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Inference of dynamic weighted cumulative residual entropy for
Burr XII distribution based on progressive censoring
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Abstract

The dynamic weighted cumulative residual (DWCR) entropy is regarded as an additional
measure of uncertainty related to the residual lifetime function in several disciplines,
including survival analysis and reliability. This article presents the DWCR formula based on
Havarda and Charvat. This measurement is called the DWCR Havarda and Charvat entropy
(DWCRHCE). This work uses progressive Type II censoring to investigate the implications
of DWCR Tsallis entropy (DWCRTE), DWCR Rényi entropy (DWCRRE), and DWCRHCE
for the Burr XII distribution. Both classical and Bayesian methods are used to derive the
estimators of these entropy metrics. Assuming independent gamma priors, we get the Bayes
estimator of the suggested measures. Due to the lack of explicit forms, the Metropolis-
Hastings approach was offered to determine the Bayes estimates for symmetric and
asymmetric loss functions. To determine the efficacy of the suggested estimating techniques,
several simulations were run for different censoring schemes. The simulation analysis leads
us to the conclusion that, under a precautionary loss function followed by a linear
exponential loss function, the Bayesian estimates of DWCRTE are generally more effective
than the DWCRHCE or DWCRRE. Compared to maximum likelihood estimates, Bayesian
estimates are preferred for different metrics. After that, a detailed explanation of the process
is provided by looking at real data. The analysis of real-world data, specifically the Shasta
reservoir water capacity data, aligns with the findings from simulated data. Notably, these
findings have crucial implications for effective water resource management decisions.
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1. Introduction

1.1. Progressive Type II censoring

Censorship is common in many fields, including pharmacology, social economics,
and engineering, particularly in reliability and survival analysis (Wang & Gui, 2021).
Due to time and cost constraints, it is difficult to completely observe the sample data
in actual production. Even though they have been thoroughly examined, conventional
censoring systems such as Type-I, Type-1I, and hybrid schemes are inflexible, in that
units cannot be removed arbitrarily. Cohen (1963) proposed the progressive censoring
scheme (PCS) in order to overcome this restriction. In the PCS, units are removed from
the experiment at different time points, with the number of units eliminated at each
time point specified in advance.

The progressive type-II censoring (PT-IIC) method is one of the most popular cen-
soring schemes. Here, we provide its description. Assume that m failures will be noticed
when # identical units are put through a test. At the moment of the initial failure (y)),
the number r; of the surviving units (n — 1) is randomly selected and removed from the
experiment. At the second failure (y(;)), the number r, of the surviving units (n - r;-2)
is randomly selected and removed from the experiment, and so on, until the m'™ failure
(y(m) occurs, at which point all the remaining n — m - 1 - r, — +-*—r,,; units are re-
moved. Thus, the PCS includes m observed samples of failure y(;) < y(2) <... < Yn),
and survival items r = (1, 12, ***, rm) such that n = m + r; +---+ r,.. Note that in the PCS,
r=(r1, 12, =**, 'm) is prefixed. Balakrishnan and Aggrawala (2000) offered historical con-
text and a comprehensive overview of PCS. Notably, the following special cases can be
noticed:

e Classical Type-II censoring: This occurs when ry = o= =r,1=0and r,=n —m.
e Complete sample: This occurs when m=nandr=0,i=1,2, -, n.

1.2. Entropy measures

Shannon (1948) proposed the concept of entropy as a metric for quantifying un-
certainty. Nowadays, the fields of economics, physics, telecommunications, communi-
cation theory, and reliability have given this criterion significant consideration. One
parameter generalization of the Shannon entropy that may be applied as a randomness
metric is the Rényi entropy. Numerous disciplines, including biology, genetics, electri-
cal engineering, computer science, economics, chemistry and physics use Rényi entropy
in their work. The entropy function as an extension of the Shannon entropy was first
presented by Rényi (1961), followed by Havrda and Charvat (1967). The Rényi and
Havrda and Charvat entropy of order ¢ are defined respectively by the following

expressions:

R(c) = —log(J~ (F())*dy);c>0,c # 1,

H(c) = (21— 1)'1 (fo (FO)E — 1>; c>0,c+1
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Tsallis (1988) also presented the ideas of Tsallis entropy as a measure of quantifying
randomness. The entropy can be used to determine the level of uncertainty associated
with a random observation. Tsallis later utilized its distinctive characteristics and
situated it within a physical framework. This metric is designated for any continuous
random variable of order ¢, where and it is defined as follows:

T(c) = ﬁ(l - f_(j”(y)dy); c>0,c#1.

Recently, entropy measure estimation utilizing different statistical distributions
and sampling strategies has been studied by several writers (see, for example, Baratpour
et al., 2007; Abo-Eleneen, 2011; Cho et al,, 2015; Lee, 2017; Hassan and Zaky, 2019,
2021; Helmy et al., 2021; Hassan et al., 2022; Helmy et al., 2023; and Hassan at al.,
2024b).

Different measures of uncertainty for probability distributions have attracted many
writers, especially in works related to reliability analysis and survival. In light of Rényi's
entropy's utility, Sunoj and Linu (2012) presented cumulative residual Rényi entropy
(CRRE) of order c as below:

R(c) = Llog ( f m(f(y))"dy) ;e>0,c#1,
~ 1-0 t
where F(y) = 1 — F(y) is the survival function (SF). Additionally, Sunoj and Linu
(2012) examined the primary characteristics of the dynamic version of the CRRE
(DCRRE), which is extended to the residual lifetime Y, = (Y — ¢| Y > t) based on survival
function, rather than using probability density function (PDF), and found it to be
beneficial for reliability modeling. The DCRRE of order c is given by:

R (0)= (-0 log (m— ] F»)dy); c>0,c#1. (1)

Sati and Gupta (2015) established the DCR Tsallis entropy (DCRTE) as follows:

