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The Mediterranean region, distinguished by its cultural heritage and industrialization, suffers from
significant pollution levels of polycyclic aromatic hydrocarbons (PAHs) due to frequent petroleum-
related activities such as petroleum extraction and consumption. Being dominant pollutants, PAHs
cause significant deterioration of historic buildings and materials. This review comprehensively
explores PAH-induced heritage deterioration, especially PAH-induced microbial deterioration, and
explores current solutions and future perspectives for cultural heritage preservation.

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants
recorded in different environmental ecosystems, such as atmospheric, ter-
restrial, and aquatic ecosystems. These organic pollutants consist of only
carbon and hydrogen atoms forming two or more conjugated benzene rings
arranged in different manners, which are linear, angular, and cluster
arrangements Fig. 1'°. There are two classes of these PAHs based on
molecular mass that are low molecular weight PAHs (LMW-PAHs) and
high molecular weight PAHs (HMW-PAHs)’. LMW-PAH:s consist of two
or three fused aromatic rings. While HMW-PAHs consist of four, five, and/
or six fused aromatic rings. LMW-PAHs are more bioavailable than HMW-
PAHs because their smaller molecular masses penetrate biological tissues
more easily than HMW-PAHs. Consequently, LMW-PAHs are considered
more toxic than HMW-PAHs. However, HMW-PAHs can cause chronic
pollution for a longer time than LMW-PAH:s because of their high sorption
capacity to the solid entities in the environment, such as fly ash particles in
the atmosphere, soil particles, and sediments in water bodies™. In conclu-
sion, PAHs are identified as persistent organic pollutants, especially HMW-
PAHs, by the United States Environmental Protection Agency (U.S. EPA)’.
Generally, PAHs are introduced into ecosystems as a result of the incom-
plete combustion of organic substances’”. Such an incomplete combustion
process occurs naturally or anthropogenically. The natural incomplete
combustions occur in volcanic eruptions and forest fires®. The anthro-
pogenic processes occur during the incomplete combustion of energy
materials such as coal, oil, gas, or even organic waste to get energy’ .
Moreover, accidents during the extraction and transportation of energy

materials such as petroleum oil are other potential anthropogenic pollution
sources'’. Petroleum oil consists of PAHs along with other organic and
inorganic compounds. In the end, the released PAHs into ecosystems can be
spread fast from polluted areas to others, causing secondary pollution. For
instance, PAHs introduced into the air through incomplete combustion of
energetic materials can spread with winds from polluted locations to non-
polluted ones over long distances before being adhered to suspended par-
ticulates in the air or precipitated on surfaces of soil, water, and vegetation”"".
In addition, evaporation of the volatile PAHs (LMW-PAHs) occurs after
crude petroleum spills onto waterbodies or soil surfaces, leading to air
pollution surrounding the polluted locations'”. Because of urbanization and
the energy demand increase, the anthropogenic causes of PAH pollution
have become more dominant pollution causes than natural ones.

Figure 1 presents the 3D stick model representations of the 16 PAHs
designated as priority pollutants by the U.S. EPA". The PAHs are cate-
gorized into LMW PAHs (up to three aromatic rings) and High Molecular
Weight (HMW) PAHs (four or more aromatic rings). The chemical
structures were sourced as SDF files from PubChem'* and rendered using
PyMOL"” in 3D stick format, highlighting atom-specific color coding:
hydrogen (white) and carbon (gray). Each PAH is labeled with its common
name and PubChem CID for reference.

The Mediterranean Sea and ambient atmosphere can be considered
sinks of anthropogenic PAH pollution since the 1960s due to human
activities related to petroleum oil extraction and consumption. As evidence,
Table 1 lists some huge spills of crude petroleum oil into the Mediterranean

'College of Biotechnology, Misr University for Science and Technology, Giza, Egypt. ’Genetics Department, Faculty of Agriculture, Mansoura University, El
Mansoura, Egypt. *Biotechnology Program, Faculty of Agriculture, Mansoura University, El Mansoura, Egypt. ‘Chemistry Department, Faculty of Agriculture,
Mansoura University, El Mansoura, Egypt. *Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt. °Biotechnology Department,

Faculty of Science, Cairo University, Giza, Egypt.

e-mail: munis7977@gmail.com; rehabhafez@sci.cu.edu.eg; aamoustafa@sci.cu.edu.eg

npj Heritage Science| (2025)13:414


http://crossmark.crossref.org/dialog/?doi=10.1038/s40494-025-01833-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s40494-025-01833-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s40494-025-01833-5&domain=pdf
http://orcid.org/0000-0003-0528-288X
http://orcid.org/0000-0003-0528-288X
http://orcid.org/0000-0003-0528-288X
http://orcid.org/0000-0003-0528-288X
http://orcid.org/0000-0003-0528-288X
mailto:munis7977@gmail.com
mailto:rehabhafez@sci.cu.edu.eg
mailto:aamoustafa@sci.cu.edu.eg
www.nature.com/npjheritagesci

https://doi.org/10.1038/s40494-025-01833-5

Review

00 K

Naphthalene (Na)
PubChem CID: 931

Acenaphthene (Ac)
PubChem CID: 6734

Acenaphthylene (Ap)
PubChem CID: 9161

Fluorene (F)
PubChem CID: 6853

LMW PAHs

02egReee

Anthracene (A)
PubChem CID: 8418

Phenanthrene (Pa)
PubChem CID: 995

S g el

Pyrene (P)
PubChem CID: 31423

Chrysene (Ch)
PubChem CID: 9171

2 oo oy

Benzo(B)Fluoranthene Benzo(K)Fluoranthene Benzo[a]pyrene
(BbF) (BKF) (BaP) (DBahA)
PubChem CID: 9153 PubChem CID: 9158 PubChem CID: 2336

Fluoranthene (Fl)
PubChem CID: 9154

G £ R

Dibenz(a,hjanthracene

PubChem CID: 5889

HMW PAHSs

Benzo[a)anthracene (BaA)
PubChem CID: 5954

Benzo[g,h.i]perylene Indeno(1,2,3-cd]pyrene
(BghiP) (IP)
PubChem CID: 9117 PubChem CID: 9131

Fig. 1| 3D Stick model representations of the 16 U.S. EPA priority pollutant polycyclic aromatic hydrocarbons (PAHs). The final layout and annotations were designed

llSiIlg www.canva.com.

