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1Department of Statistics, Faculty of Science, Selcuk University, Konya,
42250, Seluklu, Turkey.

*Corresponding author(s). E-mail(s): yakdogan@selcuk.edu.tr;
Contributing authors: tenzile.erbayram@selcuk.edu.tr;

†These authors contributed equally to this work.

Abstract

In recent years, ranked set sampling, a cheap and effective sampling method,
has been used for statistical inferences as an alternative to traditional simple
random sampling. Although this trendy topic has been frequently studied in con-
tinuous models, it has only been studied in parameter estimation for the discrete
Weibull distribution in discrete models. Additionally, it is seen in the literature
that stress-strength reliability has not been studied under ranked set sampling for
discrete models. This paper discusses statistical inference for the stress-strength
reliability when stress and strength are independent discrete Poisson-Ailamujia
random variables under ranked set sampling. Moreover, stress-strength reliability
estimators are obtained using point and bootstrap confidence interval estimation
methods in simple random and ranked set sampling methods. The performances
of the proposed estimators are compared using a Monte Carlo simulation. The
simulation results and three real data applications show that the estimators
obtained by ranked set sampling are preferable to the traditional simple random
sampling in terms of efficiency.

Keywords: Bootstrap confidence intervals, Discrete distribution, Estimation, Ranked
set sampling, Stress-strength reliability, Monte Carlo simulation.
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1 Introduction

There are many fields such as engineering, medicine, statistics, physics, psychology,
biostatistics, and economics of study in the statistical literature that investigates how
to estimate system stress-strength reliability (R = P (X<Y )). The random variables
stress-strength reliability (SSR) X and Y are assumed to be independent, and Y
represents the strength of the system and X represents the stress. Obviously, the
system will fail if the applied stressX is greater than the strength Y (X>Y), otherwise,
the system keeps running if (X <Y), so R = P(X <Y) is a measure of the system
performance.

Most of the work done with the SSR is related to continuous probability distribu-
tions. But in some real life, stress or strength can have a discrete random variable. For
example, if X represents the number of products that customers want to buy, Y repre-
sents the number of products that the business produces, R represents the probability
of meeting demand, in medical research, X represents the control without treatment,
and Y represents the treatment results, then R represents the effectiveness of the
treatment. Another example is given in engineering studies. A multitude of engineer-
ing problems can be solved using stress strength models, such as determining whether
the power of a rocket engine can exceed the operating pressure, determining whether
a building’s strength can withstand an earthquake designed for it, and comparing the
two processes. Nowadays, SSR models are widely used in these experiments when X
and Y represent the lifetime times of two devices in life tests, and one wants to predict
the probability that it will fail before the other. The estimation of SSR has been dis-
cussed by many authors, starting with the pioneering work of Birnbaum [1]. Maiti [2]
and Ahmad et al. [3] investigated the Bayesian estimation of R = P (Y > X) for two
independent, non-identically distributed geometric random variables using Lindley’s
approximation. Maiti and Murmu [6] obtained the Bayesian estimator of R when X
and Y have independent two-parameter geometric distributions. The negative bino-
mial distribution is evaluated by Ivshin and Lumelskii [4] and Sathe and Dixit [5]. In
the context of Poisson processes, Belyaev and Lumelskii [7] developed the uniformly
minimum variance unbiased estimator for the SSR. In recent years, Tarvirdizade and
Ahmadpour [8], Babayi and Khorram [9], Hassan et al. [10] and Akgül and Şenoğlu
[11] conducted studies on SSR.

The variables of stress and strength involved in studies are difficult to quantify and
often involve complex procedures that are time-consuming and/or expensive. How-
ever, access to some variables can be obtained from sampling units that can be easily
measured at a low cost. Therefore, the use of cost-effective sampling methods to obtain
the measurement of the features of interest is more preferable than traditional sam-
pling methods. The ranked set sampling (RSS) method, proposed by McIntyre [13] as
a cost-effective and efficient alternative to a simple random sample (SRS), is widely
used in the estimation of SSR, [see [14]-[19]]. The RSS is a useful method in cases
where actual measurements of sampling units are difficult or expensive to obtain, but
it is still easy and more convenient to assign sequence numbers using visual compar-
isons or rough methods according to the variable of interest by Al-Mutairi et al. [12].
Inference procedures based on RSS are often superior to their SRS counterparts if
they have the same sample size by Mahdizadeh [20].
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Some of the studies on the RSS-based SSR are as follows: Safariyan et al. [21]
examined improved point and interval estimation of SSR based on RSS exponential
distribution. Al-Omari et al. [22] worked on the estimation of SSR for the exponen-
tial Pareto distribution using median rank set sampling and RSS methods. Akgül and
Şenoğlu [23] examined the estimation of R=P(X <Y) for the Burr Type X distribu-
tion based on RSS. As it can be understood from these studies, RSS-based SSR, are
carried out using continuous distributions. In the literature on SSR, no studies based
on the RSS method have been encountered in discrete distributions. Therefore, this
article is the first study on the estimation of R=P(X <Y) based on RSS for discrete
distributions. The first purpose of this paper is to estimate SSR using different esti-
mators based on SRS and RSS methods in situations where both stress and strength
are independent of the Poisson-Ailamujia (PoA) distribution. The PoA distribution
is proposed by Hassan et al. [24]. The cumulative distribution and probability mass
functions (pmf) are as follows, respectively,

FX (x) = 1−
(4α+ 2αx+ 1)

(1 + 2α)
x+2 , (1)

f(x) =
4α2 (1 + x)

(1 + 2α)
x+2 , (2)

where x = 0, 1, ... and α > 0. X and Y are two independent random variables with
the same distribution, X ∼ PoA (α1) represents the stress and Y ∼ PoA (α2) are
represents strength. Then SSR for X and Y is obtained by

R = P (X < Y ) =

∞∑

x=0

4α2
1 (1 + x)

(1 + 2α1)
(x+2)

∞∑

y=x+1

4α2
2 (1 + y)

(1 + 2α2)
(y+2)

,

=
α2
1

(
8α1α

2
2 + 4α2

2 + 3α2 + 6α1α2 + α1

)

(α2 + α1 + 2α1α2)
3 .

In this study, we assume thatX and Y are follows PoA distributions with pmf f (x, α1)
and f (y, α2) , respectively. We then derive the maximum likelihood (ML), least squares
(LS), weighted least squares (WLS), and Cramer-von Mises (CVM) estimators for
the system reliability based on SRS and RSS. Also to evaluate the performance of
these estimators under changing situations. The second purpose bootstrap confidence
intervals (BCIs) are obtained using bootstrap methods that include student, stan-
dard, percentile, normal, and bias-corrected percentile bootstrap methods for the SSR
distribution based on different estimation methods.

The remainder of the article is structured as follows. In Section 2, the estimate
of SSR was obtained using the methods of ML, LS, WLS, and CVM for both SRS
and RSS. In Section 3, the BCIs are discussed based on different estimation methods
using SRS and RSS sampling methods for SSR. In Section 4, a Monte Carlo simulation
study was conducted to evaluate the performance of BCI between different estimation
and sampling methods. Three real data applications are presented in Section 5.
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2 Estimation stress-strength reliability for
Poisson-Ailamujia distribution

2.1 Estimation of stress-strength reliability based on ranked

set sample

In this section, the RSS method, first proposed by McIntyre [13], is mentioned.
To select a sample of size n = mr from a population using the RSS method, the
implementation steps are as follows.

Step 1: A sample ofm2 size is randomly selected from the population. The selected
sample is randomly allocated to m clusters of m size.

Step 2: Units in each cluster are ordered from smallest to largest. This ranking
can be done without precise visual measurement or by utilizing an auxiliary variable
that is easy to measure and highly correlated with the variable of interest.

Step 3: Of the units listed; the unit in the first row from the first cluster, the unit
in the second row from the second cluster, and so on, the unit in the m row from the
m cluster is selected and the selected units are measured in terms of the variable of
interest.

Step 4: Steps 1 to 3 are repeated r times until the sample size is n = mr.
Here, m and r correspond to the set size or the number of cycles. It should be
noted that the setting size m plays an important role in the RSS method. Let
X(i)ik, (i = 1, ...,mx, k = 1, ..., rx) and Y(j)jl, (j = 1, ...,my, l = 1, ..., ry) indicate the
RSS from PoA (α1) and PoA (α2) with sample size n1 = mxrx and n2 = myry. For the
sake of brevity, we’ll use the notation Xik and Yjl instead of X(i)ik and Y(j)jl, respec-
tively. When the judgment ranking is perfect, the pmfs of Xik and Yjl are indicated
by

f (x) =

n1∑

s=r

(
mx

s

){
[F (x)]s [1− F (x)]mx−s

− [F (x− 1)]s [1− F (x− 1)]mx−s
}
, (3)

f (y) =

n2∑

w=r

(
my

w

){
[F (y)]w [1− F (y)]my−w

− [F (y − 1)]w [1− F (y − 1)]my−w
}
. (4)

To obtain the ML estimator of the SSR using Equations (3)-(4), the RSS-based
likelihood assuming a perfect ranking is written as follows,

L(α1, α2) =

rx∏

k=1

mx∏

i=1

f (xik)

ry∏

l=1

my∏

j=1

f (yjl) , (5)

when Equations (3)-(4) are replaced in Equation (5), the log-likelihood equation is
obtained as follows.

ℓ(α1, α2) =

rx∑

k=1

mx∑

i=1

log f (xik)

ry∑

l=1

my∑

j=1

log f (yjl)

=

rx∑

k=1

mx∑

i=1

log






n1∑

s=r

(n1

s

)
(−1)

2s





[
4
(

α1+1
2

)2
(1 + 2α1)

xik − α1 (2xik + 4) − 1

]s

(1 + 2α1)
n1(xik+2) [1 + α1 (2xik + 4)]s−n1









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−

rx∑

k=1

mx∑

i=1

log

{ n1∑

s=r

(n1

s

)
(−1)

2s

[
[(1 + 2α1)

xik + 2α1 (1 + 2α1)
xik − 2α1 (xik + 1) − 1]s

(1 + 2α1)
n1(xik+1) [1 + α1 (2xik + 2)]s−n1

]}

+

ry∑

l=1

my∑

j=1

log






n2∑

w=r

(n2

w

)
(−1)

2w





[
4
(

α2+1
2

)2
(1 + 2α2)

yjl
− α2 (2yjl + 4) − 1

]w

(1 + 2α2)
n2

(
yjl+2

)

[1 + α2 (2yjl + 4)]w−n2










−

ry∑

l=1

my∑

j=1

log






n2∑

w=r

(n2

w

)
(−1)

2w



 [(1 + 2α2)
yjl + 2α2 (1 + 2α2)

yjl
− 2α2 (yjl + 1) − 1]w

(1 + 2α2)
n2

(
yjl+1

)

[1 + α2 (2yjl + 2)]w−n2








 ,

where the RSS-based ML estimators of α1 and α2, (say α̃1ML and α̃2ML), are solutions
to the following linear equations: ∂ℓ(α1, α2)/∂α1 = 0 and ∂ℓ(α1, α2)/∂α2 = 0. The
ML estimators of α1 and α2 cannot be determined explicitly. Therefore, they can be
determined using numerical methods. The optim function in R is used for this purpose.
After that, the ML estimate of SSR based on RSS, namely, R̃ML−RSS is obtained as
follows by using the invariance property of the ML estimators.

R̃ML−RSS =
α̃2
1ML

(
8α̃1MLα̃

2
2ML + 4α̃2

2ML + 3α̃2ML + 6α̃1MLα̃2ML + α̃1ML

)

(α̃2ML + α̃1ML + 2α̃1MLα̃2ML)
3 .