1
F()°

T()=(c-1)1 (1 GO fw(i(J’))”dJ’): c>0,c#1,
t

In the literature, some statistical inferences based on the above dynamic entropy
measures and their related works have been considered by several authors. For the
Pareto distribution, Bayesian estimates (BEs) of the DCR entropy under various
sampling conditions have been examined by several researchers (see Renjini et al.,
2016a, 2016b, and 2018; and Ahmadini et al., 2020). The Lindley distribution’s BE of
DCRRE was examined by Almarashi et al. (2021). Al-Babtain et al. (2021) supplied the
maximum likelihood estimates (MLEs) and BEs of the DCRRE for the Lomax
distribution. Mohamed (2022) used generalized order statistics to study DCRTE and
cumulative residual Tsallis entropy. The BEs of the DCRTE for the moment
exponential distribution were recently studied by Alyami et al. (2023). For more recent
studies, refer to Kayal and Balakrishnan (2023), Nair and Sathar (2024) and Smitha et
al. (2024).
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Weighted distributions provide a valuable tool for modeling statistical data in situa-
tions where standard distributions may not accurately capture the underlying
characteristics of the data. Guiasu (1986) applied weighted entropy in order to balance
the degree of homogeneity and information contained in a data partition into classes.
The idea of weighted distributions was used in a number of domains, such as
biostatistics (Wang, 1996), reliability modeling (Navarro et al., 2001) and renewal
theory (Sunoj and Mayi, 2006). In the context of theoretical neurobiology, uncertainty
measures based on the concept of weighted entropy were explored by Belis and Guiasu
(1968). Di Crescenzo and Longobardi (2006) extended the concept of weighted entropy
to residual and past lifetimes, introducing weighted residual and past entropies. This
work builds upon previous research by Belzunce et al. (2004) and Nanda and Paul
(2006), which characterized distribution functions using weighted dynamic measures.
Misagh and Yari (2011) further investigated this concept by studying the weighted
differential information measure for two-sided truncated random variables. Sunoj and
Linu (2012) introduced a new measure of uncertainty based on the length-biased
weighted function and called it dynamic weighted CRRE (DWCRRE). Based on the SF
given in Equation (1), the DWCRRE is as follows:

R (c)=1—-c)"tlog ((f(t))_c 5y (F(y))cdy); c>0,c#1, (2)
where y is the length-biased weighted function. The dynamic weighted CRTE

(DWCRTE), introduced by Khammar and Jahanshahi (2018), is another significant
weighted metric. It is defined as:

') = (-0 (1-F®) " [[yFo)dy); c>0c*1 (3)
Using Type II right-censored data, a weighted version of CRTE and DCRTE was
created by Khammar and Jahanshahi (2018), and many of its reliability properties.

1.3. Work Motivation

As far as we are aware, no research so far has taken into account the PT-IIC for
dynamic weighted cumulative residual in entropy measurements. Therefore, our
research question is: “How to find the estimate of dynamic weighted cumulative
residual entropy measures under PT-IIC for the Burr XII distribution (BXIID)?”. We
decided to investigate this topic because of the significance of the BXIID and its
widespread application in numerous sectors (as shown in Section 2). Our work involves
the following steps:
¢ The DWCRE based on the Havrda and Charvat measure is defined following the

idea of Sunoj and Linu (2012). This measure is called the dynamic weighted

cumulative residual Havrda and Charvat entropy (DWCRHCE).
e The estimators for the DWCRRE, DWCRTE, and DWCRHCE are derived using
both Bayesian and non-Bayesian techniques. Both symmetric and asymmetric loss
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functions yield Bayesian estimators for the suggested measures. Also, because there
are no explicit forms for the BEs of various measures, we use the Markov chain
Monte Carlo (MCMC) approach to approximate the estimates.

e Simulation studies are employed to evaluate and contrast the precision of various
approximations about their mean squared error (MSE) and average of estimates.
For illustration reasons, application to real data is shown.

The rest of the paper is organized in the following way: Section 2 presents a model
description. Dynamic weighted cumulative residual entropy expressions are deter-
mined in Section 3. The PT-IIC and maximum likelihood estimation are used in
Section 4. The BE of the DWCRE for the BXIID under symmetric and asymmetric loss
functions is presented in Section 5. Section 6 provides an example of a real-data
application. A simulation study is provided in Section 7. Based on the outcomes of the
numerical studies, the paper draws a few conclusions in the last section.

2. Model Description

The Burr distribution is a versatile family that covers several widely used
distributions as limiting asymptotic approximations, and it comprises a broad range of
distribution shapes. A significant amount of the curve shape properties in the Pearson
family are covered by correctly selecting the parameters of the Burr distribution, as Burr
(1942) showed. Because its shape parameter generates a variety of forms that are
excellent fits for different data, the BXIID has been used in research related to medical,
business, chemical engineering, quality control and reliability. Evans and Simons
(1975), Wingo (1993) and Gupta et al. (1996) are a few references to consult for a de-
tailed explanation of such circumstances. The PDF and SF of the BXIID have the
following specifications:

—(1+1)

fO) =684y°~1(1+ %) y >0, (4)

F=(1+y)"y>o, (5)

whered > andA > 0 are shape parameters. Recently, numerous scholars have
conducted extensive research on the estimation utilizing the BXIID. Estimation in step-
stress partially accelerated life tests for the BXIID using Type I censoring was covered
by Abd-Elfattah et al. (2008). Works on BXIID inferences under the PCS were discussed
by, for example, Mousa and Jaheen (2002), Wu and Yu (2005), Soliman (2005), Li et al.
(2007) and Hassan et al. (2024a). According to Panahi and Sayyareh (2014), statistical
inference and prediction about BXIID parameters based on a Type II censored sample
were covered. On the basis of the competing risk model, Qin and Gui (2020) derived
the MLE and BE of BXIID parameters.
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3. Dynamic Weighted Cumulative Residual Entropy Expressions

Inspired by the DWCRRE entropy developed by Sunoj and Linu (2012) and the
DWCRTE presented by Khammar and Jahanshahi (2018), we introduce two novel
information measures: the DCR Havrda and Charvat entropy (DCRHCE) and the
second measure is the DWCRHCE. This measure is based on the cumulative residual
entropy originally proposed by Rao et al. (2004), and the dynamic cumulative residual
entropy proposed by Asadi and Zohrevand (2007) and Sati and Gupta (2015).
Definition: The DCRHCE and DWCRHCE of a random variable Y of order ¢ are
defined by:

H(e) = (21— 1) (F@) ™ [TF@) - 1);c>0,c#1,

H*(c) = (21 - 1)_1((f(t))_c S yF®)—1);¢>0,c#1, (6)
where y, is the length-biased weighted function. Now, the expressions of DWCRRE,
DWCRTE, and DWCRHCE for the BXIID are obtained. To do so, we first obtain the
following integral by using the SF given in Equation (5)

1= [TyE)dy = [Ty(1+y%) dy. (7)

Using the transformation z = y%, y = (z)%, dy=46 175 dzin Equation (7) yields:

