

General Virology PHA-251 Lecture Series III

Virus Structure

Dr. Haitham M. Amer, DVM, Ph.D.

Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt

Viruses General Information

What is a virus made up of?

Thus the major components of virions are:

a) Nucleic acid

b) Protein coat-capsid

c) Lipid envelope

Envelope (Phospholipid bilayer.)

Viruses

Basic Virus Components

Two Types of Viruses

Enveloped Viruses

(c)

(f)

1- Nucleic Acid

- A complex, high-molecular-weight biochemical macromolecule
- A polymer that composed of a long chain of nucleotides (blocking units).
- Carry, store and transfer the genetic information of nearly all organisms.
- The most common nucleic acids are:
 - Deoxy ribonucleic acid (DNA).
 - Ribonucleic acid (RNA).

Poly-nucleotide Chain

Phosphodiester bond

- 3` end (terminus)

Negative strand (polarity) or (Template) strand

Positive strand (polarity) or (coding) strand

5` end (terminus)

Viruses have perhaps exploited all possible means of nucleic acid replication for an entity at the subcellular level.

1- Type:

2- Strandness:

Most DNA Viruses

Pox - Herpes

Rare

Parvo - Circo

Rare

Reo - Birna

Most RNA Viruses

Influenza

3- Sense (polarity):

Positive Sense

directly capable of translation to protein

Negative Sense

Requires transcription of mRNA strand

AmbiSense

```
5' ____Z L _______3'
```

In part positive sense and in part negative sense

4- Linearity:

Linear:

Poxviridae Coronaviridae

Circular:

Circoviridae Hepadnaviridae

5- Segmentation:

Single molecule:

Paramyxoviruses

5- Segmentation:

Segmented Genome:

2 segments (Birna-Arena)

6-8 segments (Influenza)

3 segments (Bunya)

10-12 segments (REO)

6- Ploidy:

Haploid:

Diploid: Retroviridae

7- Length/Size:

<u>Largest</u>

Megavirus: Up to 1,300,000 Base pair in length

1120 genes

Poxvirus: Up to 300,000 Base pair in length

150 genes

Smallest

Deltavirus: Less than 1,700 Base in length

One gene

Example: Influenza Virus

RNA

Single stranded

Negative sense

Linear

Segmented (6-8 segments)

Haploid

Example: Influenza Virus

Type and structure of the genome are used to classify viruses

Family	Nature of the Genome	Presence of an Envelope	Morphology	Genome Configuration	Genome Siz (kb or kbp)
Poxviridae	dsDNA	+	pleomorphic	1 linear	130–375
Iridoviridae	dsDNA	+/-	isometric	1 linear	135-303
Asfarviridae	dsDNA	+	spherical	1 linear	170–190
Herpesviridae	dsDNA	+	isometric	1 linear	125-240
Adenoviridae	dsDNA	_	isometric	1 linear	26–45
Polyomaviridae	dsDNA	-	isometric	1 circular	5
Papillomaviridae	dsDNA	-	isometric	1 circular	7–8
Hepadnaviridae	dsDNA-RT	+	spherical	1 linear	3-4
Circoviridae	ssDNA	-	isometric	1 – or +/– circular	2
Parvoviridae	ssDNA	_	isometric	1 +/- linear	4–6
Retroviridae	ssRNA-RT	+	spherical	1 + (dimer)	7–13
Reoviridae	dsRNA	(c <u> </u>)	isometric	10–12 segments	19–32
Birnaviridae	dsRNA	-	isometric	2 segments	5–6
Paramyxoviridae	NssRNA	+	pleomorphic	1 - segment	13–18
Rhabdoviridae	NssRNA	+	bullet-shaped	1 - segment	11–15
Filoviridae	NssRNA	+	filamentous	1 - segment	≈19