2.2 Estimation of stress-strength reliability based on simple

random sample

Suppose that X and Y are random variables in the SSR that are independently dis-
tributed as X ∼ PoA (α1) and Y ∼ PoA (α2) respectively. Let Xi, (i = 1, ..., n1) and
Yj , (j = 1, ..., n2) be two independent SRS from PoA (α1) and PoA (α2) , respectively.
Then the likelihood function is given by

L (α1, α2) =

n1∏

i=1

f (xi)

n2∏

j=1

f (yj) ,

= 4n1+n2α2n1
1 α2n2

2

n1∏

i=1

1 + xi

(1 + 2α1)
(xi+2)

n2∏

j=1

1 + yj

(1 + 2α2)
(yj+2)

. (6)

To obtain the ML estimators of α1 and α2, we first derive the log-likelihood function
by taking the logarithm of Equation 6.

ℓ (α1, α2) = (n1 + n2) ln (4) + 2n1 ln (α1) + 2n2 ln (α2) + ln

n1∑

i=1

(1 + xi)

−

n1∑

i=1

(xi + 2) ln (1 + 2α1) + ln

n2∑

j=1

(
1 + yj

)
−

n2∑

j=1

(
yj + 2

)
ln (1 + 2α2) . (7)

We then take the derivatives of the log-likelihood function according to the parameters
of interest and obtain the likelihood Equations (8)-(9).

∂ℓ(α1, α2)

∂α1
=

2n1

α1
−

2
∑n1

i=1 (xi + 2)

1 + 2α1
= 0, (8)
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∂ℓ(α1, α2)

∂α2
=

2n2

α2
−

2
∑n2

j=1 (yj + 2)

1 + 2α2
= 0. (9)

Solutions to likelihood Equations (8)-(9) can be obtained in closed form, as well as
estimates of the unknown parameters, can be obtained α̂1ML = 1

x and α̂2ML = 1
y

using numerical methods. After that, the ML estimation of system reliability based
on SRS, namely, R̂ML−SRS is obtained as follows:

R̂ML−SRS =
x−2

(
8x−1y−2 + 4y−2 + 3y−1 + 6x−1y−1 + x−1

)
(
y−1 + x−1 + 2x−1

)3 (10)

by using the invariance property of the ML estimators.

2.3 Least square estimation, weight least square estimation

and Cramer-von Mises estimate

The LS, WLS, and CVM method estimation yield similar directions for parameter
estimation when using SRS and RSS. However, the differences in the parameter esti-
mations obtained by these three methods are largely due to the sampling selection
method employed. In this context, the process of obtaining parameter estimates using
these methods is explained as follows.

The LS and WLS estimators are obtained by minimizing the sum of the squares of
the residuals. Let X1, X2, ..., Xn1

be a random sample from the distribution with pmf
is iid sample from PoA (α1) and Y1, Y2, ..., Yn2

is iid sample from PoA (α2). It assumed
that Xi and Yj (i 6= j) are independent. X(1), X(2), ..., X(n1) and Y(1), Y(2), ..., Y(n2)

denote the rank statistics of the random samples. The mean rank is used to estimate
the values of the cumulative distribution function F (x) ,

F̂
(
x(i)

)
=

i

n1 + 1
; F̂
(
y(j)
)
=

j

n2 + 1

F̂
(
x(i), α1

)
=

n1∑

i=1

(
F (xi:n1

|α1)− F̂
(
x(i)

))2

F̂
(
y(j), α2

)
=

n2∑

j=1

(
F (yj:n2

|α2)− F̂
(
y(j)
))2

The parameter vector that minimizes the quadratic expression of the equation is
obtained. With respect α1 and α2, where F (.) is the cdf in Equation 1. Equivalently
they can be obtained by solving:

n1∑

i=1

[
F (xi:n1

|α1)−
i

n1 + 1

]
η1 (xi:n1

|α1) = 0,

n2∑

i=1

[
F (yj:n2 |α2)−

j

n2 + 1

]
η2 (yj:n2

|α2) = 0,

6



where

η1 =
dF (xi:n1

)

dα1
= 4 (x+ 2)α1 (1 + x) (1 + 2α1)

−x−3
(11)

η2 =
dF (yj:n2)

dα2
= 4 (y + 2)α2 (1 + y) (1 + 2α2)

−y−3
(12)

The solutions to Equations (11)-(12) can be obtained in closed form, and the estimates
of the unknown parameters, obtained using the SRS method as α̂1LS and α̂2LS , and
using the RSS method as α̃1LS and α̃2LS , can be determined using numerical methods.
After that, the LS estimations of SSR denoted as R̂LS−SRS and R̃LS−RSS , are obtained
as follows:

R̂LS−SRS =
α̂2
1LS

(
8α̂1LSα̂

2
2LS + 4α̂2

2LS + 3α̂2LS + 6α̂1LSα̂2LS + α̂1LS

)

(α̂2LS + α̂1LS + 2α̂1LSα̂2LS)
3

and

R̃LS-RSS =
α̃2
1LS

(
8α̃1Lsα̃

2
2LS + 4α̃2

2LS + 3α̃2LS + 6α̃1LSα̃2LS + α̃1LS

)

(α̃2Ls + α̃1LS + 2α̃1LSα̃2LS)
3

using the LS estimators. Then the WLS estimators of the parameter of PoA (α1) and
PoA (α2) distributions are obtained by minimizing

W (α1) =

n1∑

i=1

(n1 + 1)
2
(n1 + 2)

i (n1 − i+ 1)

[
F (xi:n1

|α1)−
i

n1 + 1

]2

W (α2) =

n2∑

j=1

(n2 + 1)
2
(n2 + 2)

j (n2 − j + 1)

[
F (yj:n2 |α2)−

j

n2 + 1

]2

The parameter estimates are obtained by solving the equations:

n1∑

i=1

(n1 + 1)
2
(n1 + 2)

i (n1 − i+ 1)

[
F (xi:n1

|α1)−
i

n1 + 1

]
η1 (xi:n1

|α1) = 0 (13)

n2∑

j=1

(n2 + 1)
2
(n2 + 2)

j (n2 − j + 1)

[
F (yj:n2

|α2)−
j

n2 + 1

]
η2 (yj:n2

|α2) = 0 (14)

Solutions to Equations (13)-(14) can be obtained in closed form, as well as estimates
of the unknown parameters, obtained using the SRS method as α̂1WLS and α̂2WLS ,
and using the RSS method as α̃1WLS and α̃2WLS , can be determined using numer-
ical methods. After that, the WLS estimations of SSR denoted as R̂WLS−SRS and
R̃WLS−RSS , are obtained as follows:

R̂WLS−SRS =
α̂2
1WLS

(
8α̂1WLSα̂

2
2WLS + 4α̂2

2WLS + 3α̂2WLS + 6α̂1WLSα̂2WLS + α̂1WLS

)

(α̂2WLS + α̂1WLS + 2α̂1WLSα̂2WLS)
3

7



and

R̃WLS-RSS =
α̃2
1WLS

(
8α̃1WLSα̃

2
2WLS + 4α̃2

2WLS + 3α̃2WLS + 6α̃1WLSα̃2WLS + α̃1WLS

)

(α̃2WLS + α̃1WLS + 2α̃1WLSα̃2WLS)
3

using the WLS estimators.
The CVM estimators can be determined depending on the difference between both

the estimated and exact distributions. Let X1, X2, ..., Xn1
be a random sample from

the distribution with pmf is iid sample from PoA (α1) and Y1, Y2, ..., Yn2
is iid sample

from PoA (α2) . The CVM estimators

CVM (α1) =
1

12n1
+

n1∑

i=1

[
F (xi:n1

|α1)−
2i− 1

2n1

]2
, (15)

CVM (α2) =
1

12n2
+

n2∑

j=1

[
F (yj:n2 |α2)−

2j − 1

2n2

]2
. (16)

Solutions to Equations (15)-(16) can be obtained in closed form, as well as estimates
of the unknown parameters, obtained using the SRS method as α̂1CVM and α̂2CVM

and using the RSS method as α̃1CVM and α̃2CVM , can be determined using numer-
ical methods. After that, the CVM estimations of SSR denoted as R̂CVM−SRS and
R̃CVM−RSS , are obtained as follows:

R̂CVM−SRS =
α̂2
1CVM

(
8α̂1CVM α̂2

2CVM + 4α̂2
2CVM + 3α̂2CVM + 6α̂1CVM α̂2CVM + α̂1CVM

)

(α̂2CVM + α̂1CVM + 2α̂1CVM α̂2CVM )
3

and

R̃CVM-RSS =
α̃2
1CVM

(
8α̃1CVMα̃2

2CVM + 4α̃2
2CVM + 3α̃2CVM + 6α̃1CVMα̃2CVM + α̃1CVM

)

(α̃2CVM + α̃1CVM + 2α̃1CVMα̃2CVM)
3

using the CVM estimators.

3 Bootstrap confidence intervals

With the advancement of computer technology, non-parametric BCIs are becoming
increasingly common. The appeal of the bootstrap method lies in its lack of dependence
on theoretical assumptions. Especially in SSR analyses, non-parametric bootstrap
methods offer significant advantages. These methods allow for calculating confidence
intervals (CIs) by taking repeated samples from data sets and increasing the reliabil-
ity of the results. In SSR analyses, bootstrap methods provide CIs without requiring
prior knowledge of the distribution shape or parameters. Thus, non-parametric boot-
strap stands out as a powerful tool due to its adaptability to various data sets and
situations.
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In this part of the study, six different BCIs were used to compare SRS and RSS in
terms of four predictors (ML, LS, WLS, and CVM). Among the main types of BCIs,
standard (std-boot), percentile (p-boot), bias-corrected percentile (Bcp-boot), student
(t-boot), basic, and normal (N-boot) are used.

Algorithm A1. Consider a samples from PoA (α1) distribution, denoted as
X1, X2, ..., Xn and another sample PoA (α2) distribution, denoted as Y1, Y2, ..., Yn.
Obtain the estimates for the parameters α1 and α2 based on this sample, denoted as
α̂1 and α̂2 .

A2. Calculate the estimate of SSR by R̂ = R (α̂1, α̂2) .
A3. Generate the sample X∗

1 < X∗

2 < ... < X∗

n1
from the PoA (α1) distribution

and generate the sample Y ∗

1 < Y ∗

2 < ... < Y ∗

n2
from the PoA (α2) distribution.

A4. Obtain the estimate of SSR based on the bootstrap sample X∗

1 < X∗

2 < ... <

X∗

n and Y ∗

1 < Y ∗

2 < ... < Y ∗

n denote it by R̂∗.

A5. Repeat Steps 2-4 B times, and obtain R̂∗

1, R̂
∗

2, ..., R̂
∗

B . These can be treated

as a copy of R̂∗.
The several BCIs based on SSR are given in below. In this section, six non

parametric bootstrap methods are provided to construct the BCIs for SSR.

3.1 Standart boostrap

This method calculates CIs using the standard deviation of statistics obtained from

bootstrap samples. R̂∗ and Se∗ be the sample mean and sample standard deviation

of
{
R̂∗(j); j = 1, 2, ..., B

}
,i.e.,

R̂∗ =
1

B

B∑

j=1

R̂∗(j)

and

Se∗ =

√√√√ 1

(B − 1)

B∑

j=1

(
R̂∗(j) − R̂∗

)2
,

where given sequentially. A 100(1− α)% std-boot CI of R is defined by

{
R̂∗ − z(α/2)Se

∗, R̂∗ + z(α/2)Se
∗

}
.

where, z(α/2) is acquired by using upper (α/2) − th point of the standard normal
distribution.
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3.2 Percentile bootstrap

Let R̂∗(τ) be the τ percentile of
{
R̂∗(j); j = 1, 2, ..., B

}
,i.e., R̂∗(τ) is such that

1

B

B∑

j=1

I
(
R̂∗(j) ≤ R̂∗(τ)

)
= τ ; 0 < τ < 1,

where, I(.) is the indicator function. A 100(1− α)% p-boot CI of R is defined by

{
R̂∗(Bα/2), R̂∗(B(1−α/2))

}
.