E PV O 1= “ae 21
I = zs(1+2z)*—zs dz=—=| (1+2z)*zs dz
6 8 6 Jes

1- —d
49 anddz = =%,
x x2

Use the transformation x = (1 + z)7%, then z = thus the integral I

is as follows:

1= L) e ()T e L () deiot ey it gy = 2p (2,20 - 2, (14 ¢9) ),

(8)
where B(a, b, x) = fox y%71(1 — y)P~1 dy is the incomplete beta function. Now the formula
of the DWCRRE is obtained by inserting Equation (8) in Equation (2), in the following

way:

() = — — ' B(% -2 &t
R'(c) = o log <5(1+t5)_1613 (Gac-2,(1+¢%) )) 9)
Also, expressions of DWCRTE and DWCRHCE measures are obtained by inserting
Equation (8) in Equations (3) and (6), respectively, as below:

T"(c) =ﬁ 1—W(3 (g,lc—g,(1+ta)_l))], (10)
H*(0) = Grep [W(B (Gac-2,(1+ ts)‘l)) - 1]. (11)

Note that expressions (9), (10) and (11) are a function of parameters §, 4, and c.

4. Maximum Likelihood Estimators

Here, the MLEs of DWCRRE, DWCRTE, and DWCRHCE of the BXIID, based on
PT-IIC samples, are obtained. Assume that y(;y < ;) <...< Y(n)be the PT-IIC of
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size m from a sample of size n taken from density given in Equation (4) and SF given
in Equation (5) with censoring scheme 7y, 75, ..., . Based on the PT-IIC sample, the
likelihood function reads:

L@ = Dﬂf(ya)) 1= FOe)]" == Damzmﬂyml(um)

where =nn-r,—-1D(n-r;—-r;,—2)..n—-m+ 1 ymilr,.  Additionally, the

A(ri+1)-1

correspondlng log-likelihood function, say ¢, is
¢ xmin(®) +min(d) + (6 — D IR, In(ye) — T[40 + 1) + 1] In(1 + y§).
Then, the first derivative of the log- likelihood function, with respect to the
parameters § and A, are as follows:

9w _m m . _ym [A@D+1]inyg

25— T Zi=1 Y@ i=1 ow) (12)
and

ae*

5= % —-¥r i+ in(1+ y(l)) (13)

The MLEs of § and Aare determined by solving Equations (12) and (13) after
simultaneously setting them to zero by using a numerical technique such as the
Newton-Raphson method, to get §,;,and A,,,. Based on the invariance property, the
MLEs of DWCRRE, DWCRTE, and DWCRHCE are obtained by insertingS vand Ay
in Equations (9), (10), and (11).

5. Bayesian Estimator

This part covers the BE of T*(¢), R*(c) and H*(c) under both symmetric and
asymmetric loss functions for the two-parameter BXIID. It is assumed that the prior of
parameters § and A have independent gamma priors. The joint prior distribution can
be written as:

14(8, 4) ox §P1-1b21~(Sar+iaz)
where the hyper-parameters a;,a, ,b, and b, are known and non-negative. The gamma
prior was chosen for its flexibility in modeling a wide range of prior beliefs. They may
take on a wide range of forms based on hyper-parameters. The joint posterior for
parameters, denoted by (8, 1), is

m
—[AGr+1)+1
w(8,2) = W_15m+b1_1)»m+b2_le_(6a1+mz)ny%l(l _I_y,(gi)) [AG+1D)+ ]'
i=1
e —[AG+1)+1
where W = fo fo Fm+bi—1 ym+by—1,—(8as+1az) H?i1y‘(s,-§1(1 +y,(gi)) [A(r+1)+ ]dé'dl.

So, the conditional posterior distribution of the unknown parameters § and 4, is
given, respectively, by:
e (5 | A, y) o gmtb1-1p=8(@r I Iny )R G D+ in(1+y() (14)
and

(/1 |6 y) o Gamma (m + by, @z + X1 (r; + 1) In(1 + y5)). (15)
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The Bayesian estimators ofg*(c), under squared error loss function (SLF), linear
exponential loss function (LLF), and precautionary loss function (PRLF) are obtained
in the following way:

Gir(©) = E [g'(c) |X] =w-1 fo‘” fo‘”g-(c)am+b1—1 Am+ba—1o—(8as+Aaz) Hﬁlyt(sisl(l +
AQri+1)+1]

-l
o) déda, (16)
~e -1 —za°
Guur(©) =T in[E(e70@ |y)| =
w-1 fo‘” f: 6m+b1—1 lm+b2—1e—(rg'(c)+8a1+la2) Hﬁly?lsl(l + y‘(si))_[l(r#l)*—l]dsdl, (17)

and

Gprir(€) = [E ((g'(c))2 |X)]0'5 =

4 (o oo, o _ 1 _ —[A(ri+1)+1
w lfo fo (g (C))25m+b1 1,1m+b2 le (Saq+Aay) l—[?;ly?i)l(l_l_yz(?i))

lasda,
(18)

where g*(c) = R*(c) to obtain the DWCRRE, g*(c) = T*(c) to calculate the DWCRTE, and
g°(c) = H*(c) to produce the DWCRHCE. The Gibbes sampler, Metropolis-Hastings
(M-H), and random walk Metropolis algorithms are used to generate the MCMC samples
from the posterior density functions (14) and (15), respectively, because integrals
(16)-(18) do not take a closed form. As a result, the BEs of § and A under the SLF, LLF,
and PRLF are calculated from their posteriors as the mean of the simulated samples. The
M-H algorithm is one of the most famous subclasses of the MCMC method in Bayesian
literature. It is used to simulate the deviates from the posterior density and produce good
approximate results. The M-H algorithm uses an acceptance/rejection rule to converge
to the target distribution. The initial values of the unknown parameters (&, 4) must be
specified, along with a suggested distribution, in order to implement the M-H algorithm
for the DWCRTE, DWCRRE, and the DWCRHCE of the BXIID. A normal distribution
will be used to calculate the proposal distribution, i.e.,h(6'|6) and h(A'|2) = N(8,0Z),
whered = (8, 1) and o3 is the variance-covariance matrix (Va-CoM) for the MLEs of (5, 1).
The MLE for 6 is taken into account, that is,0(” = §,,,;. Asymptotic Va-CoM, say
I7*(By.5 ), where I(.)is the Fisher information matrix, and is assumed to represent the
choice of of. First, the M-H algorithm employs the steps mentioned below to extract
a sample from the posterior density given by Equations (14) and (15).
Step 1: Set the initial value off as 8® = 8, .
Step 2: Fori=1, 2, 3,..., M repeat the following steps:

2.1: Set = gU=,

2.2 Generatexli1 from Gamma(m + by, a; + X, A(r; + 1) In(1 + y?,.))).

2.3: Create a new candidate parameter value using N(6, Sp).

