

General Virology 304 Lecture Series XII

Virus Classification

Dr. Haitham M. Amer, DVM, Ph.D.

Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt

Virus

1- Type:

2- Strandness:

Most DNA Viruses

Pox - Herpes

Rare Parvo - Circo

Rare Reo - Birna

Most RNA Viruses Influenza

3- Sense (polarity):

Positive Sense

Negative Sense

AmbiSense

4- Linearity:

Linear: HIV - HCV

Circular:

Circo - HBV

5- Segmentation:

Single molecule:

Newcastle Disease Virus

5- Segmentation:

Segmented Genome:

2 segments (IBDV)

8 segments (Influenza)

3 segments (RVF)

11 segments (Rota)

6- Ploidy:

Haploid:

Diploid: HIV

Example: Influenza Virus

RNA

Single stranded

Negative sense

Linear

Segmented (6-8 segments)

Haploid

Example: Influenza Virus

Capsid

Two kinds of symmetry:

Correspond to two primary shapes

<u>Rod:</u>

Helical symmetry

Spherical:

Icosahedral symmetry

Capsid

Helical Capsid:

2- Capsid

Icosahedral Capsid:

20 faces (equilateral triangle) 30 borders - 12 angles

Capsid

Complex Capsid:

Neither icosahedral nor helical

e.g. small pox virus

Both icosahedral nor helical (Binal)

e.g. Bacteriophage

Envelope

Genetic material present in the virion

ICTV

- Nine meetings were held to upgrade virus classification till now:

Helsinki (Finland) 1968 Leuven (Belgium) 2009

At 2016: 122 families 4404 virus

At 1971: 2 families 290 virus

Classification Methods

First classification trial:

"Based on clinical and ecological properties"

- 1. Common clinical and pathogenic properties (e.g. respiratory, nervous, digestive viruses)
- 2. Common organ tropism(e.g. liver, lung, brain, intestine)
- 3. Common transmission patterns (e.g. Arthropod-born, Air-born, vertical, venereal)
- Ex. Viruses causing hepatitis (A, B, C, D,E; now belong to different families: Picorna, Hepadna, Flavi, Delta and Calici).

Classification Methods

Second classification trial:

"Based on physicochemical and antigenic properties of viruses"

- Virion size
 (ultrafiltration ultracentrifugation electron microscopy)
- 2. Virion morphology (Electron microscopy)
- Virion stability
 (pH temperature lipid solvents detergents radiation)
- 4- Virus antigenicity (Serological tests)

Classification Methods

Current classification trials:

"Based on virus structure and replication"

- Hierarchical Classification System
 (Structure of virion and characteristics of virus genome)
- Baltimore Classification System
 (Strategy of viral replication and mRNA synthesis)
- 3. Phylogenetic analysis/Genotyping (Complete or partial sequencing of viral genome)

(A) Hierarchical classification system

"Based on structure of virion and characteristics of virus genome"

1. Virus genome:

DNA or RNA, ds or ss, + or - sense, single molecule or segmented, linear or circular, haploid or diploid.

2. Capsid:

Size and symmetry (helical, icosahedral or complex).

3. Envelope:

Enveloped or naked.

dsDNA Asfarviridae

Poxviridae Chordopoxvirinae

Iridoviridae Ranavirus Lymphocystivirus

ssDNA

Parvoviridae Parvovirinae

dsDNA (RT)

Hepadnaviridae

Polyomaviridae

Herpesviridae Papillomaviridae Adenoviridae

Reoviridae Orthoreovirus Orbivirus Coltivirus Rotavirus Aquareovirus

Birnaviridae Aquabirnavirus Avibirnavirus

RNA

Paramyxoviridae

Deltavirus

ssRNA (RT) Retroviridae

Bunyaviridae Orthobunyavirus Hantavirus Nairovirus Phlebovirus

(B) Baltimore classification system

Genetic material present in the virion

(C) Phylogenetic analysis (genotyping)

- Based on complete or partial sequencing of the viral genome.
- Comparison of the nucleotide sequence using computer softwares.
- Classify the viral strains into different lineages.
- http://www.ncbi.nlm.nih.gov

Universal system for virus taxonomy (USVT)

Established by ICTV - Based on:

- 1. Virion size, morphology and stability.
- 2. Type and characteristics of the viral genome.
- 3. Capsid size and symmetry.
- 4. Presence or absence of virus envelope.
- 5. Strategy of virus replication.
- 6. Phylogenetic analysis

USVT

Order: ends with suffix (Virales)

Order: Mononegavirales

- <u>Family</u>: ends with suffix (Viridae)Family Poxviridae Picornaviridae
- Subfamily: ends with suffix (Virinae)
 Subfamily: Chordopoxvirinae
- Genus: ends with suffix (Virus)Genus: Capripoxvirus

Other terms related to virus classification

Pathotypes:

Variation in the virulence of virus strains. NDV (Lentogenic, Mesogenic and Velogenic).

Biotypes:

Variation in the cytopathogenisity of virus strains. BVD (Cytopathogenic and non-cytopathogenic).

Serotypes:

Variation in the antigenicity of virus strains according to serological tests.

Genotypes:

Variation in the genetic properties of virus strains according to molecular based techniques.