Table 1| Lists of catastrophic spills of massive amounts of crude petroleum oil, a source of PAHs, into the Mediterranean Seain
different Mediterranean cities from different countries

Spill Location Year Spilled oil (tonnes) Reference
Fina Norvege Sardinia, Italy 1966 6000 116
Marlena Sicily, ltaly 1970 15,000 116
Ellen Conway Port of Arzew, Algeria 1976 31,000 116

Al Dammam Agioi Theodoroi, Greece 1976 15,000 116
URSS 1 Bosporus Strait, Turkey 1977 20,000 116
Kosmas M. Asbas, Antalya, Turkey 1978 10,000 116
Messiniaki Frontis Crete, Greece 1979 16,000 117

MT Independenta (“Independence”) Istanbul City area and the Sea of Marmara, Turkey 1979 64,000 117
Juan Antonio Lavalleja Port of Arzew, Algeria 1980 37,000 117

MV Haven Genoa, ltaly 1991 144,000 118,119
Castor off Nador Morocco 2000 9900 120
Jiyeh power plant coast of Lebanon 2006 15,000-30,000 116

Sea. Disastrously, there are more than 380,000 tonnes of crude petroleum oil
spilled into the Mediterranean according to the listed disasters in Table 1
occurred between 1966 and 2006. Moreover, Table 2 lists many PAHs
recorded in different environmental matrices (e.g., sediments, air, water) at
different Mediterranean cities in different countries, resulting from oil
exploration, extraction, or consumption. It is worth mentioning that PAHs’
pollution can hinder the implementation of sustainable developmental goals

(SDGs), especially in heavily polluted areas like the Mediterranean region.
For instance, PAHS’ pollutions have negative impacts on six SDGs, which
are goal 2; zero hunger, goal 3; good health and well-being, goal 6; clean
water and sanitation, goal 8; decent work and economic growth, goal 14; life
below water and goal 15; life on land. In brief, PAH pollution threatens the
food security issue as these toxic compounds are bioaccumulated within
animals’ and plants’ tissues, leading to their death and hence food resource
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Table 2| Some locations in the Mediterranean region with polluted environmental matrices (air, water, sediment, and soil) with
different levels of PAH pollution, indicating which PAH compounds were recorded in these locations

Location “Mediterranean Environmental sample 2PAHSs pollution level PAHs compounds Reference
region”
Limassol, Cyprus Air 0.12-4.02 ng/m® BbF, BeP, IcdP, Bghi, Ant, Cor 121
Alexandria-Manzallah, Egypt surface sediments 13,156-34,852 ng/g 216PAHs 122
Traffic areas in Cairo, Egypt Leaves of trees planted in the 8,261-18,223 mg/kg DahA, Bghi, BbF, Fluo, IcdP, Phe, BaP, Chry, Flu, Ace, 123
study areas BkF, BaA, Pyr, Ant, Acy, Nap
Alexandria, Egypt Air 322.57-723.49 ng/m3 BkF, BaP, IcdP 124
Heraklion, Greek Air 0.15-9.19 ng/m°® BbF, BeP, IcdP, Bghi 121
Sicily Channel, Italy surface seawater 43 ng/L Flu, Phe, Fluo, Pyr, Chry, BaP 125
The Campania Region, Italy surface water 10.1-567.23 ng/L Acy, Ace, Flu, Phe, Ant, Fla, Pyr, BaA, and Chry, BbF, 126
suspended particulate matter 121.23-654.36 ng/L BKF, BaP, DahA, Bghi, ledP
in water
sediment 331.75-871.96 ng/g
Urretxu, Spain Air 0.55-8.56 ng/m3 BaP, Nap, Phe, IcdP, Bghi 127
Azpeitia, Spain Air 0.55-9.15 ng/m3 BaP, Nap, Phe, IcdP, Bghi 127
Oludeniz Lagoon, Turkey surface sediments 1.85 mg/kg Nap, Ace, Flu, Phe, Ant, Flu, Pyr, BaA, Chry, Bb/kF, BaP, 128
IcdP, DahA, Bghi
Istanbul, Turkey Air 85.6 ng/m® Acy, Ace, Flu, Phe, Ant, Fluo, Pyr, BaA, Chry, BbF, BkF, 129
BaP, IcdP, DahA, Bghi
Soil 684 mg/kg Fluo, Phe, Pyr, Chry, BbF, BkF

Ace acenaphthene, Acy acenaphthylene, Ant anthracene, BaA benzo[a]anthracene, BaP benzo[a]pyrene, Bb/kF benzo[b/k] fluoranthenes, Bghi benzol[g, h, i] perylene, BbF benzo[b]fluoranthene, BkF
benzo[k]fluoranthene, BeP benzo[e]pyrene, Chry chrysene, Cor coronene, DahA dibenzo [a,h]anthracene, Fluo fluoranthene, Flu fluorene, IcdP indeno [1,2,3-cd]pyrene, Nap naphthalene, Phe

phenanthrene, and Pyr pyrene.
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Fig. 2 | The polycyclic aromatic hydrocarbons (PAHs) distribution and life cycle. The diagram is designed with www.canva.com.

reductions'*"”. Moreover, many dramatic health issues for humans arise due
to the genotoxic', carcinogenic”’, and teratogenic® effects induced by
exposure to PAH pollution Fig. 2. If such PAH pollution is not eliminated or
even reduced, the polluted ecosystems lose many bioresources that are
significant for human beings. In addition to bioresource loss, human beings
lose their heritage cultures and hence, lose one of their economic sources as
well. In this review, we discuss the deteriorative effects of PAH pollution on
heritage cultures in terms of historical buildings and materials in the
Mediterranean region. In addition, the possible deteriorative mechanisms
induced by PAHs pollution, particularly PAH-microbial-induced dete-
riorations, applied solutions, and possible future aspects.

