Orthopedic Biomechanics

Salam M. Elhafez

Professor and Head of Biomechanics Department
Faculty of Physical Therapy
Cairo University

Ayman G. Matar Lecturer of Biomechanics Mariam Abdulmoneem Ameer
Lecturer of Biomechanics

Orthopedic Biomechanics

Bone

Skeletal Muscles Articular Cartilage

Biomechanics of bone

Introduction

Constituents of bone

Bone remodeling

Structure of Bone tissue

Trabecular system of bone

Bone tissue Content

Inorganic material (45%)

Organic matrix (30%)

Water (25%)

Mainly calcium in a hydroxyapatite crystals

Collagen

Hardness and rigidity

Elasticity and flexibility

Hydroxyapatite crystals

Hydroxyapatite

 $Ca_5(PO_4)_3OH$

Bone Functions

Mechanical functions

Biological functions

Support the body

Hematopoietic activity (blood cell formation)

Protection of internal organs

Reservoir or storage of minerals

providing points of attachment for muscles tendons and ligaments

Constituents of Bone

Bone matrix of calcified tissues

Bone cells (osteogenic, osteoblasts, osteoclasts, osteocytes)

Periosteum (outer bone covering)

Endosteum (inner lining of bone)

Bone cells

Long bone components

Constituents of Bone

Bone Remodeling

It is a continuous and highly regulated process of bone resorption and bone formation. This process is due to balance in activities between osteoclasts and osteocoblasts.

Normal Bone Remodeling

Resorption

Osteoclasts remove bone mineral and matrix, creating an erosion cavity (3-4 weeks)

Reversal

Mononuclear cells prepare bone surface for new osteoblasts to begin building bone

Formation

Osteoblasts synthesize a matrix to replace resorbed bone with new bone (3-4 months)

Resting

A prolonged resting period follows until a new remodeling cycle begins

remodeling process Bone

Bone Tissue Structure

2nd

Sheets/ lamellae

3rd level

Haversian osteon (Haversian system)

level

4th level

Bone strength (compact or spongy)

1st level

Collagen/hydroxyapatite composite

Bone Tissue Structure

structure pic 1 Bone

structure pic 2 Bone

Cortical (compact)

Cancellous (spongy)

Shafts of long bone (diaphysis) e.g. shaft of femur

Ends of long bone (diaphyses and metaphysis e.g. head of femur

Thin shell around cancellous bone

Short bones and irregular bones (carpus, tarsus, vertebrae)

Function: Weight bearing bone

Function: shock absorbing bone

Includes Haversian system and canal

Does not include Haversian canal

Structure of Long Bone

Trabecular system of bone

Trabecular system is a parts of spongy bone at which there is a network of bony plates (horizontal trabeculae) and columns (vertical trabeculae). These trabeculae give more strength to the bones when any outside load is applied.

Trabecular System of the Head of the Femur

Trabecular system of irregular bone

Trabecular system of the vertebral body

Trabecular system of Irregular bone

Trabecular system of the vertebral body

Trabecular orientation

Vertical

Horizontal

http://scholar.cu.edu.eg/?q
 =dr_ayman_matar/classes