3.3 Bias-corrected percentile bootstrap

The Bcp-boot can be defined as follows. The first step is to find the observed R̂ in
the bootstrap order statistics R̂∗(1) ≤ R̂∗(2) ≤ ... ≤ R̂∗(B). First, using the ordered

distributions of
{
R̂∗(j); j = 1, 2, ..., B

}
, compute the probability

P0 =
1

B

B∑

j=1

I
(
R̂∗(j) ≤ R̂

)
.

where, I(.) is the indicator function. Then we calculate Z0 = Φ−1 (P0) , where Φ−1(.)
is the standard normal cdf and this worth is used to compute the probabilities Pl and
Pu, described as

Pl = Φ−1
(
2Z0 − z(α/2)

)
and Pu = Φ

(
2Z0 + z(α/2)

)
.

A 100(1− α)% BCp-boot CI of R is obtain by

{
R̂∗(B.Pl), R̂∗(B.Pu)

}
.

3.4 Studentized bootstrap

The t-boot CI is given by the following algorithm:
A1. Compute the statistics

T ∗

i =

(
R̂∗

i − R̂
)

√
S
(
R̂∗

i

) , i = 1, 2, ..., B,

A2. The t-boot CI is given by

CI
1−α
t−boot (R) =

(

R̂ + QT∗

i
(α/2)

√
S
(
R̂∗

)
, R̂ + QT∗

i
(1 − α/2)

√
S
(
R̂∗

))

,

where QT∗ (p) is pth sample quantile based on data T ∗

i = (T ∗

1 , T
∗

2 , ..., T
∗

B) .
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3.5 Basic bootstrap

The basic bootstrap is based on the idea that the quantity R̂∗ − R̂ has roughly the
same distribution as R̂−R. Then the basic boot CI is given by:

CI1−α
basic (R) =

(
2R̂−QR̂∗

(1− α/2) , 2R̂+QR̂∗
(1− α/2)

)

where QR̂∗
(p) is pth sample quantile based on data R̂∗.

3.6 Normal bootstrap

The N-Boot CI is calculated as

CI1−α
normal (R) =

(
2R̂− R̂∗ − z1−(α/2)

√
S
(
R̂∗

)
, 2R̂+ R̂∗ − z1−(α/2)

√
S
(
R̂∗

))

where zp is the pth the quantile of the standard normal distribution,

R̂∗ =
1

NBoot

NBoot∑

i=1

R̂∗,

and

S
(
R̂∗

)
=

1

NBoot− 1

NBoot∑

i=1

(
R̂∗ − R̂∗

)2
.

4 Simulation Study

In this section, we conduct a comprehensive Monte Carlo simulation study to
observe the behavior of sampling methods on different estimators. Within this
study, we examine point and interval estimates of SSR in terms of RSS and
SRS methods. By comparing the performance of RSS-based estimators with tradi-
tional SRS-based estimators, we evaluate the effectiveness and reliability of both
methods. This allows us to analyze in detail the impact of different sampling meth-
ods on prediction performance. In our simulation setup, we can set the set sizes
and the number of cycles (mx,my) = (2, 2) , (2, 3) , (3, 3) , (3, 4) , (4, 4) , (4, 5) , (5, 5)
and rx = ry = 2, 3, 4 and 5, respectively. Therefore, in the context of RSS,
sample sizes for X and Y are obtained as n1 = mxrx and n2 = myry.
Note that we use (n1, n2) as the sample size for SRS samples, i.e. (n1, n2) =
(4, 4) , (4, 6) , (6, 6) , (6, 8) , (8, 8) , (8, 10) , (10, 10) , (6, 6) , (6, 9) , (9, 9) , (9, 12) , (12, 12) ,
(12, 15) , (15, 15) , (8, 8) , (8, 12) , (12, 12) , (12, 16) , (16, 16) , (16, 20) , (20, 20) , (10, 10) ,
(10, 15) , (15, 15) , (15, 20) , (20, 20) , (20, 25) , (25, 25) . In the context of parameter
adjustment, we take (α1, α2) = (0.5, 1.5). To compare the performance of point esti-
mates from two sampling methods across different estimators, mean square errors
(MSEs) and mean relative errors (MREs) have been computed. Additionally, for inter-
val estimates, the coverage probabilities (CPs) and average lengths (ALs) of BCIs
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have been examined in detail using six different bootstrap methods. For each design,
B = 2000 bootstrap samples with each of size n are taken from the original sample
and this process is repeated K = 5000 times. The 95% BCIs are created by each of
the six methods. MREs and MSE are calculated respectively, by

M̂SER =
1

K

K∑

i=1

(
R̂−R

)2
,

M̂RER =
1

K

K∑

i=1

∣∣∣R̂−R
∣∣∣

R
.

The ALs and estimated CPs are given by

ALs =

∑K
i=1 (Ui − Li)

K
,

and

CPs =

∑K
i=1 I(Li ≤ R ≤ Ui)

K

where, I is a indicator function, Li and Ui are lower and upper bounds of the 100(1−
α)% CIs based on 5000 replicates.

Table 1. Estimation of different parameter methods using SRS and RSS sampling methods
(Real R = 0.1603)

(mx,my) r ML LS WLS CVM
SRS RSS SRS RSS SRS RSS SRS RSS

(2, 2) 2 Est 0.1831 0.1697 0.1890 0.1798 0.2073 0.1933 0.1965 0.1840
MSE 0.0136 0.0108 0.0136 0.0108 0.0210 0.0155 0.0137 0.0106
MRE 0.5835 0.5067 0.5713 0.5105 0.6998 0.5886 0.5730 0.5142

(2, 3) 2 Est 0.1939 0.1721 0.2057 0.1897 0.2344 0.2106 0.2103 0.1935
MSE 0.0127 0.0077 0.0142 0.0092 0.0249 0.0152 0.0142 0.0095
MRE 0.5536 0.4238 0.5840 0.4597 0.7479 0.5703 0.5828 0.4682

(3, 3) 2 Est 0.1830 0.1643 0.1895 0.1720 0.2013 0.1796 0.1947 0.1758
MSE 0.0099 0.0060 0.0108 0.0066 0.0156 0.0083 0.0108 0.0066
MRE 0.4897 0.3813 0.5043 0.3922 0.5917 0.4418 0.5059 0.3978

(3, 4) 2 Est 0.1827 0.1668 0.1930 0.1791 0.1933 0.1780 0.1963 0.1814
MSE 0.0079 0.0047 0.0095 0.0057 0.0129 0.0068 0.0096 0.0059
MRE 0.4295 0.3381 0.4734 0.3645 0.5357 0.3882 0.4778 0.3729

(4, 4) 2 Est 0.1787 0.1640 0.1856 0.1705 0.1880 0.1728 0.1888 0.1730
MSE 0.0073 0.0039 0.0086 0.0044 0.0111 0.0049 0.0084 0.0045
MRE 0.4204 0.3094 0.4472 0.3232 0.5015 0.3391 0.4467 0.3291

(4, 5) 2 Est 0.1809 0.1627 0.1885 0.1717 0.1902 0.1756 0.1905 0.1732
MSE 0.0064 0.0030 0.0079 0.0036 0.0127 0.0050 0.0078 0.0038
MRE 0.3904 0.2701 0.4267 0.2921 0.5409 0.3380 0.4300 0.3003
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Table 2. Estimation of different parameter methods using SRS and RSS sampling methods
(Real R = 0.1603)

(mx,my) r ML LS WLS CVM
SRS RSS SRS RSS SRS RSS SRS RSS

(2, 2) 3 Est 0.1808 0.1642 0.1870 0.1724 0.1960 0.1775 0.1922 0.1768
MSE 0.0093 0.0073 0.0103 0.0078 0.0135 0.0091 0.0103 0.0079
MRE 0.4785 0.4217 0.4924 0.4297 0.5437 0.4549 0.4940 0.4336

(2, 3) 3 Est 0.1831 0.1683 0.1936 0.1806 0.2014 0.1835 0.1963 0.1822
MSE 0.0073 0.0053 0.0090 0.0064 0.0127 0.0077 0.0090 0.0065
MRE 0.4130 0.3565 0.4557 0.3839 0.5223 0.4111 0.4602 0.3913

(3, 3) 3 Est 0.1755 0.1642 0.1810 0.1706 0.1840 0.1734 0.1838 0.1727
MSE 0.0060 0.0040 0.0073 0.0046 0.0086 0.0050 0.0072 0.0047
MRE 0.3823 0.3141 0.4140 0.3318 0.4459 0.3474 0.4158 0.3389

(3, 4) 3 Est 0.1846 0.1642 0.1922 0.1731 0.2001 0.1809 0.1934 0.1743
MSE 0.0061 0.0030 0.0075 0.0037 0.0106 0.0051 0.0074 0.0038
MRE 0.3752 0.2691 0.4110 0.2950 0.4890 0.3395 0.4147 0.3020

(4, 4) 3 Est 0.1758 0.1623 0.1807 0.1673 0.1841 0.1734 0.1815 0.1690
MSE 0.0057 0.0026 0.0068 0.0026 0.0089 0.0042 0.0065 0.0030
MRE 0.3661 0.2516 0.3939 0.2632 0.4568 0.3146 0.3941 0.2711

(4, 5) 3 Est 0.1767 0.1624 0.1830 0.1684 0.1814 0.1702 0.1836 0.1696
MSE 0.0047 0.0021 0.0060 0.0024 0.0074 0.0032 0.0059 0.0026
MRE 0.3339 0.2271 0.3677 0.2423 0.4112 0.2743 0.3719 0.2500

Table 3. Estimation of different parameter methods using SRS and RSS sampling methods
(Real R = 0.1603)

(mx,my) r ML LS WLS CVM
SRS RSS SRS RSS SRS RSS SRS RSS

(2, 2) 4 Est 0.1772 0.1668 0.1833 0.1740 0.1891 0.1774 0.1866 0.1770
MSE 0.0069 0.0057 0.0082 0.0064 0.0100 0.0073 0.0081 0.0066
MRE 0.4113 0.3749 0.4404 0.3922 0.4726 0.4109 0.4415 0.3981

(2, 3) 4 Est 0.1872 0.1679 0.1947 0.1776 0.1959 0.1785 0.1955 0.1786
MSE 0.0066 0.0037 0.0080 0.0046 0.0101 0.0054 0.0080 0.0047
MRE 0.3942 0.2973 0.4308 0.3233 0.4719 0.3395 0.4337 0.3302

(3, 3) 4 Est 0.1741 0.1617 0.1799 0.1662 0.1786 0.1667 0.1807 0.1679
MSE 0.0056 0.0030 0.0068 0.0033 0.0073 0.0036 0.0065 0.0035
MRE 0.3647 0.2730 0.3932 0.2855 0.4076 0.2937 0.3927 0.2932

(3, 4) 4 Est 0.1770 0.1627 0.1845 0.1687 0.1832 0.1692 0.1844 0.1697
MSE 0.0049 0.0023 0.0063 0.0026 0.0069 0.0029 0.0060 0.0028
MRE 0.3381 0.2356 0.3746 0.2495 0.3950 0.2617 0.3746 0.2566

(4, 4) 4 Est 0.1746 0.1615 0.1783 0.1649 0.1784 0.1663 0.1797 0.1659
MSE 0.0042 0.0020 0.0049 0.0022 0.0058 0.0025 0.0050 0.0023
MRE 0.3146 0.2191 0.3369 0.2307 0.3648 0.2450 0.3450 0.2382

(4, 5) 4 Est 0.1745 0.1614 0.1798 0.1660 0.1849 0.1710 0.1810 0.1667
MSE 0.0035 0.0015 0.0043 0.0017 0.0059 0.0023 0.0044 0.0018
MRE 0.2893 0.1900 0.3187 0.2023 0.3695 0.2349 0.3258 0.2100
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Fig. 1. MSE comparison of R̂SRS and R̂RSS sampling methods with ML estimation
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Fig. 2. MSE comparison of R̂SRS and R̂RSS sampling methods with LS estimation
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Fig. 3. MSE comparison of R̂SRS and R̂RSS sampling methods with WLS estimation
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Fig. 4. MSE comparison of R̂SRS and R̂RSS sampling methods with CVM estimation
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The MSE values of SSR obtained in the simulation study are shown in Fig. 1-
Fig.4. When these graphs are examined, it is seen that the MSE values of the RSS
method are always smaller than the SRS method for the estimators used. This result
shows that the RSS method produces more consistent and reliable predictions. Lower
MSE values indicate that the predictions are closer to reality and the model performs
better. Therefore, based on the results of the simulation study, it can be said that the
RSS method exhibits superior performance compared to the SRS method.
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Table 4. CPs using BCIs for ML estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.9637 0.9519 0.9510 0.9492 0.8218 0.8014