Distribution of PAHs in different environmental matrices, which are
atmospheric, terrestrial, and aquatic ecosystems. Consequently, PAHs are
bioaccumulated in the food chain starting from the edible plants, entering
the livestock to invade human bodies. In addition to food chain bioaccu-
mulation, PAHs can invade the human body directly through inhalation of
PAH-polluted air. As a result, many dramatic effects take place on different
levels, starting from genotoxicity, cytotoxicity, and tissue and organ mal-
functions, which can lead to death.

Aim

This review thoroughly explores the pollution caused by PAHs and their
negative effects on cultural sites in the Mediterranean. It examines the
specific types of damage caused by PAHs, such as discoloration, material
degradation, and destabilization of the structure of historical sites and
artifacts. It has emphasized a number of ways through which PAH
contamination in ancient sites can be reduced, such as the addition of a
monitoring system to record the extent of PAH contamination, the use of
bio-based and eco-friendly protective coatings, and the advancement of new
bioremediation methods. It also points to important research gaps con-
cerning the long-term impact of PAH exposure on ancient artifacts. These
gaps are related to (i) the necessity of metagenomic studies on the micro-
biomes of various heritage materials is underscored to comprehend the
impacts of PAHs and to formulate effective conservation strategies, and (ii)
the importance of conducting metabolomic studies to explore the interac-
tions between the microbiota of heritage materials and PAHs. This review
hypothesized that there is a relationship between the concentration and type
of PAHs and the behavior of the heritage material microbiota, which may
lead to damage, a topic not extensively addressed in the literature.
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Methodology

This review aims to identify the scientific gaps that were previously not
tackled in existing literature regarding the PAH-driven microbial weath-
ering of heritage monuments. To discover it, we searched with a single
database of scientific literature, Google Scholar, with specific keywords:
PAH, atmospheric PAH pollution, Mediterranean region, microbial cor-
rosion of the archeological sites, multi-omics and PAH pollution, extra-
cellular microbial metabolites and PAH, archeological sites, bio-restoration
of heritage monuments, and archeological monuments. We deemed rele-
vant literature reviews for every one of the keywords based on the title and
abstract. The direction, along with the contents, of the reviews was selected
through the screening of subtitles of all the collected reviews in order to
define previously uncontested matters. The flowchart illustrates the main
steps of the literature search and the corresponding results of relevant lit-
eratures Fig. 3. The search process for each keyword is divided into four
stages: identification, screening, eligibility, and inclusion, through which the
literatures are filtered from 253 results to 100 results finally.

PAH-induced deterioration of the historical
monuments

Generally, the deterioration of a material is physical and chemical damage to
its properties induced by physical, chemical, and/or biological factors. It is
worth mentioning that air-borne pollutants in the Mediterranean region,
such as PAHs, can deposit from air onto the historical surfaces’ monuments,
causing cultural and economic disasters due to the induction of physical and
biological deteriorations.

Physical PAHs-induced deterioration of historical materials
Based on the PAHSs’ molecular weight emitted into the atmosphere, LMW-
PAHs are emitted as a gaseous phase while HMW-PAHs are emitted as a
particulate form®. Both PAH types have a high tendency, particularly
HMW-PAHs, to be deposited or adsorbed on the building surfaces rather
than being suspended in the atmosphere due to their high hydrophobicity™.
These deposited PAHs are considered precursors of black-colored material
known as soot”. Knowing that such soot in turn combines with dust,
forming a black crust which is one of the most significant threats to the
architectural heritage™. So, many studies analyzed the chemical composi-
tion, especially the PAHs composition profile, and the deteriorative effects of
black crusts on many historical buildings’ surfaces.

For example, Al-Quds mosque, located in the Roches Noires, Casa-
blanca, Morocco, has historical value since the early 20th century”. Ozga et
al. collected the black crusts from the surface of Al-Quds Mosque and
analyzed them by attenuated total reflection/Fourier-transform infrared
spectroscopies. They found that the most dominant components of such
black crusts on Al-Quds mosque are automobile exhausts containing PAHs.
Similarly, in Italy, PAHs are detected in the black crusts collected from the
Monumental Cemetery of Milan and other historical buildings of Palermo
(Italy)*® and from the stones of the temples of Agrigento (Italy)”. Such
studies also correlated the atmospheric concentration of PAHs and their
deposition proportions into the black crusts of these historical buildings.
They found that the composition profile of PAHs observed in these black
layers/crusts of the historical buildings exhibited a resemblance to those
analyzed in the polluted ambient air*. Consequently, these findings sub-
stantiate the assertion that air pollution with PAHs exerts a noticeable
influence on the deterioration of historical buildings’ materials through
black crust accumulation®. Additionally, some studies focus on examining
the harmful impacts of PAH pollution within the indoor environments of
heritage museum buildings, such as a heritage building built at the end of the
19th century, situated in the Municipality of Beius, Bihor County,
Romania™.

