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Abstract. In this paper, three recurrence relations for a certain class of probability
distributions are presented. The first one is a recurrence relation between conditional
moments of h(X) given X > y. The second is the relationship between the moments
E(h™(Y,)), E(A™(Y,_;)) and E(A~1(Y},)), where Y, is the k" order statistic from a sample
of size n. The last one is the relationship between the conditional moments E(h™(Y},)IY}>t)
and E(h™~1(Y))IY,>t). Some results concerning Modified Weibull, Weibull, Rayleigh,
exponential, Linear failure rate, 1°‘type Pearsonian distributions, Burr, Pareto power and
uniform distributions are obtained as special cases.
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1. Introduction

There is no denying that over the past few decades there has been an increasing interest
in characterizing different types of probability distributions. Some excellent references are,
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e.g., Azlarov and Volodin [23] , Galambos and Kotz [12] , Kagan , Linnik and Rao [5 ] and
Mchlachlan and Peel[11], among others.

Different methods have been used to identify several types of distributions. Osaki
and Li [21], Ahmed [6],Dimaki and Xekalaki [8], and Chou and Huang [7 ], among others,
have used the concept of left truncated moments to characterize some probability
distributions like exponential, Pareto, power, Poisson, negative binomial, beta and binomial.
In fact, characterizations by left truncated moments are very important in practice since, for
example , in reliability studies some measuring devices may be unable to record values
smaller than time t. On the other hand, characterizations of some particular distributions
based on conditional moments of order statistics have been considered by several authors
such as Pakes et al [3], Wu and Ouyang [13], Ahsanullah and Nevzorov [16], Asadi et al
[17] and Govindarajulu [24] , among others.

Let X be a continuous random variable with distribution function F(x) defined by :
(1.1) Fx)=1-(h(x)+ d)° , xe(a,b)
Such that:
(1) d and c are constants such that ¢ & {-1, 0}
(2) h(x) is areal valued differentiable function defined on ( a , b) with
(@) lim,_,+h(x)=1-d and (b) lim,_,- h(x) =-d.
(¢) E (h(X)) exists and finite.
It is easy to see that several well known distributions ( like Weibull, Burr,
Pareto,...etc) arise from the above family by suitable choices for the function h(x),
the values of the parameters d and ¢ and the domain ( a,b) .

2. Main Results

Recurrence relations are very interesting in their own right. They are used to
reduce the number of operations required to obtain a general form for the function under
consideration. Moreover, several authors have used the concept of recurrence relations to
identify some probability distributions see, e.g., Al-Hussaini et. al.[10],Ahmad [ 2], Lin [9],
Khan et al. [4] and Fakhry [18].

The following Theorem identifies the distribution defined by (1.1) using a
recurrence relation between conditional moments of /™ (X) , m = 1,2,... given X >y.
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Theorem 2.1. Let X be a continuous random variable with distribution function F(x),
survival function G(x), and density function f(x) such that F(a) = 0 and F(b) =1 and F(.) has
continuous first order derivative on ( a,b ) with F (x) > 0 for all x. Then X has the
distribution defined by (1.1) if and only if for any finite number y € ( a, b ) and any natural
number m= 1,2,... the following relation

Q2.1 E(h™ (X)IX>y)= R™(y) — ’”+—i E (h™ (X)X > y)

c
c+m

is satisfied, where h (x) is defined as before.

Proof. Necessity.

By definition
- fb R™M(x)dG (x)
m _ Y
E(h™X) IX>y) = 7o)
Integrating by parts, noting that G(b)=0, one gets:
(2.2) E(h™ (X)X >y)=h"(y)+ Gl(y) fyb h (x) K™ 1(x) G(x) d x
It is easy to see that:

cG(x)
the integral on the right can be written as follows:

I= fyb h (x) "™ 1(x) G(x) d x ='71 ) yb (h(x) +d) A (%) f(x) dx
= = [Jhm f dx - 2 [7Am100 f(x) d x

Substituting this result in equation (2.2), one gets:
E(h™(X)IX>y)= h™(y) - % E(h™(X)IX>y) - de E(h™ 1(X)IX>y)
Solving this equation for E(h™(X)IX>y), we get:

E(h™(X) X >y) =—— h™(y) - = E (A" }(X) IX>y)
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Sufficiency.
Equation (2.1) can be written as an equation of the unknown function G(y) as follows:

£ B ) £(x) d x = == h™(y) G(y) — === [ k™= (x) f(x) d x
Differentiating both sides with respect to y, dividing both sides by A™~1 (y), we get:
c 5 cm md
-h(y) f(y) = ——h(y) G(y) +~ h(y) G(y) + — f(y)
Recalling that f(y) = - G(y), cancelling out ﬁ h(y) f(y) from both sides, then multiplying the

c md

c+m c+m

result by HTm ,the last equation can be written as follows:
SO _ chO
G(y)  h()+d
Integrating both sides with respect to y from a to x and using the fact that
G(a)=1-F(a) =1 ,we get:

G(x)= (h(x)+d)° , xe (a,b)

Remarks (2.1).
(1) If we put m =1 in Theorem (2.1), we obtain Ouyang’s result [14].