2.4: Compute the formula ¢ = ©OD) \here m(.)is the posterior density of Equations

n(8ly),
(14) and (15).
2.5: Create a sample u from the uniform U (0,1 ) distribution.
Ifu < ¢pputd® =g’

2.6: Accept or reject the new candidate 6", { .
elsewhereputd® = 6.
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Step 3: Obtain the Bayesian estimator of 0 and compute the DWCRTE, DWCRRE, and
DWCRHCE functions of T*(c), R*(c) and H"(c) with respect to the loss functions as
follows:

M M
_ 1 o 1 o
() = Z H*(c,60),R*(c) = Z R*(c,0D),7*(c)
M—Q ¢ M—Q ¢
i=Q+1 i=Q+1
M
-1 Y 1(c,69)
M—Q < ' '
i=Q+1

where Q is the number of samples that have been burned. Ultimately, the estimates of
DWCRTE, DWCRRE, and DWCRHCE are obtained by subtracting 2,000 burn-in
samples from the 10,000 samples that the posterior density produced.

6. Real Data Analysis

The data set represents the monthly water capacity data from the Shasta reservoir
in California, USA, and was taken for the month of February from 1991 to 2010
(http://cdec.water.ca.gov/reservoir_map.html). The maximum capacity of the reservoir
is 4552000 AF, and the data set was transformed to the interval [0, 1] (for more details,
see Nadar et al., 2013). In the first step, it should be checked if the BXIID is well fitted
to this data. By fitting BXIID, the Kolmogorov-Smirnov distance and associated p-value
are 7.7852, 7.8451, 0.22479 and 0.2274, respectively. The p-values show that BXIID
yields suitable fits for the given dataset. In Figure 1, the empirical distribution functions
and histogram are provided.

10

Data ——
E ST .. = Errusisa

Densly
(OF

00 02 04 06 08

Figure 1. The histogram (left) and the empirical distribution function (right) for a given dataset.
Source: created by researchers utilizing the R programming language.

The number of stages in the PT-IIC scheme is assumed to be m = 12 and the
removed items r; are assumed as in the following scheme (Sch.):

S (8,011),  Sy: (4,019, 4), S5: (072, 1%,072), and Sy (0'1,8).

The complete case also considers instances wheren =m =2 and r;i=0,i =1, 2,..., n.
Table 1 uses the PT-IIC to compute MLEs based on the produced data for each
censoring strategy. Then employed to compute T*(c), R*(c) and H*(c) given t and c,
where t = 0.1, 0.2, and ¢ = 1.5, 2.5. For the BEs, the M-H algorithm will be used under
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different loss functions in the case of a uniform prior, where a; = a, = b= b,=0.001.
Different loss functions, including SLF, LLF-1(z = 0.5), LLF-2(z = —0.5) and PRLF are
assumed. After that, the estimated values are calculated using the previous values. The
estimates of DWCRTE, DWCRRE, and DWCRHCE are then obtained after 2,000
burn-in samples are subtracted from the 10,000 samples that the posterior density
produced.

Convergence of the MCMC estimates for the DWCRTE, DWCRRE, and the
DWCRHCE using M-H algorithms is shown in two figures in the case of complete
sampling. Each figure shows the plot, histogram and cumulative mean where ¢ = 0.1

Plot of DWCRTE Histogram of DWCRTE Convergence of DWCRTE
= E o % =
- = -
o 4000 =000 135 1s0 18 o 4000  S000
Samples DVWWCRTE Index
Plot of DCRRE Histogram of DCRRE Convergence of DCRRE
o 5 o =
= £ E j 2
= =
= g = -
o 2000 B000 25 3.0 35 o s000  B000
Samples DCRRE Index
Plot of DWCRHCE Histogram of DWCRHCE Convergence of DWCRHCE
= oo
— g = =
o s = 3 -
g = i
o 4000 E000 23 =28 27 zs8 o 4000 5000
Samples DWCRHCE Index

and ¢ = 1.5 in Figure 2 while Figure 3 represents the case where t = 0.2 and ¢ = 2.5.

Figure 2. MCMC convergence of DWCRTE, DWCRRE, and DWCRHCE estimates at t = 0.1 and ¢ = 1.5

Source: created by researchers utilizing the R programming language.

Plot of DWCRTE Histogram of DWCRTE Conwvergence of DWCRTE

[ 1
INEREEN

T T T T
a =000 =000 1o000

e

Conwergence of DWCRRE

oot
L1

T T T T
a 2000 s000 10000

e

Conwergence of DWCRHCE

124 1%
IR

T T T T
a 2000 s000 10000

e D CRMCE e

Figure 3. MCMC convergence of DWCRTE, DWCRRE, and DWCRHCE estimates at = 0.2 and c=2.5

Source: created by researchers utilizing the R programming language.
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Table 1. Estimates of different entropy measures under PT-IIC schemes given real dataset where

m=15
Sch. Method t =0.1c=1.5 t=0.2,c=25
DWCRTE | DWCRRE DWCRHCE DWCRTE | DWCRRE DWCRHCE
MLE 1.5100 2.8129 2.5777 0.5322 1.0673 1.2349
SLF 1.5249 2.8747 2.6032 0.5406 1.1102 1.2544
S1 LLF-1 1.5147 2.8321 2.5857 0.5401 1.1074 1.2531
LLF-2 1.5612 3.0335 2.6651 0.5488 1.1550 1.2733
PRLF 1.5309 2.9001 2.6134 0.5417 1.1159 1.2568
MLE 1.4986 2.7671 2.5583 0.5427 1.1217 1.2594
SLF 1.4860 2.7175 2.5368 0.5414 1.1147 1.2563
S, LLF-1 1.4828 2.7049 2.5313 0.5417 1.1162 1.2569
LLF-2 1.4915 2.7388 2.5461 0.5415 1.1151 1.2565
PRLF 1.4939 2.7484 2.5503 0.5431 1.1235 1.2601
MLE 1.4282 2.5043 2.4381 0.5105 0.9674 1.1845
SLF 1.4396 2.5446 2.4576 0.5171 0.9964 1.1999
S3 LLF-1 1.4350 2.5281 2.4497 0.5185 1.0025 1.2031
LLF-2 1.5249 2.8747 2.6031 0.5375 1.0939 1.2471
PRLF 1.4561 2.6043 2.4858 0.5209 1.0136 1.2087
MLE 1.3820 2.3487 2.3591 0.4951 0.9047 1.1487
SLF 1.3866 2.3638 2.3671 0.4998 0.9234 1.1597
Ss LLF-1 1.3971 2.3981 2.3849 0.5059 0.9484 1.1740
LLF-2 1.3761 2.3298 2.3491 0.4932 0.8976 1.1445
PRLF 1.3922 2.3822 2.3767 0.5006 0.9267 1.1616
MLE 1.5228 2.8660 2.5996 0.5384 1.0986 1.2492
SLF 1.5324 2.9066 2.6160 0.5434 1.1256 1.2610
;(l)::; LLF-1 1.5272 2.8844 2.6071 0.5436 1.1265 1.2614
LLF-2 1.5560 3.0104 2.6563 0.5485 1.1536 1.2728
PRLF 1.5354 2.9195 2.6211 0.5438 1.1277 1.2619