Microbial PAHs-induced deterioration of the historical materials
In addition to being precursors for soot and black crust formation, PAHs are
carbon sources for many microorganisms as well™’. However, PAH:s are still
toxic, particularly oxy-PAH:s resulting from PAHs degradation’, to other

microorganisms™*. This means that PAHs in the black crusts on the his-
torical buildings have effects on the community composition and the
metabolic activities of microflora inhabiting these surfaces, leading to
microbial-induced materials’ deterioration. Knowing that the microbial-
induced deterioration of materials is considered the most severe biological
deterioration type. Since the microorganisms are characterized by resilience
under extreme environmental conditions, a high reproduction rate leads to
the acceleration of the material destruction, production of a wide range of
different extracellular metabolites, and hydrolytic enzymes destroying dif-
ferent surface types such as stones, concrete, metallics, paintings, ceramics,
mummies, and books**. Therefore, we summarize a group of potential
material-destroying microbial factors which are (i) the microbial biofilm, (ii)
extracellular metabolites (organic, inorganic, and salt metabolites), and (iii)
extracellular enzymes and their production patterns’ relations with PAHs
pollution.

Deteriorative effects of the microbial biofilms

Generally, the microbial biofilm consists of an extracellular polymer matrix
(EPM) in which the microbial cells and their extracellular metabolites and
enzymes are embedded and secreted, respectively. EPM is responsible for
historical material deterioration through direct and indirect mechanisms.
The direct deteriorating effects of EPM are due to its mechanical stress on
the stone minerals through its shrinking and swelling cycles inside the pores
and cracks of the buildings’”’. Meanwhile, EPM indirectly deteriorates the
historical monuments by sticking microbiota onto such surfaces, enhancing
its expansion on surfaces and protection against unfavorable conditions™”.
Furthermore, EPM acts as a reactive interface in which the corrosive
metabolites and enzymes are secreted from the surface-stuck microbiota,
facilitating their deteriorating effects on heritage materials such as bio-
leaching, dissolution, blistering, scaling, and decaying®.

Moreover, there are many microbial metabolites secreted into EPM,
causing heritage materials’ deterioration. According to our knowledge, these
corrosive extracellular metabolites can be classified into three major groups,
which are organic and inorganic substances and salts consisting of organic
and inorganic ions as listed in Table 3 and Table 4, respectively.

Deteriorative effects of the extracellular microbial organic meta-
bolites. The extracellular organic microbial metabolites are further
classified into organic acids and pigments. Many microorganisms, fungi,
lichens, bacteria, and archaea, secrete many organic acids on the his-
torical materials’ surfaces of limestone, stone frescoes, and mural
paintings such as acetic acid®, citric acid®, constitic acid*', fumaric acid”,
lactic acid®, malic acid®, oxalic acid®>*"***, stictic acid*', and succinic acid®
Table 3.

Such secreted organic acids have deteriorative effects on historical
materials. As evidence, there are many identified fungal, bacterial, and lichen
genera causing deterioration of different types of historical materials via
secretion of different organic acids such as Acremonium sp., Aspergillus sp.,
Fusarium sp., Penicillium sp., Trichoderma sp., Rubrobacter sp., Streptomyces
sp., Dirina sp., and Lepraria sp Table 3. The organic acids-based dete-
rioration mechanism of historical materials is known as the leaching pro-
cess. The leaching process involves metals’ dissolution that is involved in the
materials’ chemical structures, then free metal-ions precipitation forming
non-soluble complexes onto materials’ surfaces, causing scaling, blistering,
and flaking of the surfaces®. For instance, oxalic acid dissolves calcium ions
of calcium carbonate in limestones, producing calcium oxalate precipitate
covering the surfaces of stones, forming crusts*. Some heterotrophic
organisms flourish in chemical microenvironments (consisting of hydro-
carbons, metals, and carboxylic acids), potentially influencing the dis-
tribution of chemical species themselves, as exemplified by Clostridium sp.
in low-sulfate samples® since it uses sulfates as final electron acceptors
under anaerobic conditions, reducing sulfate to sulfide®.

Bio pigments secreted from some microorganisms participate in the
microbial deterioration of the historical monuments. As evidence, micro-
organisms colonizing the stone monuments’ surfaces cause esthetically
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Fig. 3 | The flowchart indicates the main stages of literature collections and selections
and the corresponding results of relevant literature. The stages are identification, in
which all literature containing a keyword is collected from databases such as Google
Scholar; screening, in which the duplicated literature is removed; eligibility, in which
the collected literature is further filtered based on the review aim; and inclusion,
which is the last stage and aims to select the most suitable literature to be involved in
the review. The symbol (n) indicates the number of literature at each stage, illus-
trating the filtration process to get the most suitable literature for the review.

unappealing staining using biogenic pigments”**. Moreover, as listed in
Table 4, Microbially influenced staining is due to photosynthetic pigments
such as carotenoids and Salinxanthin, melanin and melanoidin-based pig-
ments produced by some fungi and pigmented bacteria such as Rubrobacter

49,50

sp. and Streptomyces sp

Deteriorative effects of the extracellular microbial inorganic
metabolites and salts

Chemoautotrophic microorganisms play a key role in the monumental
materials’ deterioration through the secretion of inorganic acids and salts,
which have chemical deteriorative effects on the historical materials as listed
in Table 4. According to many previous studies’*”’, the deteriorative
mechanism of inorganic acids such as nitrous acid, nitric acid, sulfurous
acid, and sulfuric acid is through the formation of water-soluble nitrate and
sulfate salts. Consequently, these salts interact with the acid-sensitive
components of the stone materials™*.