RSS 0.9544 0.9506 0.9490 0.9502 0.8810 0.8684
(2, 3) 2 SRS 0.9661 0.9530 0.9305 0.9491 0.8165 0.8364

RSS 0.9585 0.9505 0.9503 0.9503 0.8901 0.9405
(3, 3) 2 SRS 0.9613 0.9513 0.9341 0.9504 0.8586 0.8977

RSS 0.9586 0.9505 0.9490 0.9503 0.9231 0.9742
(3, 4) 2 SRS 0.9625 0.9510 0.9321 0.9504 0.8849 0.9470

RSS 0.9565 0.9505 0.9503 0.9504 0.9108 0.9872
(4, 4) 2 SRS 0.9678 0.9506 0.9399 0.9503 0.8985 0.9669

RSS 0.9531 0.9505 0.9498 0.9504 0.9377 0.9878
(4, 5) 2 SRS 0.9568 0.9507 0.9222 0.9504 0.8872 0.9734

RSS 0.9517 0.9505 0.9500 0.9504 0.9382 0.9899
(5, 5) 2 SRS 0.9537 0.9506 0.9434 0.9505 0.9166 0.9822

RSS 0.9543 0.9505 0.9486 0.9505 0.9434 0.9858

(2, 2) 3 SRS 0.9637 0.9508 0.9355 0.9501 0.8696 0.9113
RSS 0.9569 0.9505 0.9485 0.9502 0.9203 0.9449

(2, 3) 3 SRS 0.9624 0.9510 0.9199 0.9507 0.8730 0.9622
RSS 0.9582 0.9505 0.9503 0.9503 0.9048 0.9816

(3, 3) 3 SRS 0.9576 0.9506 0.9361 0.9504 0.9188 0.9805
RSS 0.9540 0.9505 0.9501 0.9504 0.9361 0.9909

(3, 4) 3 SRS 0.9527 0.9507 0.9071 0.9505 0.8546 0.9789
RSS 0.9530 0.9505 0.9500 0.9505 0.9277 0.9939

(4, 4) 3 SRS 0.9535 0.9505 0.9420 0.9503 0.8862 0.9803
RSS 0.9518 0.9505 0.9498 0.9505 0.9384 0.9880

(4, 5) 3 SRS 0.9542 0.9506 0.9303 0.9505 0.8703 0.9922
RSS 0.9516 0.9505 0.9499 0.9505 0.9392 0.9915

(5, 5) 3 SRS 0.9492 0.9505 0.9424 0.9504 0.9041 0.9952
RSS 0.9514 0.9505 0.9500 0.9504 0.9432 0.9859

(2, 2) 4 SRS 0.9634 0.9508 0.9407 0.9501 0.9075 0.9645
RSS 0.9599 0.9505 0.9502 0.9503 0.9246 0.9782

(2, 3) 4 SRS 0.9541 0.9506 0.9034 0.9504 0.8489 0.9777
RSS 0.9516 0.9505 0.9502 0.9505 0.9162 0.9938

(3, 3) 4 SRS 0.9563 0.9506 0.9428 0.9504 0.8983 0.9812
RSS 0.9550 0.9505 0.9494 0.9505 0.9403 0.9914

(3, 4) 4 SRS 0.9527 0.9505 0.9371 0.9504 0.8779 0.9917
RSS 0.9499 0.9505 0.9499 0.9505 0.9413 0.9906

(4, 4) 4 SRS 0.9482 0.9505 0.9366 0.9504 0.8893 0.9966
RSS 0.9518 0.9505 0.9491 0.9505 0.9415 0.9888

(4, 5) 4 SRS 0.9525 0.9505 0.9255 0.9505 0.8914 0.9981
RSS 0.9506 0.9505 0.9498 0.9504 0.9445 0.9891

(5, 5) 4 SRS 0.9511 0.9505 0.9466 0.9505 0.9063 0.9964
RSS 0.9537 0.9505 0.9502 0.9504 0.9467 0.9862

(2, 2) 5 SRS 0.9516 0.9506 0.9423 0.9505 0.9098 0.9803
RSS 0.9519 0.9505 0.9490 0.9504 0.9277 0.9877

(2, 3) 5 SRS 0.9492 0.9506 0.9064 0.9505 0.8494 0.9894
RSS 0.9534 0.9505 0.9501 0.9505 0.9244 0.9948

(3, 3) 5 SRS 0.9514 0.9505 0.9451 0.9504 0.8976 0.9955
RSS 0.9512 0.9505 0.9490 0.9505 0.9438 0.9871

(3, 4) 5 SRS 0.9527 0.9505 0.9366 0.9505 0.8873 0.9977
RSS 0.9530 0.9505 0.9503 0.9504 0.9386 0.9909

(4, 4) 5 SRS 0.9526 0.9505 0.9488 0.9505 0.9122 0.9959
RSS 0.9532 0.9505 0.9497 0.9504 0.9458 0.9841

(4, 5) 5 SRS 0.9535 0.9505 0.9476 0.9505 0.9248 0.9961
RSS 0.9509 0.9505 0.9502 0.9505 0.9477 0.9884

(5, 5) 5 SRS 0.9573 0.9505 0.9492 0.9505 0.9367 0.9918
RSS 0.9517 0.9505 0.9503 0.9504 0.9439 0.9820
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Table 5. ALs using BCIs for ML estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.4484 0.4147 0.3899 0.4147 0.4147 0.3661

RSS 0.4050 0.3851 0.3997 0.3851 0.3851 0.3394
(2, 3) 2 SRS 0.4220 0.4010 0.3580 0.4010 0.4010 0.3879

RSS 0.3409 0.3387 0.3389 0.3387 0.3387 0.3442
(3, 3) 2 SRS 0.3804 0.3659 0.3273 0.3659 0.3659 0.3661

RSS 0.3026 0.2985 0.3054 0.2985 0.2985 0.3286
(3, 4) 2 SRS 0.3376 0.3382 0.2970 0.3382 0.3382 0.3654

RSS 0.2687 0.2644 0.2650 0.2644 0.2644 0.3337
(4, 4) 2 SRS 0.3194 0.3101 0.2831 0.3101 0.3101 0.3533

RSS 0.2405 0.2376 0.2394 0.2376 0.2376 0.3256
(4, 5) 2 SRS 0.3038 0.3026 0.2660 0.3026 0.3026 0.3618

RSS 0.2135 0.2149 0.2158 0.2149 0.2149 0.3255
(5, 5) 2 SRS 0.2852 0.2885 0.2710 0.2885 0.2885 0.3474

RSS 0.2004 0.1962 0.1995 0.1962 0.1962 0.3207

(2, 2) 3 SRS 0.3702 0.3536 0.3204 0.3536 0.3536 0.3615
RSS 0.3336 0.3309 0.3399 0.3309 0.3309 0.3284

(2, 3) 3 SRS 0.3238 0.3203 0.2829 0.3203 0.3203 0.3662
RSS 0.2843 0.2809 0.2816 0.2809 0.2809 0.3366

(3, 3) 3 SRS 0.2971 0.2944 0.2698 0.2944 0.2944 0.3510
RSS 0.2484 0.2483 0.2498 0.2483 0.2483 0.3283

(3, 4) 3 SRS 0.2899 0.2895 0.2536 0.2895 0.2895 0.3693
RSS 0.2151 0.2136 0.2152 0.2136 0.2136 0.3284

(4, 4) 3 SRS 0.2886 0.2883 0.2692 0.2883 0.2883 0.3517
RSS 0.1989 0.1966 0.1976 0.1966 0.1966 0.3245

(4, 5) 3 SRS 0.2622 0.2593 0.2437 0.2593 0.2593 0.3534
RSS 0.1790 0.1796 0.1806 0.1796 0.1796 0.3249

(5, 5) 3 SRS 0.2489 0.2517 0.2414 0.2517 0.2517 0.3447
RSS 0.1662 0.1660 0.1662 0.1660 0.1660 0.3225

(2, 2) 4 SRS 0.3192 0.3182 0.2877 0.3182 0.3182 0.3544
RSS 0.2958 0.2948 0.2957 0.2948 0.2948 0.3335

(2, 3) 4 SRS 0.3007 0.2961 0.2665 0.2961 0.2961 0.3744
RSS 0.2382 0.2383 0.2367 0.2383 0.2383 0.3358

(3, 3) 4 SRS 0.2882 0.2855 0.2681 0.2855 0.2855 0.3483
RSS 0.2148 0.2111 0.2139 0.2111 0.2111 0.3234

(3, 4) 4 SRS 0.2659 0.2643 0.2497 0.2643 0.2643 0.3540
RSS 0.1871 0.1873 0.1887 0.1873 0.1873 0.3253

(4, 4) 4 SRS 0.2484 0.2506 0.2379 0.2506 0.2506 0.3493
RSS 0.1731 0.1725 0.1734 0.1725 0.1725 0.3230

(4, 5) 4 SRS 0.2254 0.2242 0.2112 0.2242 0.2242 0.3489
RSS 0.1503 0.1510 0.1518 0.1510 0.1510 0.3228

(5, 5) 4 SRS 0.2121 0.2133 0.2067 0.2133 0.2133 0.3401
RSS 0.1433 0.1425 0.1430 0.1425 0.1425 0.3222

(2, 2) 5 SRS 0.2873 0.2913 0.2761 0.2913 0.2913 0.3499
RSS 0.2581 0.2589 0.2617 0.2589 0.2589 0.3270

(2, 3) 5 SRS 0.2658 0.2646 0.2385 0.2646 0.2646 0.3683
RSS 0.2132 0.2108 0.2117 0.2108 0.2108 0.3283

(3, 3) 5 SRS 0.2501 0.2488 0.2423 0.2488 0.2488 0.3434
RSS 0.1895 0.1901 0.1925 0.1901 0.1901 0.3222

(3, 4) 5 SRS 0.2201 0.2211 0.2059 0.2211 0.2211 0.3479
RSS 0.1663 0.1643 0.1646 0.1643 0.1643 0.3244

(4, 4) 5 SRS 0.2114 0.2097 0.2073 0.2097 0.2097 0.3373
RSS 0.1525 0.1503 0.1514 0.1503 0.1503 0.3218

(4, 5) 5 SRS 0.1865 0.1849 0.1815 0.1849 0.1849 0.3331
RSS 0.1316 0.1337 0.1329 0.1337 0.1337 0.3243

(5, 5) 5 SRS 0.1833 0.1787 0.1763 0.1787 0.1787 0.3290
RSS 0.1259 0.1246 0.1247 0.1246 0.1246 0.3216
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Table 6. CPs using BCIs for LS estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.9579 0.9521 0.9512 0.9495 0.8091 0.8042