Source: created by researchers utilizing the R programming language.

7. Simulation Study

This section evaluates the performance of estimate methodologies for BXIID under

the PT-IIC scheme using a Monte Carlo simulation analysis. Specifically, maximum

likelihood and Bayesian processes employing MCMC are considered. From the BXIID,

we generate 1,000 random samples using the following guidelines:

1. Two cases of parameters of BXIID are assumed, namely: (6,4) = (1.5, 2.5)
and(6,1) = (2.5, 1.5)

2. Two cases of parameters of weighted entropy measures are assumed, namely: (¢, ¢) =
(0.5, 1.5) and (¢, ¢) = (1.5, 2.5).

3. The true values of different entropy measures are listed in Table 2.
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Table 2. True values of different entropy measures

) A t c T'(c) R(¢) H'(¢)
1.5 2.5 0.5 1.5 1.3621 2.2853 2.3252
1.5 2.5 0.3434 0.4825 0.7968
2.5 1.5 0.5 1.5 1.2567 1.9796 2.1453
1.5 2.5 0.3943 0.5964 09115

Source: created by researchers utilizing the R programming language.

4. The sample size is assumed to be n = 40 and n = 60.
5. The number of stages in the PT-IIC scheme is m = 20, 30 at n = 40, m = 40 and 50

at n = 60.
6. Removed items 7; are assumed to have n and m values as shown in Table 3,

wherer,, = n —m — Y2 ", and r;is the number of failure items.

Based on the produced data and the previously-made assumptions, the MLEs are
calculated using PT-IIC. After that, the MLEs are used to calculate T*(c), R*(c) and H*(c)
given the values of t and c. For the Bayesian method, BEs using the M-H algorithm

under different loss functions in the case of gamma prior are computed, where the

following hyper-parameters are assumed: (a1, b1, a, b) = (1.5, 2.5, 1.75, 2.75).
Different loss functions, including SLF, LLF-1(z = 0.5), LLF-2(z = -0.5) and
PRLF, are given. These values are then employed to determine the estimated values.

The average (Avg.) of all entropy estimates and the Avg. of the MSE are presented

in Tables 4 (a) to 5 (d), which incorporate all of the Monte Carlo simulation’s inputs.

Table 3. Numerous patterns for removing items from life test at different number of stages

Censoring Schemes

(n, m) S: S S5 S

(40,20) (20, 0'?) (10,078, 10) (1'2) (0*%, 20)
(40,30) (10,0%) (5,078, 5) (0710, 1710 0"10) (0%, 10)
(60,40) (20,07 (10, 0%, 10) (010, 19, 0'10) (0%, 20)
(60,50) (10, 0"%) (5,078, 5) (0%, 1710, 0"20) (0*%,10)

Here, (2*4, 0), for example, means that the censoring scheme employed is (2,2,2,2,0).

Source: created by researchers.

Table 4 (a). The Avg. and MSE of different weighted entropy estimates for BXIID under PT-IIC
schemes at(§, 1) = (1.5, 2.5), and (n, m) = (40, 20)