For instance, the nitrifying archaea and bacteria are involved in the
nitrogen cycle by oxidation of ammonia gas (NH;) and nitrogenous oxides
pollutants in the atmosphere, yielding nitrous and nitric acids. As a result,
there are significant amounts of such corrosive inorganic acids deposited on
the monuments’ surfaces and hence materials’ deterioration, especially
stones’*°. Nitrobacter sp., Nitrosomonas sp., Nitrosospira sp., and Nitroso-
vibrio sp. are among the nitrifying bacteria that deteriorate historical
materials such as stones, especially limestones®. Similarly, the Sulfur-
oxidizing bacteria such as Acidiphilium sp*., and Sulfurovum sp*'. oxidize
Sulfur-containing aerosol pollutants such as hydrogen sulfide gas (H,S) or
elemental Sulfur, producing extremely corrosive sulfurous or sulfuric acids,
forming harmful black crusts and calcium sulfate or gypsum™ .

Deteriorative effects of the extracellular microbial enzymes. In
addition to the metabolite-induced microbial deterioration of the his-
torical materials, there is another microbial deterioration tool, the
extracellular enzymes. Extracellular enzymes play a crucial role for
microbes by enabling them to interact with their environment effectively.
Since the production of extracellular enzymes by microbes is a vital
process that aids in the breakdown of complex organic compounds like
cellulose, lignin, and chitin, as well as xenobiotics, including PAHs**".
Therefore, the secretion of extracellular enzymes by microbes serves as a
key strategy for nutrient acquisition, adaptation to diverse environments,
and survival. Based on the substrate types, there are many classes of
secreted microbial enzymes into the microbial biofilm, such as
amylases™, cellulases™*>%, collagenase®, endoglucanase™,
exoglucanase®, gelatinases™, B-glucosidase®, and proteases”'. These
extracellular enzymes have deteriorative effects on different historical
materials such as paper/books and old manuscripts, ancient textiles,
wooden coffins, and audio-visual materials Table 5. These enzymes are
released by many bacterial and fungal genera. For instance, Bacillus sp.,
Pseudomonas sp., Staphylococcus sp., Arthrobacter sp., Flavobacterium
sp., and Streptomyces sp. are isolated from deteriorated monumental
materials such as papers, textiles, and wooden coffins.

Solutions for PAHs-induced deterioration of the
archeological sites

PAH-induced deterioration of the archeological sites and historical mate-
rials is a complicated socio-environmental issue. Therefore, it is recom-
mended to integrate a multifaceted approach to mitigate the deteriorative
effects of urbanization and increasing rates of fossil fuel consumption, which
increase PAH emissions. In this review, we propose four integrated strate-
gies to address this issue: (i) implementing monitoring systems to estimate
atmospheric PAH pollution levels, (ii) exploring the relationship between
atmospheric PAH pollution and ‘omics’ insights into the microflora on
historical materials, (iii) developing bio-based, eco-friendly materials to
restore historical surfaces, and (iv) improving atmospheric PAH remedia-
tion techniques.

Establishment of the monitoring system for PAH pollution
estimation

The first step towards effective PAH pollution removal is to identify the
types of pollutants and their level or concentrations. Hence, the most proper
treatment methods can be selected to remove or at least decrease the pol-
lution level and consequently decrease its negative impact. Moreover, the
determination of pollution type and level is mandatory to evaluate the
efficiency of the treatment method.

Many analytical techniques have evolved to determine the environ-
mental pollution with PAHs. Examples of such techniques are Chromato-
graphic techniques, such as high-performance liquid chromatography in
conjunction with fluorometric probes, photodiode-array, ultraviolet or
mass spectroscopy detector, gas chromatography in conjunction with flame
ionization or mass spectroscopy detector, and superficial fluid chromato-
graphy in conjunction with ultraviolet or mass spectroscopy detector, are
among the conventional methods of detecting these compounds®. Fluor-
escence spectroscopy is a valuable technique for the detection of PAH
pollution®”. The technique utilizes the fluorescent behavior of PAHs,
resulting in luminescence upon excitation by characteristic wavelengths®.
The technique has several advantages in the sense that it is (i) very sensitive
and selective to trace amounts of various PAHs in air samples; (ii) real-time
measurable levels of PAHs; and (iii) non-destructive and rapid analytical
operation®”",

However, all these previously mentioned analytical methods are con-
sidered sophisticated ones. Many concerns should be considered during the
analysis of these techniques. One of the major obstacles to PAH analysis by
chemical methods is sample preparation. The sample preparation is a major
obstacle in the chemical analysis of PAHs due to the volatility and lipo-
philicity of these compounds, which can significantly change the sample
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Table 3 | List of organic acids, depsides, pigments, and metal chelators secreted by microorganisms causing deterioration of

many types of historical materials in many countries

A. Organic acids

Organic substance Microorganism

Archeological monument

Material Reference

Acetic acid Fusarium solani Penicillium oxalicum

Buak Krok Luang and Kham Temples, Thailand

Mural paintings 35

Citric acid Aspergillus aculeatinus
Aspergillus fumigatus
Aspergillus niger
Aspergillus piperis
Penicillium citrinum
Penicillium hetheringtonii
Penicillium oxalicum
Trichoderma aethiopicum
Trichoderma harzianum

Buak Krok Luang and Kham Temples, Thailand

Mural paintings 35

Constictic acid Lepraria lobificans

Southern Spain

Mortars 41

Fumaric acid Aspergillus niger
Aspergillus piperis
Penicillium hetheringtonii
Penicillium oxalicum

Trichoderma aethiopicum

Buak Krok Luang and Kham Temples, Thailand

Mural paintings 35

Lactic acid Aspergillus aculeatinus
Asperqgillus fumigatus
Aspergillus niger

Aspergillus piperis

Fusarium solani

Penicillium citrinum
Penicillium oxalicum
Trichoderma aethiopicum
Trichoderma longibrachiatum

