

Types of Vaccines

Dr. Haitham M. Amer, DVM, Ph.D.

Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt

Ideal vaccine

- 1- Effective (Protective).
- 2- Long lasting.
- 3- Safe.
- 4- Pure.
- 5- Stable.
- 6- Economic

Types of vaccine

Types of vaccine

Types of vaccine

- Live, attenuated vaccines
- Inactivated vaccines
- Subunit vaccines
- Toxoid vaccines
- Conjugate vaccines
- DNA vaccines
- Recombinant vector vaccines

Conventional Vaccines

- Live, attenuated vaccines contain a version of the living microbe that has been weakened in the lab so it can't cause disease.
- Because a live, attenuated vaccine is the closest thing to a natural infection, these vaccines are good "teachers" of the immune system.
- Example: Vaccines against measles, mumps, and chickenpox

- A- Naturally Avirulent Pathogen

 Lentogenic strains of Newcastle disease virus
- B- Immunologically related pathogen from different host species "Heterotypic vaccines"

Turkey herpes virus against Marek's disease in chicken

Sheep pox virus against LSD in cattle Vaccinia against small pox in human

C- Attenuated vaccines:

- By serial passaging in different host system (cell culture, ECEs) Accumulation of point mutations that lead to loss of virulence.
 - By selection of mutants (e.g. temperature sensitive mutants).

C- Attenuated vaccines:

- By removal of partial or complete sequence of a gene that is not essential for replication but contribute in virulence (this vaccine enables

DIVA).

TK gene of herpesviruses

Advantages:

When safe it is the best

- 1- Local and systemic immunity.
- 2- Induces immunogenic memory.
- 3- Raises immune response to all protective antigens.
- 4- Quick and long-lasting immune response.
- 5- Low cost (Good for use in developing countries).
- 6- Cross protection.
- 7- Easily administrated by all routes (injection, oral, ...)
- 8- Can lead to elimination of wild-type pathogen from the community.

Disadvantages:

- 1- Potential reversion to virulence.
- 2- Spread to contacts of vaccines who have not vaccinated.
- 3- Poor stability (requires cold chain).
- 4- Contraindicated in immunosuppressed individuals.

Inactivated (Killed) Vaccines

- Made from virulent pathogen by destroying its infectivity using physical or chemical agent, while retaining its immunogenicity.
- The most commonly used inactivated agents are formaldhyde, B-propiolactone, ethylenimine and azuridine.
- Adjuvants and non-specific immunostimulants are added to strengthen the immune response and prolongs its duration.

Inactivated (Killed) Vaccines

Advantages:

- 1- Gives sufficient humoral immunity if boosters given.
- 2- No risk of pathogenicity or virulence.
- 3- Safe for pregnant and immuno-deficient individuals.
- 4- Stable (Preferred for use in tropical countries).

Inactivated (Killed) Vaccines

Disadvantages:

- 1- Require booster doses (Short immunity).
- 2- High antigen concentration is needed.
- 3- Local immunity is poor.
- 4- Administration only by injection.
- 5- Provokes mostly humoral immunity (Adjuvants are essential for cellular immunity).
- 6- Inactivation process may alter antigenicity.
- 7- Less economic (adjuvant high antigen conc.).

Live-attenuated vs Inactivated Vaccines

	Live-attenuated Vaccines	Inactivated Vaccines
Route	imitating natural infection	Injection subcutaneously
Doses	small	Large
Times	once	Twice or more
Side effects	slight	severe
Duration	Long (3~5years or life long)	Short (months~1 years)
Mutation	possible	impossible
Preservation	4°C or lymphilization	easy to preserve

Live-attenuated vs Inactivated Vaccines

CHARACTERISTICS	Inactivated virus (IV)	Modified live-virus (MLV)
Quantity of antigen / dose	Higher	Lower
Need for adjuvant	Higher	Medium
Humoral responses; total antibodies (one dose) ¹	Low or Null	High
Humoral responses; neutralizing antibodies (one dose) ¹	Null	Low-Medium
Cell-mediated immunity (one dose) ¹	Null-Low	Low-Medium
Effectiveness of protection (one dose) ¹	Variable (lower)	Variable (higher)
Viraemia (vaccine virus can be detected in blood)	No	Yes
Excretion of vaccine virus	No	Yes
Transmission to non-vaccinated pigs		
Horizontal spread	No	Yes
Vertical spread	No	Yes
Stability at room temperature	High	Low

Molecular-based Vaccines

USDA classification of Genetically Engineered

Veterinary Biologics:

Category I:

Vaccines contain inactivated recombinant organisms or purified antigens derived from recombinant organisms.

Category II:

Vaccines contain live organisms that contain gene deletion or heterologous marker genes.

Category III:

Vaccines contain live expression vectors containing heterologous genes for immunizing antigens.

Molecular-based Vaccines

Category III

Category I - Subunit vaccine

Category I – Subunit vaccine

Category II - Marker vaccine

Pathogenic virus

Mutation or deletion of virulence gene

Immunogenic but avirulent virus -> vaccine

Category III - Vectored vaccine

Advantages:

- 1- Induce humoral and cellular responses.
- 2- Stability during storage and shipping.
- 3- Ease of development and production.
- 4- Relatively economic.
- 5- No immune response against the vector itself.
- 6- Fast production and scale up.
- 7- Non-infectious (Safe).

Disadvantages:

- 1- Potential integration of plasmid into host genome leading to insertional mutagenesis
- 2- Induction of autoimmune responses (Pathogenic anti-DNA antibodies)
- 3- Induction of immunogenic tolerance.
- 4- Lower efficiency in large animals and human (poor immunogenicity).
- 5- Require multiple doses.
- 6- No mass application