DWCRTE DWCRRE DWCRHCE
(%0 Sch. | Estimate
Avg. MSE Avg. MSE Avg. MSE
MLE 1.4108 | 0.0794 | 2.7101 | 2.6286 | 2.4084 | 0.2314
0515 | s SLF 0.9446 | 0.4437 | 1.4681 | 1.3845 1.6126 1.2929
o 1 LLF-1 0.8564 | 0.5946 | 1.3158 | 1.6815 1.4620 1.7328
LLE-2 1.0257 | 0.3293 | 1.6214 | 1.1383 1.7510 | 0.9596
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o sch. | Estimate DWCRTE DWCRRE DWCRHCE
Avg. MSE Avg. MSE Avg. MSE
PRLF 1.0293 | 0.3130 | 1.6195 | 1.1060 | 1.7571 | 0.9121
MLE 1.3937 | 0.2089 | 3.0689 | 12.2305 | 2.3792 | 0.6087
SLF 0.4167 | 3.2758 | 0.8684 | 3.3052 | 0.7114 | 9.5464
S, LLF-1 0.2216 | 4.7021 | 0.6644 | 3.9941 | 0.3783 | 13.7029
LLF-2 0.5888 | 2.2816 | 1.0751 | 2.7086 | 1.0051 | 6.6492
PRLF 0.6137 | 2.0044 | 1.0844 | 2.6074 | 1.0477 | 5.8414
MLE 1.4055 | 0.1730 | 3.0630 | 10.8346 | 2.3994 | 0.5042
SLF 0.4537 | 2.7111 | 0.8827 | 3.1863 | 0.7746 | 7.9007
S5 LLF-1 0.2675 | 3.8704 | 0.6797 | 3.8568 | 0.4566 | 11.2793
LLF-2 0.6184 | 1.9003 | 1.0883 | 2.6073 | 1.0557 | 5.5378
PRLF 0.6402 | 1.6882 | 1.0959 | 2.5141 1.0929 | 4.9198
MLE 1.4494 | 0.1353 | 3.6653 | 12.6546 | 2.4743 | 0.3944
SLF 0.7864 | 0.4795 | 1.1076 | 1.8434 | 1.3424 | 1.3972
S, LLF-1 0.7149 | 0.5654 | 0.9811 | 2.1068 | 1.2205 | 1.6476
LLEF-2 0.8485 | 0.4207 | 1.2309 | 1.6438 | 1.4485 | 1.2260
PRLF 0.8377 | 0.4300 | 1.2074 | 1.6717 | 1.4300 | 1.2532
MLE 0.3752 | 0.0147 | 0.6654 | 0.6670 | 0.8707 | 0.0792
SLF 0.2018 | 0.0438 | 0.2752 | 0.0897 | 0.4682 | 0.2358
S: LLF-1 0.1756 | 0.0545 | 0.2384 | 0.1057 | 0.4076 | 0.2936
LLF-2 0.2271 | 0.0349 | 0.3130 | 0.0763 | 0.5269 | 0.1880
PRLF 0.2281 | 0.0337 | 0.3130 | 0.0742 | 0.5292 | 0.1816
MLE 0.3793 | 0.0274 | 0.8829 | 2.5356 | 0.8800 | 0.1473
SLF 0.0796 | 0.1314 | 0.1351 | 0.1853 | 0.1846 | 0.7077
S, LLF-1 0.0394 | 0.1632 | 0.0905 | 0.2174 | 0.0913 | 0.8786
LLF-2 0.1184 | 0.1049 | 0.1815 | 0.1565 | 0.2747 | 0.5647
PRLF 0.1223 | 0.0994 | 0.1836 | 0.1518 | 0.2839 | 0.5350
(1.52:5) MLE 0.3818 | 0.0250 | 0.8531 | 2.2068 | 0.8859 | 0.1347
SLF 0.0848 | 0.1228 | 0.1380 | 0.1797 | 0.1968 | 0.6611
S5 LLF-1 0.0453 | 0.1526 | 0.0937 | 0.2113 | 0.1051 | 0.8215
LLF-2 0.1230 | 0.0979 | 0.1843 | 0.1516 | 0.2855 | 0.5271
PRLF 0.1265 | 0.0930 | 0.1860 | 0.1471 | 0.2936 | 0.5008
MLE 0.4105 | 0.0254 | 1.1969 | 4.9892 | 0.9526 | 0.1366
SLF 0.1754 | 0.0390 | 0.2198 | 0.0918 | 0.4071 | 0.2098
Sy LLF-1 0.1592 | 0.0436 | 0.1955 | 0.1015 | 0.3694 | 0.2348
LLF-2 0.1901 | 0.0358 | 0.2436 | 0.0849 | 0.4412 | 0.1926
PRLF 0.1878 | 0.0360 | 0.2394 | 0.0855 | 0.4358 | 0.1941

Source: created by researchers utilizing the R programming language.
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Table 4 (b). Avg. and MSE of different weighted entropy estimates for BXIID under PT-IIC schemes
at (6,4) = (1.5, 2.5) and (n, m) = (40, 30)

0 Sch. Estimate DWCRTE DWCRRE DWCRHCE
Avg. MSE Avg. MSE Avg. MSE

MLE 1.4217 | 0.0503 | 2.6143 | 0.6428 2.4270 0.1465

SLF 1.1547 | 0.1414 | 1.8470 | 0.6809 1.9712 0.4122

S: LLF-1 1.1107 | 0.1751 | 1.7480 | 0.7857 1.8961 0.5102
LLE-2 1.1966 | 0.1143 | 1.9466 | 0.5968 2.0427 0.3330

PRLF 1.1964 | 0.1113 | 1.9420 | 0.5834 2.0424 0.3243

MLE 1.4242 | 0.0626 | 2.6550 | 0.7982 24313 0.1825

SLF 1.0862 | 0.2244 | 1.7193 | 0.9094 1.8543 0.6540

S, LLF-1 1.0335 | 0.2789 | 1.6101 | 1.0545 1.7643 0.8128
LLF-2 1.1362 | 0.1802 | 1.8293 | 0.7898 1.9397 0.5252

PRLF 1.1370 | 0.1744 | 1.8256 | 0.7714 1.9411 0.5082

(0.5.1.5) MLE 1.4242 | 0.0601 | 2.6487 | 0.7695 24313 0.1752
SLF 1.0926 | 02134 | 1.7294 | 0.8854 1.8653 0.6219

S5 LLF-1 1.0415 | 0.2643 | 1.6224 | 1.0243 1.7779 0.7703
LLE-2 1.1412 | 0.1719 | 1.8373 | 0.7709 1.9482 0.5011

PRLF 1.1416 | 0.1668 | 1.8327 | 0.7538 1.9488 0.4861

MLE 1.4242 | 00785 | 2.7197 | 1.5945 24313 0.2287

SLF 1.0046 | 0.3581 | 1.5816 | 1.1984 1.7149 1.0435

S, LLF-1 0.9404 | 0.4489 | 1.4612 | 1.3958 1.6054 1.3081
LLF-2 1.0651 | 0.2848 | 1.7036 | 1.0321 1.8182 0.8300

PRLF 1.0673 | 02734 | 1.7008 | 1.0069 1.8221 0.7967

MLE 0.3770 | 0.0103 | 0.6030 | 0.1413 0.8747 0.0554

SLF 0.2679 | 0.0189 | 0.3700 | 0.0496 0.6217 0.1016

S: LLF-1 0.2525 | 0.0224 | 0.3444 | 0.0556 0.5859 0.1204
LLE-2 0.2830 | 0.0160 | 0.3960 | 0.0449 0.6567 0.0859

PRLF 0.2831 | 0.0156 | 0.3954 | 0.0439 0.6570 0.0839

MLE 0.3799 | 0.0127 | 0.6378 | 0.3206 0.8815 0.0685

SLF 0.2445 | 0.0271 | 0.3361 | 0.0637 0.5674 0.1457

S, LLF-1 0.2270 | 0.0321 | 0.3085 | 0.0719 0.5266 0.1728
LLF-2 0.2617 | 0.0228 | 0.3643 | 0.0571 0.6072 0.1227

PRLF 0.2621 | 0.0222 | 0.3639 | 0.0558 0.6081 0.1195

(1.5.25) MLE 0.3792 | 0.0121 | 0.6334 | 0.3127 0.8799 0.0651
SLF 0.2468 | 0.0259 | 0.3388 | 0.0619 0.5726 0.1392

S5 LLF-1 0.2297 | 0.0306 | 0.3118 | 0.0697 0.5330 0.1649
LLF-2 0.2635 | 0.0218 | 0.3664 | 0.0555 0.6114 0.1175

PRLF 0.2637 | 0.0213 | 0.3657 | 0.0543 0.6118 0.1147

MLE 0.3821 | 0.0155 | 0.7030 | 0.7839 0.8865 0.0836

SLF 0.2189 | 0.0380 | 0.3008 | 0.0804 0.5079 0.2043

S, LLF-1 0.1988 | 0.0451 | 0.2711 | 0.0913 0.4614 0.2429
LLF-2 0.2385 | 0.0318 | 0.3314 | 0.0713 0.5534 0.1714

PRLF 0.2392 | 0.0309 | 0.3312 | 0.0696 0.5550 0.1664

Source: created by researchers utilizing the R programming language.
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Table 4(c). The Avg. and MSE of different weighted entropy estimates for BXIID under PT-IIC
schemes at (1, (6,4) = (2.5, 1.5) and (n, m) = (60, 40)