Buak Krok Luang and Kham Temples, Thailand

Mural paintings 35

Malic acid Aspergillus piperis
Fusarium solani
Penicillium citrinum
Trichoderma aethiopicum

Trichoderma longibrachiatum

Buak Krok Luang and Kham Temples, Thailand

Mural paintings 35

Oxalic acid Acremonium sp.
Aspergillus niger
Aspergillus piperis
Dirina massiliensis
Penicillium sp.
Penicillium oxalicum

Basarabi Churches Ensamble, Romania

The house of the ancient hunt, ltaly

Buak Krok Luang and Kham Temples, Thailand
The house of the ancient hunt, Italy

Buak Krok Luang and Kham Temples, Thailand

Limestone
Stones and
frescoes

Mural paintings
Stones and
frescoes

Mural paintings

35,41,49

Stictic acid Lepraria lobificans

Southern Spain

Mortars 41

Succinic acid Aspergillus aculeatinus
Aspergillus fumigatus
Aspergillus niger
Asperqgillus piperis
Penicillium oxalicum

Buak Krok Luang and Kham Temples, Thailand

Mural paintings 35

B. Pigments

Carotenoids Rubrobacter sp.
Rubrobacter radiotoleran
Rubrobacter taiwanensis

Rubrobacter xylanophilus

Europe

Murals and 50
stones

Melanin Streptomyces sp.

Streptomyces rochei

Giza and Luxor, Egypt

Tomb paintings 62
and limestone

Salinxanthin Salt-tolerant bacteria and archaea

Europe

Stones 50

compositions from collection to analysis. In addition to the sample pre-
paration concern, prior experience with the technique and data analysis,
calibration problems with the accurate quantification of multi-component
mixtures, their high cost to employ for routine monitoring, and the in-situ
applicability of such techniques are still other significant obstacles’".

So, it is mandatory to establish other alternatives for PAH analysis that
overcome or fill the technical gaps when using chemical analysis. Such
alternatives are biosensors that are based on biological concepts™. In the
biosensors, there are two main parts which are (i) the sensor which consists
of the biological agent responsible for sensing the target analyte (PAHs in
this review) in the sample, and (ii) the signal transducer that is responsible
for converting the signal pulse from the sensor to be readable data to know

the type and amount of the sensed PAH molecules. Regarding the bio-based
sensor, there are many different biological agents exploited in such an
approach, such as proteins (e.g., proteins through immunoassays) and
nucleic acids (e.g., Deoxyribonucleic acid (DNA)” through aptamer con-
struction). The signal transduction component can be either optical, elec-
trochemical, colorimetric, or piezoelectric transduction methods.

Omics and PAHs-induced deteriorations of historical materials

Although there are many previous studies illustrating the deteriorative
effects of the microbial extracellular metabolites and enzymes, as in Tables
3,4 and 5, it is still unclear what the relation between PAH pollution and
these metabolites’ and enzymes’ production is. Therefore, it is essential to
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Table 4 | List of inorganic acids and salts secreted by microorganisms causing deterioration of different types of historical

materials in different countries

A. Inorganic acids

Inorganic Microorganism Archeological monument/country Material Referen-
substance ce
Nitric acid Nitrobacter sp. LeiZhou Stone Dog, Leizhou Peninsula, China Limestones and stones 41
Nitrosomonas sp.
Nitrosospira sp.
Nitrosovibrio sp.
Nitrous acid Nitrobacter sp. LeiZhou Stone Dog, Leizhou Peninsula, China Stones 41
Nitrosomonas sp.
Nitrosospira sp.
Nitrosovibrio sp.
Sulfuric acid Acidiphilium sp. LeiZhou Stone Dog, Leizhou Peninsula, China Basalt sculptures and stones 41
Sulfurovum sp.
Sulfurous Acidiphilium sp. Leizhou Stone Dog, Leizhou Peninsula, China Basalt sculptures and stones 41
acid Sulfurovum sp.
B. Salts
Calcium Dirina massiliensis Sicily and Mainland, Italy Dolomitic rocks 41
oxalate
Nitrate anion Caloplaca xantholyta The Crypt of the Original Sin, Italy Paintings 49

Table 5 | List of extracellular microbial hydrolytic enzymes involved in the biological deterioration of historical materials

Enzyme Microorganism Archeological monument/country Material Reference
Amylases Aspergillus flavus Indonesia Paper/book and old manuscripts 50
Cellulases Aspergillus flavus Indonesia paper/book and old manuscripts 50,62,62,63
Aspergillus niger Egyptian Textile Museum Ancient textiles
Bacillus sp. - Foxed paper documents
Paecilomyces canoes Egyptian Textile Museum Ancient textiles
Paecilomyces carneus The Egyptian Museum Wooden coffins
Collagenase Bacillus sp. - Parchment 64
Psuedomonas sp.
Staphylococcus sp.
Endoglucanase Aspergillus sp. - Papers 64
Cladosporium sp.
Eurotium sp.
Penicillium sp.
Exoglucanase Aspergillus sp. - Papers 64
Cladosporium sp.
Eurotium sp.
Penicillium sp.
Gelatinases Aspergillus flavus Indonesia paper/book and old manuscripts 50
B-glucosidase Aspergillus sp. - Papers 64
Cladosporium sp.
Eurotium sp.
Penicillium sp.
Proteases Arthrobacter sp. - Audio-visual materials 62,62,64,64,64
Aspergillus flavus Egyptian Textile Museum Ancient textiles
Aspergillus niger Egyptian Textile Museum Ancient textiles
Bacillus sp. - Audio-visual materials
Conidiobolus sp. - Audio-visual materials
Flavobacterium sp. - Audio-visual materials
Neurospora sp. Audio-visual materials

Paecilomyces canoes
Paecilomyces carneus
Streptomyces sp.