RSS 0.9624 0.9515 0.9514 0.9506 0.8503 0.8639
(2, 3) 2 SRS 0.9652 0.9513 0.9039 0.9497 0.7657 0.8187

RSS 0.9603 0.9508 0.9253 0.9506 0.8230 0.9270
(3, 3) 2 SRS 0.9604 0.9508 0.9361 0.9502 0.8406 0.8847

RSS 0.9609 0.9505 0.9501 0.9503 0.9005 0.9657
(3, 4) 2 SRS 0.9631 0.9506 0.9076 0.9504 0.8427 0.9278

RSS 0.9532 0.9505 0.9359 0.9503 0.8658 0.9837
(4, 4) 2 SRS 0.9654 0.9506 0.9307 0.9504 0.8616 0.9395

RSS 0.9501 0.9505 0.9469 0.9504 0.9177 0.9913
(4, 5) 2 SRS 0.9594 0.9505 0.9200 0.9504 0.8608 0.9567

RSS 0.9543 0.9505 0.9436 0.9505 0.9124 0.9952
(5, 5) 2 SRS 0.9593 0.9505 0.9330 0.9504 0.8995 0.9673

RSS 0.9535 0.9505 0.9494 0.9505 0.9313 0.9955

(2, 2) 3 SRS 0.9631 0.9507 0.9360 0.9501 0.8508 0.9006
RSS 0.9582 0.9506 0.9502 0.9503 0.8663 0.9376

(2, 3) 3 SRS 0.9604 0.9506 0.9054 0.9504 0.8499 0.9419
RSS 0.9567 0.9505 0.9420 0.9503 0.8655 0.9723

(3, 3) 3 SRS 0.9621 0.9506 0.9360 0.9504 0.8935 0.9633
RSS 0.9538 0.9505 0.9484 0.9504 0.9079 0.9925

(3, 4) 3 SRS 0.9532 0.9505 0.9010 0.9505 0.8300 0.9628
RSS 0.9573 0.9505 0.9419 0.9005 0.8884 0.9958

(4, 4) 3 SRS 0.9590 0.9505 0.9385 0.9503 0.8684 0.9676
RSS 0.9499 0.9505 0.9466 0.9505 0.9262 0.9929

(4, 5) 3 SRS 0.9536 0.9505 0.9264 0.9504 0.8554 0.9493
RSS 0.9525 0.9505 0.9461 0.9505 0.9124 0.9974

(5, 5) 3 SRS 0.9535 0.9505 0.9389 0.9503 0.8904 0.9879
RSS 0.9501 0.9505 0.9489 0.9505 0.9342 0.9910

(2, 2) 4 SRS 0.9651 0.9506 0.9345 0.9503 0.8730 0.9458
RSS 0.9607 0.9505 0.9478 0.9504 0.9055 0.9702

(2, 3) 4 SRS 0.9525 0.9505 0.8961 0.9503 0.8181 0.9596
RSS 0.9539 0.9505 0.9338 0.9505 0.8767 0.9914

(3, 3) 4 SRS 0.9610 0.9505 0.9393 0.9503 0.8740 0.9669
RSS 0.9512 0.9505 0.9502 0.9504 0.9278 0.9954

(3, 4) 4 SRS 0.9586 0.9505 0.9249 0.9504 0.8558 0.9753
RSS 0.9501 0.9505 0.9458 0.9505 0.9205 0.9956

(4, 4) 4 SRS 0.9511 0.9505 0.9313 0.9504 0.8801 0.9909
RSS 0.9527 0.9505 0.9498 0.9505 0.9323 0.9926

(4, 5) 4 SRS 0.9537 0.9505 0.9180 0.9505 0.8654 0.9957
RSS 0.9528 0.9505 0.9460 0.9505 0.9273 0.9939

(5, 5) 4 SRS 0.9529 0.9505 0.9429 0.9505 0.8930 0.9977
RSS 0.9522 0.9505 0.9488 0.9505 0.9388 0.9919

(2, 2) 5 SRS 0.9606 0.9505 0.9312 0.9504 0.8975 0.9676
RSS 0.9550 0.9505 0.9492 0.9503 0.9134 0.9861

(2, 3) 5 SRS 0.9519 0.9505 0.8904 0.9504 0.8157 0.9713
RSS 0.9546 0.9505 0.9454 0.9505 0.8890 0.9958

(3, 3) 5 SRS 0.9572 0.9505 0.9422 0.9504 0.8799 0.9872
RSS 0.9520 0.9505 0.9501 0.9505 0.9286 0.9936

(3, 4) 5 SRS 0.9553 0.9505 0.9256 0.9505 0.8565 0.9950
RSS 0.9551 0.9505 0.9450 0.9505 0.9150 0.9966

(4, 4) 5 SRS 0.9531 0.9505 0.9446 0.9505 0.8988 0.9947
RSS 0.9523 0.9505 0.9490 0.9504 0.9396 0.9923

(4, 5) 5 SRS 0.9541 0.9505 0.9449 0.9505 0.9043 0.9970
RSS 0.9507 0.9505 0.9464 0.9505 0.9234 0.9948

(5, 5) 5 SRS 0.9576 0.9505 0.9460 0.9505 0.9202 0.9955
RSS 0.9475 0.9505 0.9493 0.9504 0.9427 0.9874

18



Table 7. ALs using BCIs for LS estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.4439 0.4051 0.3969 0.4051 0.4051 0.3780

RSS 0.3998 0.3767 0.3803 0.3767 0.3767 0.3597
(2, 3) 2 SRS 0.4318 0.4109 0.3391 0.4109 0.4109 0.4114

RSS 0.3587 0.3517 0.3056 0.3517 0.3517 0.3794
(3, 3) 2 SRS 0.3912 0.3774 0.3410 0.3774 0.3774 0.3790

RSS 0.3144 0.3091 0.3037 0.3091 0.3091 0.3439
(3, 4) 2 SRS 0.3608 0.3540 0.3001 0.3540 0.3540 0.3860

RSS 0.2853 0.2811 0.2683 0.2811 0.2811 0.3582
(4, 4) 2 SRS 0.3493 0.3376 0.3056 0.3376 0.3376 0.3713

RSS 0.2565 0.2527 0.2521 0.2527 0.2527 0.3410
(4, 5) 2 SRS 0.3297 0.3308 0.2885 0.3308 0.3308 0.3769

RSS 0.2307 0.2304 0.2201 0.2304 0.2304 0.3433
(5, 5) 2 SRS 0.3154 0.3223 0.2838 0.3223 0.3223 0.3605

RSS 0.2136 0.2134 0.2106 0.2134 0.2134 0.3320

(2, 2) 3 SRS 0.3835 0.3747 0.3303 0.3747 0.3747 0.3740
RSS 0.3433 0.3387 0.3350 0.3387 0.3387 0.3447

(2, 3) 3 SRS 0.3477 0.3492 0.2936 0.3492 0.3492 0.3873
RSS 0.3022 0.3024 0.2800 0.3024 0.3024 0.3612

(3, 3) 3 SRS 0.3246 0.3216 0.2922 0.3216 0.3216 0.3620
RSS 0.2620 0.2555 0.2517 0.2555 0.2555 0.3411

(3, 4) 3 SRS 0.3160 0.3167 0.2695 0.3167 0.3167 0.3845
RSS 0.2343 0.2296 0.2170 0.2296 0.2296 0.3463

(4, 4) 3 SRS 0.3134 0.3077 0.2861 0.3077 0.3077 0.3614
RSS 0.2079 0.2078 0.2042 0.2078 0.2078 0.3347

(4, 5) 3 SRS 0.2896 0.2873 0.2619 0.2873 0.2873 0.3661
RSS 0.1905 0.1900 0.1852 0.1900 0.1900 0.3368

(5, 5) 3 SRS 0.2685 0.2699 0.2542 0.2699 0.2699 0.3530
RSS 0.1738 0.1740 0.1727 0.1740 0.1740 0.3301

(2, 2) 4 SRS 0.3426 0.3346 0.3047 0.3346 0.3346 0.3365
RSS 0.3097 0.3102 0.2973 0.3102 0.3102 0.3480

(2, 3) 4 SRS 0.3244 0.3203 0.2812 0.3203 0.3203 0.3894
RSS 0.2579 0.2589 0.2372 0.2589 0.2589 0.3551

(3, 3) 4 SRS 0.3146 0.3061 0.2833 0.3061 0.3061 0.3598
RSS 0.2253 0.2254 0.2245 0.2254 0.2254 0.3324

(3, 4) 4 SRS 0.2959 0.2947 0.2584 0.2947 0.2947 0.3689
RSS 0.1986 0.2012 0.1947 0.2012 0.2012 0.3374

(4, 4) 4 SRS 0.2655 0.2664 0.2474 0.2664 0.2664 0.3566
RSS 0.1818 0.1819 0.1797 0.1819 0.1819 0.3297

(4, 5) 4 SRS 0.2457 0.2418 0.2255 0.2418 0.2418 0.3596
RSS 0.1596 0.1592 0.1548 0.1592 0.1592 0.3319

(5, 5) 4 SRS 0.2271 0.2250 0.2187 0.2250 0.2250 0.3448
RSS 0.1522 0.1512 0.1498 0.1512 0.1512 0.3278

(2, 2) 5 SRS 0.3169 0.3219 0.2846 0.3219 0.3219 0.3631
RSS 0.2744 0.2716 0.2653 0.2719 0.2719 0.3403

(2, 3) 5 SRS 0.2992 0.3041 0.2529 0.3041 0.3041 0.3850
RSS 0.2340 0.2300 0.2224 0.2300 2300 0.3450

(3, 3) 5 SRS 0.2743 0.2705 0.2559 0.2705 0.2705 0.3522
RSS 0.1984 0.1975 0.1971 0.1975 0.1975 0.3301

(3, 4) 5 SRS 0.2433 0.2421 0.2154 0.2421 0.2421 0.3588
RSS 0.1769 0.1745 0.1687 0.1745 0.1745 0.3349

(4, 4) 5 SRS 0.2285 0.2253 0.2182 0.2253 0.2253 0.3438
RSS 0.1602 0.1593 0.1581 0.1593 0.1593 0.3277

(4, 5) 5 SRS 0.2019 0.1989 0.1931 0.1989 0.1989 0.3400
RSS 0.1402 0.1415 0.1375 0.1415 0.1415 0.3315

(5, 5) 5 SRS 0.1953 0.1903 0.1863 0.1903 0.1903 0.3341
RSS 0.1348 0.1357 0.1356 0.1357 0.1357 0.3257
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Table 8. CPs using BCIs for WLS estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.9425 0.9518 0.9359 0.9497 0.7987 0.7153