Z(x) g(k)/[n(k)—1] n(k)
2) If =1, h(x) =———=— = ,c= , wh .y and o(-
(2) If we put m , h(x) pr, ng((),?l , =, ng((),?l Tl where n( -) and g(-)

are finite real valued functions of k then we get Talwalker’s result [22]

,  xe(ab),

2(0) +-28 n(k)/[1-n(k)]
I
Z(a)+n(k)_1
iff
E(Z(X) | X >y ) =n(k) Z(y) + g(k)

The following Theorem identifies the distribution (1.1) using a recurrence relation between
moments of some function of the k** and (k — 1) order statistics.

Theorem (2.2). Let X be an absolutely continuous random variable with cumulative
distribution function F(-), survival function G(:), and density function f(-). Let X5, X5, ..., X, be
a random sample from F (-). Denote by Y;< ¥,<... < Y, the corresponding ordered sample. Then
under the same conditions posed on the function h(-) , the random variable X has the distribution
defined by equation (1.1) iff for any natural number m, the following recurrence relation is
satisfied.
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md

c(n k+1)
c(n—k+1)+m

n—k+1)+m

(2.4) E(h™Y, ) =
k=2,3,...n

E(h"™(¥-1)) - E( i1 (1),

Proof. Necessity

The density function of the k" order statistic is given by:
k) = e, £y) F¥71() G™ 7 (y) , where ey,
Then by definition we have:
ER™ ) = e f, K™ £(3) FE71() Gt dy
= aien [ ) P10 d (552

n—k+1

Integrating by parts, recalling that f(y) = - G(y) and noting that F(a) = G(b) =0 , one gets:

E(h™(yy) = 2=k [ hm=1(y) G4+ (y) FE=1(y) h(y)dy +
g 7 R Gy) fy) FEAy) 67 (y) dy

n—k+1
Making use of equation (2.3) to eliminate fl(y), we can write E (h™(Y},)) as follows:

E(h™(y) =—ckn (7 pm(y) f(y) F¥~1(y) G *(y) dy +

_ n!
T (k=D!(n-k)!

c(n-k+1)
dff Rm=t(y) f)FEAy)  GrR(y)dy )+
LB 12 pmy) f(y) - ) 6 )y =
- o (D0 g gy, - i K00,
(kn 1’2i1;n (k= 2)'E(:’." Ve-1)) (n-k+1)!
Solving the last equation for E (R™(yy,)) , we get:
E (W™ (7k)) = = B(A™(yy_y)) — —— E(R™ ()

c(n—-k+1)+m c(n=k+1)+m

Sufficiency

Equation (2.4) can be written in integral form as follows:

(2.5) [c (n-k+1)+m] f R™(y) f(y) F¥=1(y) G™ *(y)dy =

(k= 1)'( -k
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C (n- k+l)mf R (y)f(y) F¥~2(y) G™**(y)dy -

mdmf R )y FE=H ()G (y)d y

Consider the 1* integral on the right side

= [7 R ()iy) FE2(y) G*4(y) dy = [2 hm(y) Grokei(y) 200

Integrating by parts, recalling that f(y) = - G(y) and making use of the facts F(a) = G(b)=0,
we get

=2 [P hmly) h(y) GPRHy) PR (y)dy+

k
5D J, A E)F ()6 (y)dy
Substituting this result in equatlon (2.5), cancelling out

¢ (n-k+1) f; h™(y) f(y) F*¥='(y) G ¥(y) dy from both sides, then multiplying the result by % ,
one gets:
[ R fy) FE1 ) 6774 (y) dy = ¢ [ R y) hiy) FE'(y) 67 F 1 (y) d y -
-d 2 km=1(y) f(y) FE=1(y) 6™ k() dy

Therefore, we have:

[ By FE(y) 6775 (y) [(AO) + D F ) + cG()A ()] dy=0
Using the Munt- Szasz theorem (see Boas [20]), one gets:

(h(y)+ d) £(y) +¢ G(y) h(y) =0
o) che)
Gy)  h(y)+d
Integrating both sides from a to x and using the fact that G(a)=1, we get:

G(x) = [h(x) + d]°, x € (a,b)

Therefore,

The proof is complete.
Remarks(2.2).