The Egyptian Museum
Egyptian Textile Museum-

Wooden coffins
Ancient textiles
Audio-visual materials

understand such mysterious relationships. “Omics” can be considered key
techniques that may explain many mysterious biological phenomena at the
molecular level. Since various “Omics” approaches are employed to study
environmental issues, such as the deterioration of heritage materials. For
instance, metagenomics is utilized to identify microbial communities pre-
sent in heritage materials, enabling researchers to understand their role in
biodeterioration™. In a recent study by Yanyu Li et al,, they utilized meta-
genomics to investigate the microbial diversity in the door walls of the Ji

family’s residential houses, as well as their biological functions and chemical
cycles’. In addition to metagenomics, other approaches such as proteomics,
metabolomics, and transcriptomics are employed to gain a comprehensive
understanding of biodeterioration processes on heritage materials. More-
over, many studies employ a “multi-Omics” approach to determine the
causes and mechanisms of biodeterioration, with the ultimate goal of
identifying appropriate solutions. For example, in 2018 Roldan et al. con-
ducted metabolomic and proteomic analyses in the Iberian Mediterranean
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Basin to describe the bacterial communities colonizing rocks and identify
the presence of organic binders within them’. The multi-omics contributes
significantly in determination of the environmental factors inducing the
microbial outbreak on the ancient wall paintings of the Maijishan Grottoes,
China’, the hypogeum of the Basilica di San Nicola at the Carcere Church in
Rome”, identification of fungal Communities associated with the biode-
terioration of waterlogged archeological wood in a Han Dynasty Tomb,
China’.These studies demonstrate the power of “Omics” approaches to be
utilized in the investigation of the heritage materials biodeterioration,
providing valuable insights into the microbial communities involved, the
deterioration mechanisms, and potential solutions to address this economic
and cultural issue. However, according to our knowledge, there is no pre-
vious study focusing on “Omics” to explain the possible relation between
PAHs pollution and the deteriorative microbial metabolites and enzyme
production.

Bio-based and eco-friendly restoration materials for deteriorated
historical surfaces

The restoration of historical artifacts is crucial for their integrity and long-
evity, saving their economic and cultural values. According to the principle
of the restoration methods, there are physical, chemical, and biological
restoration methods. The selection among these diverse methods is based on
the geographical location, atmospheric conditions, and historical material”’.

Physical methods include different techniques such as (i) irradiation
using gamma (y)-, ultraviolet (UV)- and laser irradiation, (ii) changing
temperatures, applying very low temperatures as freezing, refrigeration, and
low-temperature plasma disinfection or very high temperatures®. The
sacrificial anodes and liquid nitrogen (-196 °C) have been widely employed
as physical restoration methods in the past to conserve historic iron artifacts
on the seabed*', and ultrashort (in picoseconds) pulse lasers to clean historic
artifacts such as the 19th-century military gold braid®. Chemical methods
typically involve the use of chemicals, especially inorganic nanomaterials,
and nanoparticle suspensions* . Add to this, some commonly used che-
micals in the historical artifacts’ treatment include distilled water, alkox-
ysilanes, phenols, amorphous silica, hydrogen peroxide, and
organosilanes”**. Physical and chemical preservation methods have shown
effectiveness over the years, but they have several limitations regarding the
environment and human health. The accumulation of chemicals and irra-
diation exposure pose threats to the workers owing to their toxicity, in
addition to the possibility of the corrosion of the treated surfaces over
time*”*". On the other hand, the biological restoration methods are
characterized by being eco-friendly, relatively cheaper, and non-toxic
without causing further material deterioration compared with the physical
and chemical treatments™ ™.

In bio-restoration methods, either the organism or its metabolites can
be exploited to preserve the deteriorated historical materials. For instance,
the plants participate significantly in bio restoration through their secondary
metabolites and application on deteriorated surfaces, such as biocides and
biosurfactants. Biocides are used to reduce or eradicate damaging micro-
organisms like fungi and bacteria by preventing microbial growth and hence
stopping the biodeterioration of the historical heritage™. The most applied
plant-based biocides in this aspect are essential oils, flavonoids, phenolics,
and anthocyanins%. On the other hand, biosurfactants such as saponin,
sophorolipid, and betaine are applied to remove the unwanted corrosive
microbial metabolites or compounds causing surface deterioration, such as
sulfates and nitrates, from stone surfaces”. To enhance the biosurfactants’
effects, these biosurfactants are usually combined with certain extracellular
microbial enzymes (EMEs). Although EME:s are causing historical material
deterioration, others have important preservative roles™. These enzymes
have also been used because of their high selectivity and effective removal of
undesired layers without damaging the artifact material. For example,
glucose oxidase can remove biofilms from stone without harming the sur-
face itself. Chitinase enzymes can reduce fungal and bacterial growth on
woody materials, and hence remove deteriorating biofilm without dama-
ging the artifact”. Although many microorganisms induce the microbial

deterioration of historical heritage materials, there are other organisms that
cause the consolidation of such valuable materials. As evidence, bacterial
species, e.g., Pseudomonas, Pantoea, and Cupriavidus species, induce cal-
cium carbonate precipitation, which can help to strengthen and protect the
stone material'”’.

Improvement of atmospheric PAH remediation techniques
Urbanization has led to the accumulation of PAHs in ecosystems, which are
remediated through natural attenuation processes'”"'””. However, these
processes have long-term effects on effectively restoring polluted ecosystems
and can lead to contaminant dispersion in other ecosystems. High PAH
pollution levels in the atmosphere resulting from crude petroleum oil spills
pose health and economic issues, necessitating the development of fast and
cost-effective clean-up technologies.