DWCRTE DWCRRE DWCRHCE
(t, ¢) Sch. Estimate

Avg. MSE Avg. MSE Avg. MSE
MLE 1.4210 0.0362 2.5731 0.4596 2.4258 0.1055
SLF 1.2338 0.0707 2.0056 0.4220 2.1062 0.2060
S1 LLF-1 1.2049 0.0839 1.9326 0.4710 2.0569 0.2445
LLF-2 1.2617 0.0598 2.0792 0.3841 2.1539 0.1744
PRLF 1.2606 0.0589 2.0740 0.3773 2.1520 0.1715
MLE 1.4226 0.0486 2.6113 0.6132 2.4285 0.1415
SLF 1.1639 0.1287 1.8595 0.6310 1.9870 0.3751
S, LLF-1 1.1274 0.1540 1.7750 0.7132 1.9246 0.4487
LLF-2 1.1992 0.1076 1.9450 0.5639 2.0472 0.3137
PRLF 1.1986 0.1054 1.9400 0.5537 2.0461 0.3072
(0.5.1.5) MLE 1.4234 0.0457 2.6074 0.5854 2.4300 0.1331
SLF 1.1741 0.1171 1.8784 0.5962 2.0043 0.3413
S3 LLF-1 1.1392 0.1396 1.7965 0.6718 1.9448 0.4069
LLF-2 1.2078 0.0983 1.9612 0.5346 2.0619 0.2865
PRLF 1.2068 0.0966 1.9554 0.5257 2.0601 0.2814
MLE 1.4209 0.0642 2.6426 0.7779 2.4256 0.1871
SLF 1.0802 0.2275 1.7009 0.9062 1.8440 0.6629
Ss LLF-1 1.0334 0.2748 1.6034 1.0341 1.7642 0.8007
LLF-2 1.1251 0.1879 1.8001 0.7982 1.9207 0.5476
PRLF 1.1253 0.1829 1.7953 0.7834 1.9209 0.5329
MLE 0.3734 0.0073 0.5727 0.0428 0.8663 0.0395
SLF 0.2944 0.0107 0.4083 0.0323 0.6830 0.0576
S1 LLF-1 0.2836 0.0123 0.3890 0.0353 0.6579 0.0662
LLF-2 0.3050 0.0094 0.4279 0.0301 0.7078 0.0505
PRLF 0.3048 0.0092 0.4270 0.0296 0.7072 0.0497
MLE 0.3757 0.0098 0.5874 0.0588 0.8717 0.0525
SLF 0.2686 0.0176 0.3687 0.0463 0.6234 0.0948
S, LLF-1 0.2557 0.0204 0.3469 0.0512 0.5932 0.1096
LLF-2 0.2815 0.0153 0.3909 0.0423 0.6531 0.0822
PRLF 0.2814 0.0150 0.3901 0.0415 0.6529 0.0807
(1.52.5) MLE 0.3754 | 0.0091 | 0.5843 | 0.0550 0.8710 0.0489
SLF 0.2725 0.0161 0.3740 0.0436 0.6323 0.0869
S3 LLF-1 0.2601 0.0186 0.3529 0.0481 0.6035 0.1002
LLF-2 0.2848 0.0140 0.3954 0.0400 0.6608 0.0755
PRLF 0.2845 0.0138 0.3944 0.0393 0.6602 0.0743
MLE 0.3771 0.0125 0.6227 0.2506 0.8749 0.0673
SLF 0.2405 0.0272 0.3275 0.0631 0.5580 0.1466
S4 LLF-1 0.2249 0.0316 0.3031 0.0705 0.5219 0.1704
LLF-2 0.2558 0.0234 0.3527 0.0568 0.5937 0.1260
PRLF 0.2559 0.0229 0.3519 0.0558 0.5939 0.1234

Source: created by researchers utilizing the R programming language.
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Table 4(d). The Avg. and MSE of different weighted entropy estimates for BXIID under PT-IIC
schemes at (§,1) = (2.5, 1.5) and (n, m) = (60, 50)