RSS 0.9494 0.9517 0.9459 0.9488 0.8449 0.7945
(2, 3) 2 SRS 0.9656 0.9515 0.8562 0.9505 0.7275 0.6497

RSS 0.9417 0.9507 0.8870 0.9503 0.7391 0.8181
(3, 3) 2 SRS 0.9513 0.9508 0.9186 0.9498 0.8497 0.7887

RSS 0.9562 0.9506 0.9446 0.9503 0.8614 0.9447
(3, 4) 2 SRS 0.9673 0.9507 0.9251 0.9499 0.8806 0.8554

RSS 0.9447 0.9505 0.9442 0.9503 0.8852 0.9692
(4, 4) 2 SRS 0.9708 0.9506 0.9242 0.9503 0.9042 0.8908

RSS 0.9452 0.9505 0.9428 0.9503 0.9014 0.9684
(4, 5) 2 SRS 0.9727 0.9506 0.8948 0.9502 0.9034 0.8587

RSS 0.9350 0.9505 0.9217 0.9503 0.9401 0.9524
(5, 5) 2 SRS 0.9730 0.9505 0.9277 0.9502 0.9352 0.9197

RSS 0.9301 0.9505 0.9450 0.9503 0.9447 0.9531

(2, 2) 3 SRS 0.9570 0.9509 0.9248 0.9499 0.8519 0.8365
RSS 0.9608 0.9506 0.9486 0.9504 0.8805 0.9168

(2, 3) 3 SRS 0.9507 0.9506 0.8972 0.9500 0.8662 0.8760
RSS 0.9506 0.9505 0.9402 0.9503 0.8585 0.9568

(3, 3) 3 SRS 0.9590 0.9506 0.9283 0.9504 0.9213 0.9433
RSS 0.9498 0.9505 0.9437 0.9503 0.8971 0.9845

(3, 4) 3 SRS 0.9157 0.9505 0.8811 0.9502 0.8930 0.9210
RSS 0.9520 0.9505 0.9230 0.9505 0.8421 0.9811

(4, 4) 3 SRS 0.9302 0.9505 0.9337 0.9502 0.9168 0.9299
RSS 0.9535 0.9505 0.9391 0.9504 0.8728 0.9817

(4, 5) 3 SRS 0.9160 0.9505 0.9264 0.9503 0.9457 0.9625
RSS 0.9554 0.9505 0.9406 0.9505 0.8908 0.9882

(5, 5) 3 SRS 0.9158 0.9505 0.9344 0.9502 0.9608 0.9787
RSS 0.9561 0.9505 0.9473 0.9505 0.9243 0.9895

(2, 2) 4 SRS 0.9606 0.9506 0.9296 0.9502 0.8534 0.9142
RSS 0.9602 0.9505 0.9460 0.9503 0.8934 0.9578

(2, 3) 4 SRS 0.9430 0.9506 0.8959 0.9501 0.8907 0.9267
RSS 0.9494 0.9505 0.9321 0.9504 0.8876 0.9839

(3, 3) 4 SRS 0.9314 0.9505 0.9370 0.9502 0.9327 0.9626
RSS 0.9458 0.9505 0.9491 0.9504 0.9175 0.9777

(3, 4) 4 SRS 0.9290 0.9505 0.9249 0.9502 0.9450 0.9708
RSS 0.9544 0.9505 0.9436 0.9505 0.9071 0.9902

(4, 4) 4 SRS 0.9286 0.9505 0.9291 0.9502 0.9627 0.9843
RSS 0.9554 0.9505 0.9486 0.9505 0.9162 0.9921

(4, 5) 4 SRS 0.9387 0.9505 0.9064 0.9502 0.9519 0.9885
RSS 0.9574 0.9505 0.9377 0.9505 0.8886 0.9961

(5, 5) 4 SRS 0.9383 0.9505 0.9414 0.9503 0.9394 0.9676
RSS 0.9508 0.9505 0.9467 0.9505 0.9067 0.9980

(2, 2) 5 SRS 0.9523 0.9505 0.9228 0.9502 0.9071 0.9621
RSS 0.9539 0.9505 0.9469 0.9503 0.9092 0.9838

(2, 3) 5 SRS 0.9403 0.9505 0.8889 0.9504 0.8588 0.9647
RSS 0.9496 0.9505 0.9441 0.9505 0.8847 0.9928

(3, 3) 5 SRS 0.9454 0.9505 0.9420 0.9503 0.9077 0.9833
RSS 0.9519 0.9505 0.9500 0.9505 0.9231 0.9921

(3, 4) 5 SRS 0.9428 0.9505 0.9292 0.9504 0.8819 0.9746
RSS 0.9567 0.9505 0.9478 0.9505 0.9177 0.9952

(4, 4) 5 SRS 0.9411 0.9505 0.9429 0.9504 0.9488 0.9702
RSS 0.9552 0.9505 0.9490 0.9504 0.9345 0.9926

(4, 5) 5 SRS 0.9527 0.9505 0.9400 0.9505 0.8862 0.9882
RSS 0.9521 0.9505 0.9451 0.9504 0.9192 0.9956

(5, 5) 5 SRS 0.9579 0.9505 0.9448 0.9505 0.9051 0.9881
RSS 0.9519 0.9505 0.9481 0.9504 0.9401 0.9899
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Table 9. ALs using BCIs for WLS estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.5370 0.4973 0.4661 0.4973 0.4973 0.4147

RSS 0.4711 0.4752 0.4524 0.4752 0.4752 0.3865
(2, 3) 2 SRS 0.5466 0.5490 0.3806 0.5490 0.5490 0.4688

RSS 0.4411 0.4401 0.3246 0.4401 0.4401 0.4210
(3, 3) 2 SRS 0.4618 0.4831 0.3720 0.4831 0.4831 0.4027

RSS 0.3489 0.3375 0.3132 0.3375 0.3375 0.3592
(3, 4) 2 SRS 0.4260 0.4537 0.3634 0.4537 0.4537 0.3867

RSS 0.3162 0.3114 0.3254 0.3114 0.3114 0.3560
(4, 4) 2 SRS 0.3990 0.3971 0.3351 0.3971 0.3971 0.3760

RSS 0.2701 0.2702 0.2918 0.2702 0.2702 0.3456
(4, 5) 2 SRS 0.4251 0.4059 0.3163 0.4059 0.4059 0.3804

RSS 0.2716 0.3081 0.2737 0.3081 0.3081 0.3513
(5, 5) 2 SRS 0.3802 0.3676 0.3184 0.3676 0.3676 0.3512

RSS 0.2554 0.2953 0.2768 0.2953 0.2953 0.3347

(2, 2) 3 SRS 0.4333 0.4558 0.3498 0.4558 0.4558 0.3922
RSS 0.3688 0.3620 0.3515 0.3620 0.3620 0.3550

(2, 3) 3 SRS 0.4115 0.4464 0.3263 0.4464 0.4464 0.4028
RSS 0.3322 0.3241 0.3148 0.3241 0.3241 0.3670

(3, 3) 3 SRS 0.3520 0.3583 0.3144 0.3583 0.3583 0.3681
RSS 0.2723 0.2657 0.2777 0.2657 0.2657 0.3467

(3, 4) 3 SRS 0.3727 0.4021 0.3093 0.4021 0.4021 0.4001
RSS 0.2676 0.2581 0.2817 0.2581 0.2581 0.3619

(4, 4) 3 SRS 0.3585 0.3753 0.3345 0.3753 0.3753 0.3681
RSS 0.2480 0.2374 0.2749 0.2374 0.2374 0.3468

(4, 5) 3 SRS 0.3266 0.3596 0.3090 0.3596 0.3596 0.3627
RSS 0.2184 0.2105 0.2298 0.2105 0.2105 0.3403

(5, 5) 3 SRS 0.3054 0.3351 0.3030 0.3351 0.3351 0.3509
RSS 0.1935 0.1864 0.1859 0.1864 0.1864 0.3314

(2, 2) 4 SRS 0.3748 0.3730 0.3321 0.3730 0.3730 0.3781
RSS 0.3294 0.3285 0.3041 0.3285 0.3285 0.3547

(2, 3) 4 SRS 0.3685 0.4021 0.3078 0.4021 0.4021 0.3917
RSS 0.2794 0.2718 0.2777 0.2718 0.2718 0.3569

(3, 3) 4 SRS 0.3264 0.3440 0.3120 0.3440 0.3440 0.3571
RSS 0.2354 0.2360 0.2572 0.2360 0.2360 0.3334

(3, 4) 4 SRS 0.3122 0.3480 0.3012 0.3480 0.3480 0.3664
RSS 0.2096 0.2062 0.2046 0.2062 0.2062 0.3385

(4, 4) 4 SRS 0.2898 0.3304 0.2913 0.3304 0.3304 0.3568
RSS 0.1949 0.1910 0.1878 0.1910 0.1910 0.3326

(4, 5) 4 SRS 0.2857 0.3302 0.2843 0.3302 0.3302 0.3697
RSS 0.1843 0.1773 0.1742 0.1773 0.1773 0.3420

(5, 5) 4 SRS 0.2692 0.3004 0.2982 0.3004 0.3004 0.3505
RSS 0.1801 0.1781 0.1755 0.1781 0.1781 0.3366

(2, 2) 5 SRS 0.3237 0.3349 0.2866 0.3349 0.3349 0.3671
RSS 0.2791 0.2767 0.2645 0.2767 0.2767 0.3438

(2, 3) 5 SRS 0.3142 0.3269 0.2852 0.3269 0.3269 0.3855
RSS 0.2432 0.2403 0.2337 0.2403 0.2403 0.3470

(3, 3) 5 SRS 0.2833 0.2879 0.2927 0.2879 0.2879 0.3515
RSS 0.2059 0.2035 0.2032 0.2035 0.2035 0.3307

(3, 4) 5 SRS 0.2517 0.2545 0.2733 0.2545 0.2545 0.3542
RSS 0.1791 0.1751 0.1702 0.1751 0.1751 0.3323

(4, 4) 5 SRS 0.2431 0.2853 0.2771 0.2853 0.2853 0.3422
RSS 0.1633 0.1596 0.1593 0.1596 0.1596 0.3281

(4, 5) 5 SRS 0.2159 0.2075 0.2330 0.2075 0.2075 0.3422
RSS 0.1470 0.1476 0.1422 0.1476 0.1476 0.3330

(5, 5) 5 SRS 0.2117 0.2001 0.2087 0.2001 0.2001 0.3361
RSS 0.1443 0.1431 0.1419 0.1431 0.1431 0.3279

21



Table 10. CPs using BCIs for CVM estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.9557 0.9516 0.9458 0.9503 0.7698 0.8075

