<td>Serum</td>
<td>2.89%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[50]</td>
<td>TAT, Riv T</td>
<td>Sheep</td>
<td>925</td>
<td>Serum</td>
<td>13.3%</td>
<td>Cairo, Giza, Qaliobia, Kafrelsheik, Dakahlia</td>
<td>B. melitensis</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>BAPAT</td>
<td>Goats</td>
<td>560</td>
<td>Serum</td>
<td>7.14%</td>
<td></td>
<td>bv 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBPT, MET MRT</td>
<td>Sheep</td>
<td>25</td>
<td>Milk</td>
<td>40%</td>
<td></td>
<td>B. abortus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goats</td>
<td>21</td>
<td>Milk</td>
<td>23.8%</td>
<td></td>
<td>bv 3,7</td>
<td></td>
</tr>
<tr>
<td>[21]</td>
<td>TAT</td>
<td>Cattle</td>
<td>1,832</td>
<td>Serum</td>
<td>37.9%</td>
<td>Menufiya, Beni-Suef, Kafrelsheik, Fayoum</td>
<td>B. melitensis</td>
<td>No outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>Riv T RBT TAT</td>
<td></td>
<td></td>
<td>Serum</td>
<td>32.8%</td>
<td></td>
<td>bv 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riv T RBT</td>
<td></td>
<td></td>
<td>Serum</td>
<td>61.8%</td>
<td></td>
<td>B. abortus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riv T</td>
<td></td>
<td></td>
<td>Serum</td>
<td>61.8%</td>
<td></td>
<td>bv 3,7</td>
<td></td>
</tr>
<tr>
<td>[44]</td>
<td>CFT TAT</td>
<td>Cattle</td>
<td>800</td>
<td>Serum</td>
<td>3%</td>
<td>Menefiya, Beni-Suef, Kafrelsheik, Fayoum</td>
<td>B. melitensis</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>BAPAT, RBPT</td>
<td>Buffaloes</td>
<td>300</td>
<td>Serum</td>
<td>4%</td>
<td></td>
<td>bv 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riv T, MRT</td>
<td>Cartile</td>
<td>800</td>
<td>Milk</td>
<td>2.63%</td>
<td></td>
<td>B. abortus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffaloes</td>
<td>300</td>
<td>Milk</td>
<td>3.67%</td>
<td></td>
<td>bv 3,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dogs</td>
<td>108</td>
<td>Serum</td>
<td>6.48%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wild rats</td>
<td>130</td>
<td>Serum</td>
<td>10.77%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[51]</td>
<td>TAT, Riv T</td>
<td>Cattle</td>
<td>1,832</td>
<td>Serum</td>
<td>37.99%</td>
<td>Alexandria, Assiut, Cairo, Giza, Demiatta, Kafrelsheik, Qaliobia, Menefiya, Port-Said, El-Menia, Beni-suef, Dakahlia</td>
<td>B. melitensis</td>
<td>Outbreak investigation</td>
</tr>
<tr>
<td></td>
<td>RBPT, MRT</td>
<td>Buffaloes</td>
<td>1,18</td>
<td>Serum</td>
<td>10.17%</td>
<td></td>
<td>bv 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheep</td>
<td>648</td>
<td>Serum</td>
<td>23.92%</td>
<td></td>
<td>B. abortus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goats</td>
<td>131</td>
<td>Serum</td>
<td>00.00%</td>
<td></td>
<td>bv 3,7</td>
<td></td>
</tr>
</tbody>
</table>

*Buffer acidified plate antigen test (BAPAT)
**Rose Bengal test (RBT)
***Tube agglutination test (SAT)
****Rivanal test (Riv. T)
*****Milk ring test (MRT)
******Polymerase chain reaction (PCR)
*******Enzyme linked immunosorbent assay (ELISA)
********Dot blot hybridization assay (DBH)
*********Complement fixation test
**********Milk ring test
§Latex agglutination test (LAT)
§§Immunochromatographic assay (ICA)
§§§Mercaptoethanol test (MET)