Type and structure of the genome are used to classify viruses

Family	Nature of the Genome	Presence of an Envelope	Morphology	Genome Configuration	Genome Siz (kb or kbp)
Bornaviridae	NssRNA	+	spherical	1 – segment	9
Orthomyxoviridae	NssRNA	+	pleomorphic	6–8 – segments	10–15
Bunyaviridae	NssRNA	+	spherical	3 - or +/- segments	11–19
Arenaviridae	NssRNA	+	spherical	2 +/- segments	11
Coronaviridae	ssRNA	+	spherical	1 + segment	38–31
Arteriviridae	ssRNA	+	spherical	1 + segment	13–16
Picornaviridae	ssRNA	_	isometric	1 + segment	7–9
Caliciviridae	ssRNA	_	isometric	1 + segment	7–8
Astroviridae	ssRNA	_	isometric	1 + segment	6–7
Togaviridae	ssRNA	+	spherical	1 + segment	10–12
Flaviviridae	ssRNA	+	spherical	1 + segment	10–12
Hepevirus (unassigned)	ssRNA	-	isometric	1 + segment	7
Anellovirus (unassigned)	ssDNA	-	isometric	1 – circular	3–4

- Capsid is formed from protein subunits arranged in a precise and highly repetitive pattern around NA
- * Protein sub-units:

Associate in a specific way to form larger assemblies /structures:

* Capsomers make up the:

Protomers

Capsomers

United States of the Control of the Control

Capsid

Complex of NA and proteins packaged together:

NUCLEOCAPSID

Two kinds of symmetry:

Correspond to two primary shapes

Rod:

Helical symmetry

Spherical:

Icosahedral symmetry

(a) Isometric (adenovirus)

75 nm

(b) Helical (tobacco mosaic virus)

Helical Capsid:

Helical Capsid:

- Rod-like structures.
- RNA in the center of the helix.
- A helix is made by stacking repeating units in a spiral.

Helical Capsid:

- Helical, naked (i.e. non-enveloped) animal viruses do not exist, but the reasons are not clear.
- This category includes many of the best known human and animal pathogens e.g. Influenza, Rabies, Paramyxo, and corona viruses
- Most helical animal viruses possess single-stranded, negative-sense RNA genomes

Icosahedral Capsid:

20 faces (equilateral triangle) 30 borders - 12 angles

Icosahedral Capsid:

Icosahedral Capsid:

5-FOLD

3-FOLD

2-FOLD

Complex Capsid:

Neither icosahedral nor helical

e.g. pox virus

Both icosahedral nor helical (Binal)

e.g. Bacteriophage

3- Envelope

Enveloped viruses are viruses which have a membrane coat surrounding the protein coat or capsid. These viruses are common in animal viruses, but are uncommon in plant viruses.

3- Envelope

Envelope Structure

Obtained from the cell membrane through budding

Envelope Structure

- All living cells are covered by a membrane composed of Phospholipid bilayer.
- Viruses leaving the cell usually acquire an outer coat derived from the cell membrane (i.e. envelope) through the budding process.
- The envelope of some viruses such as poxviruses, herpesviruses and coronaviruses is derived from internal cellular membranes (Nucleus Endoplasmic reticulum Golgi Apparatus).

1- Peplomeres (Viral Legends):

1- Peplomeres (Viral Legends):

Glycoprotein spikes protruded from the viral envelope.

Functions:

- 1- Recognition of target cell.
- 2- Attachment with cell receptor.
- 3- Virus entry into the host cell.
- 4- Virus release from host cell.
- 5- Target for immune response.
- 6- Responsible for the biological properties of viruses (e.g. heamagglutination receptor destruction).

2- Matrix protein:

Viral protein cover the envelope internally

Functions:

- 1- Protection of the loose envelope structure
- 2- Assembly of new viruses

Exp.: Ebola virus

3- Ion-Channel protein:

Functions:

- 1- Maintain pH of virus envelope.
- 2- Mediates uncoating of virus envelope during replication.

Exp.: Influenza

Functions of Virus Coatings

- 1. Protects the fragile genome from physical, chemical or enzymatic damage
- 2. Recognition and attachment of virus to host cell.
- 3. Initiation of infection by delivering the viral genome in the host cell.
- 4. Assembly and release of new viruses from host cell.
- 5. Principle targets of host immunity.