RSS 0.9622 0.9511 0.9491 0.9499 0.8058 0.8620
(2, 3) 2 SRS 0.9643 0.9512 0.8936 0.9502 0.7164 0.8274

RSS 0.9608 0.9508 0.9128 0.9505 0.7954 0.9217
(3, 3) 2 SRS 0.9575 0.9508 0.9281 0.9501 0.7848 0.8869

RSS 0.9592 0.9505 0.9488 0.9504 0.8707 0.9669
(3, 4) 2 SRS 0.9616 0.9506 0.9044 0.9504 0.7900 0.9339

RSS 0.9595 0.9505 0.9314 0.9504 0.8489 0.9825
(4, 4) 2 SRS 0.9636 0.9506 0.9209 0.9504 0.8282 0.9480

RSS 0.9561 0.9505 0.9434 0.9504 0.9050 0.9929
(4, 5) 2 SRS 0.9635 0.9505 0.9162 0.9503 0.8166 0.9598

RSS 0.9540 0.9505 0.9405 0.9505 0.9067 0.9971
(5, 5) 2 SRS 0.9597 0.9505 0.9270 0.9503 0.8675 0.9753

RSS 0.9536 0.9505 0.9472 0.9505 0.9282 0.9975

(2, 2) 3 SRS 0.9601 0.9507 0.9282 0.9502 0.8005 0.9039
RSS 0.9617 0.9505 0.9482 0.9503 0.8647 0.9356

(2, 3) 3 SRS 0.9632 0.9506 0.8998 0.9504 0.8006 0.9440
RSS 0.9591 0.9505 0.9386 0.9503 0.8474 0.9699

(3, 3) 3 SRS 0.9642 0.9506 0.9302 0.9504 0.8541 0.9656
RSS 0.9569 0.9505 0.9464 0.9503 0.8985 0.9936

(3, 4) 3 SRS 0.9577 0.9505 0.8987 0.9503 0.8114 0.9653
RSS 0.9570 0.9505 0.9412 0.9505 0.8847 0.9975

(4, 4) 3 SRS 0.9602 0.9505 0.9354 0.9503 0.8605 0.9715
RSS 0.9516 0.9505 0.9443 0.9505 0.9246 0.9958

(4, 5) 3 SRS 0.9540 0.9505 0.9239 0.9504 0.8514 0.9824
RSS 0.9537 0.9505 0.9447 0.9505 0.9109 0.9980

(5, 5) 3 SRS 0.9549 0.9505 0.9339 0.9504 0.8827 0.9889
RSS 0.9494 0.9505 0.9479 0.9505 0.9300 0.9924

(2, 2) 4 SRS 0.9636 0.9506 0.9282 0.9503 0.8414 0.9506
RSS 0.9631 0.9505 0.9445 0.9503 0.8787 0.9700

(2, 3) 4 SRS 0.9597 0.9505 0.8935 0.9503 0.8025 0.9616
RSS 0.9548 0.9505 0.9307 0.9504 0.8712 0.9928

(3, 3) 4 SRS 0.9617 0.9505 0.9354 0.9503 0.8689 0.9728
RSS 0.9536 0.9505 0.9492 0.9504 0.9225 0.9981

(3, 4) 4 SRS 0.9590 0.9505 0.9231 0.9504 0.8506 0.9824
RSS 0.9495 0.9505 0.9430 0.9505 0.9158 0.9965

(4, 4) 4 SRS 0.9543 0.9505 0.9303 0.9504 0.8755 0.9903
RSS 0.9525 0.9505 0.9491 0.9505 0.9279 0.9942

(4, 5) 4 SRS 0.9920 0.9505 0.9150 0.9504 0.8610 0.9974
RSS 0.9532 0.9505 0.9444 0.9504 0.9258 0.9944

(5, 5) 4 SRS 0.9532 0.9505 0.9408 0.9505 0.8925 0.9992
RSS 0.9525 0.9505 0.9479 0.9504 0.9359 0.9926

(2, 2) 5 SRS 0.9626 0.9505 0.9231 0.9504 0.8634 0.9708
RSS 0.9589 0.9505 0.9471 0.9503 0.9057 0.9867

(2, 3) 5 SRS 0.9545 0.9505 0.8858 0.9504 0.8067 0.9770
RSS 0.9506 0.9505 0.9434 0.9505 0.8877 0.9987

(3, 3) 5 SRS 0.9573 0.9505 0.9401 0.9504 0.8750 0.9891
RSS 0.9524 0.9505 0.9490 0.9505 0.9259 0.9952

(3, 4) 5 SRS 0.9542 0.9505 0.9222 0.9505 0.8530 0.9970
RSS 0.9542 0.9505 0.9448 0.9505 0.9115 0.9974

(4, 4) 5 SRS 0.9523 0.9505 0.9425 0.9505 0.8945 0.9976
RSS 0.9533 0.9505 0.9477 0.9504 0.9374 0.9930

(4, 5) 5 SRS 0.9530 0.9505 0.9427 0.9505 0.9003 0.9982
RSS 0.9510 0.9505 0.9457 0.9504 0.9211 0.9952

(5, 5) 5 SRS 0.9565 0.9505 0.9449 0.9505 0.9172 0.9965
RSS 0.9487 0.9505 0.9487 0.9504 0.9433 0.9884
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Table 11. ALs using BCIs for CVM estimation.

(mx,my) r sample Std-boot p-boot Bcp-boot t-boot basic N-boot
(2, 2) 2 SRS 0.4374 0.3926 0.3785 0.3926 0.3926 0.3930

RSS 0.3981 0.3660 0.3519 0.3660 0.3660 0.3733
(2, 3) 2 SRS 0.4250 0.3949 0.3252 0.3949 0.3949 0.4205

RSS 0.3597 0.3474 0.2969 0.3474 0.3474 0.3869
(3, 3) 2 SRS 0.3853 0.3698 0.3225 0.3698 0.3698 0.3893

RSS 0.3138 0.3047 0.2955 0.3047 0.3047 0.3516
(3, 4) 2 SRS 0.3572 0.3454 0.2823 0.3454 0.3454 0.3926

RSS 0.2886 0.2840 0.2618 0.2840 0.2840 0.3628
(4, 4) 2 SRS 0.3414 0.3283 0.2818 0.3283 0.3283 0.3774

RSS 0.2584 0.2521 0.2449 0.2521 0.2521 0.3461
(4, 5) 2 SRS 0.3262 0.3135 0.2774 0.3135 0.3135 0.3809

RSS 0.2355 0.2366 0.2229 0.2366 0.2366 0.3464
(5, 5) 2 SRS 0.3031 0.2965 0.2631 0.2965 0.2965 0.3634

RSS 0.2188 0.2182 0.2130 0.2182 0.2182 0.3360

(2, 2) 3 SRS 0.3774 0.3665 0.3087 0.3665 0.3665 0.3843
RSS 0.3421 0.3331 0.3172 0.3331 0.3331 0.3535

(2, 3) 3 SRS 0.3445 0.3339 0.2810 0.3339 0.3339 0.3927
RSS 0.3043 0.3026 0.2764 0.3026 0.3026 0.3645

(3, 3) 3 SRS 0.3186 0.3073 0.2764 0.3073 0.3073 0.3677
RSS 0.2643 0.2592 0.2517 0.2592 0.2592 0.3454

(3, 4) 3 SRS 0.3121 0.3112 0.2574 0.3112 0.3112 0.3868
RSS 0.2368 0.2345 0.2205 0.2345 0.2345 0.3485

(4, 4) 3 SRS 0.3054 0.3009 0.2711 0.3009 0.3009 0.3630
RSS 0.2130 0.2126 0.2063 0.2126 0.2126 0.3379

(4, 5) 3 SRS 0.2860 0.2856 0.2592 0.2856 0.2856 0.3673
RSS 0.1965 0.1964 0.1897 0.1964 0.1964 0.3391

(5, 5) 3 SRS 0.2700 0.2710 0.2507 0.2710 0.2710 0.3560
RSS 0.1793 0.1785 0.1783 0.1785 0.1785 0.3322

(2, 2) 4 SRS 0.3365 0.3259 0.2870 0.3259 0.3259 0.3734
RSS 0.3112 0.3029 0.2848 0.3029 0.3029 0.3541

(2, 3) 4 SRS 0.3214 0.3127 0.2687 0.3127 0.3127 0.3910
RSS 0.2585 0.2572 0.2391 0.2572 0.2572 0.3571

(3, 3) 4 SRS 0.3061 0.2988 0.2725 0.2988 0.2988 0.3613
RSS 0.2312 0.2299 0.2265 0.2299 0.2299 0.3358

(3, 4) 4 SRS 0.2877 0.2863 0.2537 0.2863 0.2863 0.3688
RSS 0.2031 0.2059 0.1987 0.2059 0.2059 0.3393

(4, 4) 4 SRS 0.2679 0.2694 0.2461 0.2694 0.2694 0.3594
RSS 0.1872 0.1860 0.1836 0.1860 0.1860 0.3318

(4, 5) 4 SRS 0.2478 0.2457 0.2256 0.2457 0.2457 0.3619
RSS 0.1650 0.1640 0.1608 0.1640 0.1640 0.3334

(5, 5) 4 SRS 0.2317 0.2303 0.2229 0.2303 0.2303 0.3473
RSS 0.1573 0.1567 0.1538 0.1567 0.1567 0.3294

(2, 2) 5 SRS 0.3084 0.3030 0.2652 0.3030 0.3030 0.3670
RSS 0.2738 0.2739 0.2604 0.2739 0.2739 0.3439

(2, 3) 5 SRS 0.2934 0.2948 0.2450 0.2948 0.2948 0.3854
RSS 0.2350 0.2356 0.2264 0.2356 0.2356 0.3464

(3, 3) 5 SRS 0.2736 0.2725 0.2555 0.2725 0.2725 0.3547
RSS 0.2034 0.2030 0.2007 0.2030 0.2030 0.3328

(3, 4) 5 SRS 0.2435 0.2446 0.2173 0.2446 0.2446 0.3605
RSS 0.1814 0.1791 0.1740 0.1791 0.1791 0.3365

(4, 4) 5 SRS 0.2314 0.2302 0.2214 0.2302 0.2302 0.3460
RSS 0.1650 0.1634 0.1615 0.1634 0.1634 0.3294

(4, 5) 5 SRS 0.2068 0.2048 0.1974 0.2048 0.2048 0.3422
RSS 0.1455 0.1466 0.1416 0.1466 0.1466 0.3326

(5, 5) 5 SRS 0.1997 0.1958 0.1906 0.1958 0.1958 0.3364
RSS 0.1393 0.1406 0.1393 0.1406 0.1406 0.3267
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All computations were performed using an R program based on 5000 Monte Carlo
simulations. The simulation results are presented in Tables 1 -11. Tables 1-3 present
point estimates, while Table 4 - 11 include interval estimate results. It was observed
that, in both SRS and RSS methods, as n1 and n2 increase, the mean SSR estimates
approach the real R-value and the MSEs decrease. Furthermore, among all the esti-
mator methods examined, the RSS method exhibits smaller MSE values compared
to the SRS method. Overall, there is strong evidence that the RSS-based method
performs better than other estimators as a point estimate of SSR. According to the
simulation results, the BCIs for all cases indicated that the 95% CIs obtained from the
RSS method were generally closer to the true value than those obtained from the SRS
method. Moreover, in terms of ALs, the RSS method exhibited lower values across all
bootstrap methods compared to the SRS method.

5 Real Data Applications

In this section, we analyze three real data sets to present the implementation of the pro-
posed methods. Here, we analyze practical real datasets with PoA fit to demonstrate
the developed procedure. The main difference between this application and others is
that we treat dataset I and dataset II as populations of interest and select data from
these populations using SRS and RSS with the same sample sizes. In other words, we
use perfect ranking. The RSS sampling units are selected from dataset I and dataset II
using the following procedure: first, 9 observations are individually selected from each
dataset I and dataset II. Then randomly divide them into 3 groups of 3 individuals
each and rank the observations in each group from smaller to larger. Select the small-
est observations from the first row of clusters. Select the second smallest observations
from the second row of clusters. Select the largest observations from the third set. So
you get the set of sizes for X and Y as mx = my = 3. Repeat this process rx = ry = 7
times for X and Y respectively. Finally, obtain the RSS samples for X and Y with
sizes n = mxrx = 21 and m = myry = 21 respectively. In addition, the SRS sam-
ple units are obtained by randomly selecting n = 21 and m = 21 observations from
dataset I and dataset II, respectively. Using the mentioned motivation, SSR based on
SRS and RSS will be calculated on three real data sets and their performances will be
compared.

Example I: The dataset comprises the waiting times before customer service for
two banks: Bank A and Bank B. During the processing of the continuous data, each
data point was rounded such that values with decimal parts greater than 0.5 were
rounded up, and values with decimal parts less than or equal to 0.5 were rounded
down. This rounding method was employed to ensure a more accurate and consistent
representation within a specified range of the dataset It is first reported by Ghitany et
al. [25]. In this section, we are interested in estimating the stress-strength parameter
R = P (X < Y ), where X and Y represents the exact portions of wait times prior
to the customer service period in Bank A (dataset I, sample size = 100) and Bank
B (dataset II, sample size = 60) presented in Tables 12 and 13, respectively. Before
starting the analysis, we adapt the PoA distribution to the X and Y observations
separately. We present the Kolmogorov-Smirnov (KS) values and the corresponding
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Table 12. Waiting time (in minutes) before customer service at Bank A (X).

1 1 1 2 2 2 2 2 3 3 3 3 3 3 4
4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
5 5 6 6 6 6 6 6 6 6 7 7 7 7 7
7 7 8 8 8 8 9 9 9 9 9 9 9 10 10
10 10 11 11 11 11 11 11 11 12 12 12 12 13 13
13 13 14 14 14 14 15 15 17 17 18 18 18 19 19
20 21 21 21 22 23 27 32 33 39

Table 13. Waiting time (in minutes) before customer service in Bank B (Y).

0 0 0 1 1 1 1 2 2 2 2 2 2 2 3
3 3 3 3 3 3 3 3 3 4 4 4 4 5 5
5 6 6 6 6 7 7 7 8 8 8 8 8 9 9
9 10 11 11 11 12 12 13 13 13 14 15 16 17 28

p-values (in parentheses) for Bank A and Bank B are 0.1265 (0.0817) and 0.1150
(0.3259), respectively. Accordingly, both datasets fit the PoA distribution from KS
statistics and Fig. 5.
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Fig. 5. Empirical and PoA distributions based on the Example I data set.

The RSS and SRS data sets obtained according to the motivation given in the
introduction part of the real data are given in Table 14 and 15:

Table 14. Newly chosen data for waiting time before customer
service in Bank SRS; n = m = 21.

X Y

14 9 5 15 6 6 3 6 5 2 7 8 11 2
11 12 3 3 12 15 15 4 5 2 9 10 3 2
10 3 4 4 4 4 1 3 0 11 12 8 3 5
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Table 15. Newly chosen data for waiting time (in
minutes) before customer service in Bank RSS; n =
m = 21.

X Y

Set Set

Cycle 1 2 3 Cycle 1 2 3

1 4 6 14 1 6 4 13
2 2 14 6 2 2 5 7
3 2 6 11 3 0 4 10
4 6 7 21 4 2 3 7
5 7 7 13 5 11 6 8
6 3 6 18 6 2 10 8
7 11 5 8 7 1 1 5

Table 16. Estimates of R = 0.3209 Waiting time before customer service in Bank.