Several established remediation techniques have recently been devel-
oped to clean up many contaminants, including PAHs. Remediation
technologies are categorized into physical, chemical, and biological types
based on scientific principles'”. Physical and chemical treatments are tra-
ditional remediation technologies. Unfortunately, these traditional cleanup
technologies have many drawbacks, such as high implementation costs and
environmental risks. Implementing these approaches is highly energy-
intensive and environmentally detrimental because of the secondary pol-
lution generated while remediating initially contaminated sites'**'*.
Therefore, it is imperative to develop eco-friendly, sustainable, and cost-
effective restoration solutions, such as biological remediation technologies
that have become increasingly favored over traditional methods for envir-
onmental cleanup'®.

The removal of volatile organic contaminants (VOCs), including
PAHs, from the atmosphere is a major air pollution concern'”’. Biofiltration
is one of the remediation technologies for polluted airstreams with VOCs.
Biofiltration is based on the ability of microorganisms, bacteria and fungi, to
degrade a wide spectrum of organic pollutants in an economic and eco-
friendly manner'®""’. In a biofilter, polluted air passes through porous
media such as peat, soil, bark, compost, wood chips, or polystyrene
spheres'' ™", resulting in the entrapment of pollutants within the porous
media. These pollutants are subsequently oxidized or transformed into
biomass through the activity of microorganisms that are pre-immobilized
on the packing material .

The efficiency of atmospheric remediation from VOCs using
biofilters depends on many factors, including the microbial consortia,
biofilter design, operational parameters, and pollutant characteristics.
The microbial composition significantly affects the biofilter perfor-
mance. Fungi have the potential capacity to remove PAHs, especially
those with higher molecular mass, such as benzo[a]pyrene, while
bacteria have higher degrading activities for lower molecular weights
of PAHs, such as phenanthrene'””. The choice of packing material,
one of the biofilter design parameters, is crucial for the performance
of biofilters, affecting microbial growth, pollutant removal, and costs.
Particle size and material type (organic or inorganic) influence the
mechanical properties, especially when dealing with high air flow
rates. Porous materials with rough surfaces are beneficial as they
provide more space for microorganisms to grow and improve pol-
lutant transfer'"”. The moisture content, pH, and temperature of the
packing material must be optimized to decontaminate the polluted
air better. The filter beds should contain adequate moisture content,
maintaining the decontaminating activities of the fixed microbes
without causing anaerobic conditions due to over-moisture or drying
due to less moisture content'". Also, pH and temperature are critical
for the optimization of the microbial enzymatic activities responsible
for PAH degradation'”.

Conclusion

The conclusion presents the main points, emphasizing the danger that
PAHs pose to the cultural heritage of the Mediterranean, especially for
historical buildings and materials. The principal findings are as follows: (1)
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PAHs directly induce soot and black crust formation, altering the appear-
ance of historical buildings; (2) microbial communities acting on heritage
materials enhance deterioration through metabolite secretion; and (3) there
is a potential relationship between PAH levels and microbial metabolic
activity, indicating a sophisticated deterioration mechanism. To overcome
these challenges, we suggest: (1) establishment of advanced PAH mon-
itoring systems; (2) application of omics-based technologies for root cause
analysis; and (3) designing bio-based systems or compounds for PAH
sequestration and mitigation. These findings and proposed solutions pave
the way for more efficient preservation methods, emphasizing the need for a
multidisciplinary approach to safeguard the Mediterranean’s priceless cul-
tural heritage.

Future perspectives

In this part, we address scientific gaps for interested scientists to fill in future
research work. According to our work, we investigated the gap in research in
archeological microbiology and toxicology, particularly, that is related to
PAHS' pollution. We asked ourselves many questions without answers in
the previous work according to our research, as follows:

* Whatis the impact of PAHs on the alpha and beta diversity of microbes
in archeological sites? And is this impact different on biotic material
from abiotic?

After investigating the concentrations of PAHs in the air of different
archeological sites and their impact on microbial diversity, we can
find solutions to conserve these materials by microbiome engineering
techniques. Moreover, we can reverse the effects of PAHs by bio-
chemical engineering techniques. Therefore, we need to conduct a
metagenomic study on different heritage material microbiomes.

* Does microbial diversity affect the deterioration of heritage materials,
or are the PAHs the effectors?

We did not find any previous work investigating the impact of
metabolites secreted from heritage materials microbiota on PAH
degradation. Therefore, we need to carry out a metabolomic study to
investigate the effect of these microbes on PAHs.

o Is there a relationship between levels of PAHs and the corrosive
microbial metabolites on heritage materials?

We claim that there is a relationship between the concentration and
type of PAHs and the behavior of the microbiota of heritage materials,
causing this damage. Some of these metabolites are also secreted from the
microbiota of heritage materials, such as oxalic acid, malic acid, citric acid,
and acetic acid. For future studies, a certain workflow is recommended to
answer these questions. The workflow is summarized in designing the fol-
lowing stages; (1) a systematic research to quantify polycyclic aromatic
hydrocarbon (PAH) concentrations in various archeological sites with
standardized sampling techniques and analytical protocols, (2) in situ
experiments in archeological sites for long-term monitoring of the microbial
diversity by metagenomic analysis in relation to PAH concentrations, (3)
strategies to determine the impact of PAH pollution on microbial meta-
bolites responsible for material degradation, and (4) inoculation of possible
probiotic microorganisms capable of mitigating PAH-induced deteriora-
tion in heritage materials.

Data availability
All data or results mentioned in this review are available and retrieved from
online available literature.
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