(1) Set k=n in equation (2.4), we have a recurrence relation concerning the maximum.
(2) Set n=2r+1, and k= r+1 in equation (2.4), we obtain a recurrence relation concerning the
median.
(3) Setk =2 in equation (2.4), we get a recurrence relation concerning the minimum.
The next Theorem gives a recurrence relation between conditional moments of A" (Y})
given Y, >t.
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Theorem (2.3).Let X be an absolutely continuous random variable with cumulative
distribution function F(:), survival function G(-),and density function f(-). Let X;, X5, ..., X;, be a
random sample from F(-). Denote by Y;<Y,< ...< Y, the corresponding ordered sample. Then
under the same conditions posed on the function h(-), the random variable X has the distribution
defined by equation (1.1) iff for any natural number m, the following recurrence relation is
satisfied

md

(n-k+1)c
(n—k+1)c+m

(n—k+1)c+m

k=1,2,...,n

R (1) - E(R™ YY)l > 0)

Proof. Necessity.

The conditional density function of the k™ order statistic Y| ¥, >t (see, Ahsanullah [15]) is
given by:

2.7 fu(YpelYe>t) =

Therefore

n—k+1

O f(y)[G (] ye(t,b)

n—k+1

E (™ (%)l >t) = Tf R™(y) f(y) [G()I" " dy =

= G J ) dG )]+
Integrating by parts, recalling that G(b)=0, we get:
b - N -
B (YlYi>0) = A™(0) + i S, W70 y) [6O0)]" 7+ dy
Using equation (2.3) to eliminate A(y) from the 2™ term, one gets:
E (K™ (Vltie> 0 = h™(0) - oot ) R 0)f) [60)]"*dy -

md

—[G@]n — [ T 6N kdy

= h™(t) - k+1) E(R™ (Y)Y >t) - k+1) E(h™ (Y)Y}, >t)
Solving the last equation for E(h™ (Y} )Y}, >t), one gets:
_ (n—k+1)c md 1
E(hm(Yk)|Yk>t)_—m+(n_k+1)c hm(t)——m+(n Y E(h™ 1 (V)Y >t)
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Sufficiency.
Equation (2.6) can be written in the following integral form:

(n-k+1) [ RG]~ dy = —E=E ()G ()]
[ R ) [6 ()] *dy

md(n—-k+1)
Differentiating both sides with respect to t, recalling that f(t) = - G (t) ,cancelling out

m+(n k+1)c
(n- k+1) h™1(t) [G()]*™* from both sides, one gets:
(n k+1)c md

-h (t) f(t) = L h(t) (t) +— k+1) h(t) G(O)+— ke f(t)
Cancelling out = ’:i)ck}i(gf ' from both sides, multiplying the result by w , one

gets:

ch(t) _ =f(®
R(E)+d ~ G(t)

Integrating both sides with respect to t from a to x , and recalling that G(a) = 1,we get:
G(x) = [h(x) + d]° Xe (a,b)
This completes the proof.

Remarks (2.3).
(1) If we put k=n in equation (2.7), we get :
E(hR™(Y)IY,> )= E(h"(XIX> ),
Therefore, We can say that theorem (2.3) generalizes theorem (2.1).
(2) If we put k=1 in equation (2.6), we obtain a recurrence relation for the minimum.
(3) If we put n=2r+1 and k= r+1 in equation (2.6), we obtain a recurrence relation for the
median.

General Comments.

In all of the previous theorems, several results can be picked out for some wellknown
distributions by suitable choices for the function h(X), the values of the parameters d and c
and the domain (a,b) as follows:

(DIf we set h(X) = X%, a > 0,d=1, c=-b, a=0 and b = o , we obtain recurrence relations
concerning Burr distribution with positive parameters o and b. For a = 1, the Pareto
distribution of the second type is obtained.

(2) If we Set h(X) =exp -[ aX + ,BX’l], where A>0, and o, = 0 such that o+5>0, c=1,d=0,
a=0, and b=co, we obtain recurrence relations concerning the Modified Weibull distribution
with parameters o, and A ( see,e.g., Zaindin and Sarhan [19]).For f=0,we have the
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exponential distribution. For =0 and A=2, we have Rayleigh distribution. For A=2, we have
the Linear failure rate distribution with parameters o and . For 0=0, we have Weibull
distribution with positive parameters 8 and A.

(3) If we set h(X)= % ,d= r%u , c=0 > 0, a= p and b=r, we obtain recurrence relations

concerning the first type personian distributions with parameters p,r and 6.
@DIf we Set h(X) = 1- X* , d =0, ¢ =1,a =0,and b=1,we obtain recurrence relations
concerning the Power distribution with parameter a > 0. For a= 1, we have the uniform
distribution.
(O)If we Set h(X) = 1-X, d =0,a =0 and b = 1, we obtain recurrence relations concerning
beta
distribution with parameters 1, c.
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