Sample R̂ std-boot p-boot Bcp-boot t-boot basic N-boot

ML SRS 0.3706 0.2075 0.1972 0.1322 0.1972 0.1972 0.8018
RSS 0.3256 0.1950 0.1952 0.00003 0.1952 0.1952 0.6780

LS SRS 0.3899 0.2409 0.2368 0.1585 0.2368 0.2368 0.7745
RSS 0.3395 0.2023 0.2024 0.0016 0.2024 0.2024 0.6619

WLS SRS 0.3862 0.2317 0.2287 0.1279 0.2287 0.2287 0.7695
RSS 0.3288 0.1978 0.1984 0.1877 0.1984 0.1984 0.6602

CVM SRS 0.3911 0.2527 0.2503 0.1759 0.2503 0.2503 0.7810
RSS 0.3456 0.2130 0.2152 0.0045 0.2152 0.2152 0.6669

The results for estimates SSR and the width of the CIs for the std-boot, p-boot,
BCp-boot, t-boot, basic, and N-boot BCI methods are presented in Table 16. Then, the
following estimates for SSR under RSS and SRS are obtained: Accordingly, while the
SSR obtained from the sample created by the SRS method from the same population
is far from its true value, the SSR obtained from the sample created by the RSS
method is quite close to the true value. Additionally, Table 16 presents the CI widths
of the SSR estimates for the std-boot, p-boot, BCp-boot, t-boot, basic, and N-boot
BCI methods.

Example II: Consider the real-life data set representing the monthly concentration
of sulfur dioxide in Long Beach, California, from 1956 to 1974. It is reported by
Roberts [26]. It has been analyzed by Wang and Ye [27] to compare between based on
this scenario, let X1, ..., X20 and Y1, ..., Y20 are the concentrations of sulfur dioxide in
March and August, respectively. We calculate the KS values and the corresponding
p-value (in parentheses) using dataset I and dataset II are 0.2260 (0.2586) and 0.2345
(0.2211), respectively. Accordingly, both datasets fit the PoA distribution from Fig. 6
and KS statistics.

The RSS and SRS data sets were obtained according to the motivation given in
the introduction part of the data is reported in Table 18 and 19:
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Table 17. The monthly concentration of sulfur dioxide.

Data Set I 21 16 20 15 9 10 10 4 25 18
18 26 25 17 40 55 19 16 9 19

Data Set II 44 20 20 20 23 20 15 27 3 9
25 32 18 55 10 20 18 8 9 20
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Fig. 6. Empirical and PoA distributions based on the Example II data set.

Table 18. Newly chosen data for concentration of sulfur dioxide SRS;
n = m = 21.

X Y

19 9 18 40 16 18 55 9 18 27 32 20 9 32
40 4 20 19 18 19 10 20 18 44 10 20 10 32
21 10 19 25 4 21 19 32 55 55 3 20 3 20

Table 19. Newly chosen data for concentration
of sulfur dioxide RSS; n = m = 21.

X Y

Set Set

Cycle 1 2 3 Cycle 1 2 3
1 10 20 20 1 9 10 32
2 17 16 40 2 15 23 55
3 17 25 20 3 15 18 32
4 19 18 19 4 3 18 55
5 4 15 25 5 18 25 32
6 10 16 25 6 10 20 25
7 10 19 21 7 20 20 32

The results for estimates SSR and the width of the CIs for the std-boot, p-boot,
BCp-boot, t-boot, basic, and N-boot BCI methods are presented in Table 20. Then, the
following estimates for SSR under RSS and SRS are obtained: Accordingly, while the

27



Table 20. Estimates of R = 0.5690 concentration of sulfur dioxide.

Sample R̂ std-boot p-boot Bcp-boot t-boot basic N-boot

ML SRS 0.5484 0.2437 0.2462 0.2467 0.2462 0.2462 1.1308
RSS 0.5508 0.1489 0.1490 0.0855 0.1490 0.1490 1.0307

LS SRS 0.5241 0.2528 0.2631 0.1767 0.2631 0.2631 1.0694
RSS 0.5324 0.1674 0.1638 0.0611 0.1638 0.1638 0.9783

WLS SRS 0.5275 0.2679 0.2756 0.2638 0.2756 0.2756 1.0899
RSS 0.5430 0.1770 0.1768 0.0826 0.1769 0.1768 0.9910

CVM SRS 0.5292 0.2465 0.2547 0.1792 0.2547 0.2547 1.0710
RSS 0.5339 0.1601 0.1602 0.0604 0.1602 0.1602 0.9801

SSR obtained from the sample created by the SRS method from the same population is
far from its true value, the SSR obtained from the sample created by the RSS method
is quite close to the true value. Additionally, Table 20 presents the confidence interval
widths of the SSR estimates for the std-boot, p-boot, BCp-boot, t-boot, basic, and
N-boot BCI methods.

Example III: For a real application, we consider the successive failure times (in
hours) of the air conditioning system of the jet airplanes, initially reported by Proschan
[28]. Here, we represent two jet airplane data sets considered for empirical analysis
have the following observations in Table 21. Before starting the analysis, We calculate
the KS values and the corresponding p-value (in parentheses) using for Plane 7913 and
Plane 7909 are 0.1694 (0.4207) and 0.1113 (0.8653), respectively. Accordingly, both
datasets fit the PoA distribution from Fig. 7 and KS statistics.

Table 21. The air conditioning system of jet airplanes.

Plane 7913 (X) 97 51 11 4 141 18 142 24 191
68 77 80 1 16 106 206 163 18
82 54 31 216 46 111 39 18 63

Plane 7909 (Y) 90 10 60 186 61 49 14 24 208 130
56 20 79 84 44 59 29 118 101 208
25 156 310 76 26 44 23 62 70
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Fig. 7. Empirical and PoA distributions based on the Example III data set.
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The RSS and SRS data sets were obtained according to the motivation given in
the introduction part of the data are reported in Table 22 and 23:

Table 22. Newly chosen data for Plane 7913 and Plane 7909 SRS; n =
m = 21.

X Y

54 18 39 68 54 46 77 186 61 59 20 61 10 84
1 24 80 82 54 46 24 90 20 56 56 59 56 44
1 54 4 111 18 141 46 49 62 49 62 79 186 26

Table 23. Newly chosen data for Plane 7913 and
Plane 7909 RSS; n = m = 21.

X Y

Set Set

Cycle 1 2 3 Cycle 1 2 3
1 18 39 46 1 24 76 59
2 1 106 191 2 56 70 79
3 51 68 163 3 20 56 118
4 80 31 77 4 29 25 186
5 16 46 163 5 20 90 208
6 18 97 80 6 44 101 130
7 16 77 142 7 44 101 62

Table 24. Estimates of R = 0.5241 air conditioning system of jet airplanes.

Sample R̂ std-boot p-boot Bcp-boot t-boot basic N-boot

ML SRS 0.5798 0.2830 0.2842 0.2835 0.2842 0.2842 1.0467
RSS 0.5166 0.2483 0.2461 0.2475 0.2461 0.2461 1.0412

LS SRS 0.5888 0.2972 0.2999 0.2838 0.2999 0.2999 1.1209
RSS 0.5369 0.2928 0.2906 0.2857 0.2906 0.2906 1.0805

WLS SRS 0.5697 0.3337 0.3472 0.3215 0.3472 0.3472 1.1046
RSS 0.5280 0.3116 0.3125 0.3123 0.3125 0.3125 1.0557

CVM SRS 0.5689 0.3391 0.3511 0.3381 0.3511 0.3511 1.0926
RSS 0.5231 0.3136 0.3170 0.3187 0.3170 0.3170 1.0424

The results for estimates SSR and the width of the CIs for the std-boot, p-boot,
BCp-boot, t-boot, basic, and N-boot BCI methods are presented in Table 24. Then, the
following estimates for SSR under RSS and SRS are obtained: Accordingly, while the
SSR obtained from the sample created by the SRS method from the same population is
far from its true value, the SSR obtained from the sample created by the RSS method
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is quite close to the true value. Additionally, Table 24 presents the confidence interval
widths of the SSR estimates for the std-boot, p-boot, BCp-boot, t-boot, basic, and
N-boot BCI methods. According to these results, the SSR obtained from the sample
created using the SRS method from the same population is far from its true value,
while the SSR obtained from the sample created using the RSS method is quite close
to the true value. Additionally, for three data sets, the as of the estimates using the
BCI RSS method and SSR were found to be narrower compared to the SRS method.
This indicates that the RSS method provides more reliable results.

6 Conclusion

In this article, we examine point estimates of R=P(X<Y) using ML, LS, WLS, and
CVM, as well as interval estimates using BCI methods (std-boot, N-boot, basic,
t-boot, BCp-boot, and p-boot) based on different sampling methods, SRS and RSS,
when X and Y are independent PoA random variables with different parameters.
The performance of these sampling methods is compared using Monte Carlo sim-
ulations with MRE and MSE criteria. Simulation results under the assumption of
perfect ranking show that RSS-based ML, LS, WLS, and CVM estimators outperform
the corresponding SRS-based ML, LS, WLS, and CVM estimators. Additionally,
as observed from these three real data sets, the RSS method provides better SSR
estimation compared to the SRS method. The applicability of the results obtained
theoretically and supported by simulations has been demonstrated with three real
data applications. As a result, when examining point and interval estimates for the
SRS and RSS methods under different m and r conditions, the RSS method has
provided more consistent results compared to the SRS method. As with previous
studies, it can be said that modifications to RSS reduce the likelihood of errors in
rankings and thus increase the efficiency of estimators. The fact that SSR has rarely
been studied in discrete models and the use of RSS as a sample makes this study
unique. This study will be an inspiration for future works.

7 Compliance with Ethical Standards

Conflicts of Interest On behalf of all authors, the corresponding author states that
there is no conflict of interest.

Funding Declaration The authors did not receive support from any organization
for the submitted work.

Data availability statement The data sets have been taken from the literature
and references are given at the end.

Ethical approval This article does not contain any studies with animals performed
by any of the authors.

30



References

[1] Birnbaum ZW, (1956) On the use of the Mann-Whitney statistic.In Proceedings
of the Third Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Contributions to the Theory of Statistics 13-17.

[2] Maiti SS, (1995) Estimation of P(X <Y) in the geometric case. Journal of Indian
Statistical Association 33: 87-91.

[3] Ahmad KE, Fakhry ME, Jaheen ZF, (1995) Bayes estimation of P (Y <X) in the
geometric case. Microelectronics Reliability 35(5): 817-820.

[4] Ivshin VV, Lumelskii Y, (1995) Statistical Estimation Problems in Stress-
Strength Models. Perm, Russia: Perm University Press.

[5] Sathe YS, Dixit UJ, (2001) Estimation of P(X <Y) in the negative binomial
distribution. Journal of Statistical Planning and Inference 93(1-2): 83-92.

[6] Maiti SS, Murmu S, (2015) Bayesian estimation of reliability in two-parameter
geometric distribution. Journal of Reliability and Statistical Studies 41-58.

[7] Belyaev Y, Lumelskii Y, (1988) Multidimensional Poisson Walks. Journal of
Mathematical Sciences 40:162-165.

[8] Tarvirdizade B, Ahmadpour M, (2016) Estimation of the stress–strength relia-
bility for the two-parameter bathtub-shaped lifetime distribution based on upper
record values. Statistical Methodology 31:58-72.

[9] Babayi S, Khorram E, (2018) Inference of stress-strength for the Type-II
generalized logistic distribution under progressively Type-II censored samples.
Communications in Statistics-Simulation and Computation 47(7):1975-1995.

[10] Hassan AS, Abd-AllaM M, Nagy HF, (2018) Estimation of P(Y<X) using record
values from the generalized inverted exponential distribution. Pakistan Journal
of Statistics and Operation Research 14(3):645-660.
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