0 Sch. Estimate DWCRTE DWCRRE DWCRHCE
Avg. MSE Avg. MSE Avg. MSE
MLE 1.4218 | 0.0295 | 2.5565 | 0.3722 2.4272 0.0861
SLF 12762 | 0.0462 | 2.1027 | 0.3103 2.1787 0.1347
S1 LLF-1 1.2546 | 0.0531 | 2.0441 | 0.3366 2.1417 0.1549
LLF-2 1.2973 | 0.0405 | 2.1615 | 0.2912 22147 0.1180
PRLF 1.2962 | 0.0400 | 2.1569 | 0.2864 2.2128 0.1165
MLE 1.4231 | 0.0332 | 2.5708 | 0.4189 2.4295 0.0966
SLF 1.2558 | 0.0580 | 2.0556 | 0.3618 2.1439 0.1690
S, LLF-1 12323 | 0.0670 | 1.9938 | 0.3952 2.1037 0.1953
LLF-2 1.2787 | 0.0505 | 2.1177 | 0.3365 2.1829 0.1472
PRLF 12777 | 0.0498 | 2.1131 | 0.3310 2.1812 0.1451
(0.515) MLE 1.4231 | 0.0326 | 2.5692 | 0.4127 2.4293 0.0951
SLF 1.2570 | 0.0570 | 2.0581 | 0.3586 2.1459 0.1661
S3 LLF-1 1.2339 | 0.0657 | 1.9972 | 0.3912 2.1064 0.1916
LLF-2 12796 | 0.0497 | 2.1194 | 0.3338 2.1844 0.1449
PRLF 1.2784 | 0.0491 | 2.1145 | 0.3285 2.1824 0.1429
MLE 1.4237 | 0.0373 | 2.5833 | 0.4680 2.4303 0.1087
SLF 1.2340 | 0.0726 | 2.0070 | 0.4215 2.1066 0.2116
S, LLF-1 1.2083 | 0.0843 | 19414 | 0.4635 2.0627 0.2457
LLF-2 1.2591 | 0.0628 | 2.0732 | 0.3886 2.1494 0.1830
PRLF 1.2581 | 0.0618 | 2.0686 | 0.3822 2.1477 0.1802
MLE 0.3726 | 0.0060 | 0.5657 | 0.0341 0.8646 0.0323
SLF 0.3098 | 0.0074 | 0.4331 | 0.0246 0.7189 0.0401
S1 LLF-1 0.3014 | 0.0083 | 0.4174 | 0.0262 0.6993 0.0449
LLF-2 0.3181 | 0.0067 | 0.4490 | 0.0235 0.7382 0.0362
PRLF 0.3179 | 0.0066 | 0.4482 | 0.0231 0.7377 0.0357
MLE 0.3737 | 0.0068 | 0.5710 | 0.0391 0.8671 0.0364
SLF 0.3017 | 0.0091 | 0.4198 | 0.0284 0.7001 0.0489
S, LLF-1 0.2927 | 0.0102 | 0.4034 | 0.0304 0.6792 0.0549
LLF-2 0.3106 | 0.0081 | 0.4365 | 0.0269 0.7208 0.0438
PRLF 0.3104 | 0.0080 | 0.4358 | 0.0265 0.7203 0.0432
(1.5.2:5) MLE 0.3734 | 0.0066 | 0.5698 | 0.0380 0.8665 0.0355
SLF 0.3023 | 0.0089 | 0.4207 | 0.0279 0.7015 0.0478
S3 LLF-1 0.2935 | 0.0100 | 0.4045 | 0.0299 0.6810 0.0536
LLF-2 0.3110 | 0.0080 | 0.4370 | 0.0265 0.7217 0.0429
PRLF 0.3108 | 0.0079 | 0.4362 | 0.0260 0.7211 0.0423
MLE 0.3744 | 0.0076 | 0.5757 | 0.0441 0.8688 0.0407
SLF 0.2934 | 0.0110 | 0.4065 | 0.0325 0.6807 0.0591
S, LLF-1 0.2837 | 0.0124 | 0.3892 | 0.0351 0.6582 0.0667
LLF-2 0.3029 | 0.0098 | 0.4241 | 0.0306 0.7029 0.0526
PRLF 0.3028 | 0.0096 | 0.4234 | 0.0301 0.7025 0.0518

Source: created by researchers utilizing the R programming language.
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Table 5(a). The Avg. and MSE, of different weighted entropy estimates for BXIID under PT-IIC
schemes at (6,4) = (1.5, 2.5) and (n, m) = (40, 20)

DWCRTE DWCRRE DWCRHCE
(t,¢) Sch. Estimate
Avg. MSE Avg. MSE Avg. MSE
MLE 1.3067 | 0.0516 | 2.2314 | 0.7609 2.2307 0.1504
SLF 1.0486 | 0.1430 | 1.5868 | 0.5515 1.7901 0.4168
S: LLF-1 0.9962 | 0.1856 | 1.4846 | 0.6601 1.7007 0.5410
LLE-2 1.0976 | 0.1101 | 1.6882 | 0.4660 1.8738 0.3209
PRLF 1.1056 | 0.1024 | 17018 | 0.4431 1.8873 0.2983
MLE 1.3135 | 0.0780 | 2.3729 | 3.1072 2.2422 0.2274
SLF 0.8639 | 0.4090 | 12871 | 1.0673 1.4748 1.1918
S, LLF-1 0.7868 | 0.5359 | 1.1649 | 1.2812 1.3432 1.5618
LLE-2 0.9345 | 03116 | 1.4074 | 0.8892 1.5953 0.9080
PRLF 0.9491 | 0.2842 | 1.4277 | 0.8407 1.6202 0.8282
05.15) MLE 1.3174 | 0.0793 | 2.4249 | 4.2087 2.2489 0.2311
SLF 0.8543 | 0.4305 | 1.2749 | 1.1017 1.4584 1.2547
S5 LLF-1 0.7775 | 0.5607 | 1.1538 | 1.3151 1.3272 1.6339
LLF-2 0.9247 | 03304 | 13942 | 0.9238 1.5786 0.9628
PRLF 0.9402 | 0.3007 | 1.4157 | 0.8724 1.6050 0.8763
MLE 1.3107 | 0.1344 | 2.5900 | 9.0307 2.2375 0.3917
SLF 0.5819 | 1.4653 | 09524 | 1.9576 0.9934 42703
S, LLF-1 0.4553 | 2.0057 | 0.8024 | 2.3463 0.7773 5.8452
LLF-2 0.6946 | 1.0729 | 1.0997 | 1.6268 1.1857 3.1266
PRLF 0.7249 | 0.9285 | 1.1309 | 1.5257 1.2374 2.7059
MLE 0.4189 | 0.0078 | 0.7511 | 0.5409 0.9721 0.0420
SLF 0.3141 | 0.0171 | 0.4534 | 0.0597 0.7288 0.0921
S: LLE-1 0.2966 | 0.0213 | 0.4210 | 0.0698 0.6883 0.1145
LLF-2 0.3310 | 0.0137 | 0.4864 | 0.0517 0.7681 0.0738
PRLF 0.3328 | 0.0130 | 0.4889 | 0.0497 0.7722 0.0702
MLE 0.4250 | 0.0121 | 09170 | 1.9017 0.9862 0.0654
SLF 0.2601 | 0.0374 | 0.3672 | 0.1030 0.6036 0.2012
S, LLE-1 02378 | 0.0459 | 03312 | 0.1202 0.5518 0.2473
LLF-2 0.2816 | 0.0302 | 0.4039 | 0.0883 0.6534 0.1628
PRLF 0.2847 | 0.0286 | 0.4079 | 0.0849 0.6607 0.1539
(1.5.25) MLE 0.4259 | 0.0120 | 0.9255 | 2.0453 0.9882 0.0648
SLF 0.2591 | 0.0379 | 0.3661 | 0.1043 0.6013 0.2041
S5 LLE-1 02371 | 0.0464 | 03305 | 0.1212 0.5502 0.2496
LLF-2 0.2803 | 0.0308 | 0.4022 | 0.0899 0.6503 0.1661
PRLF 0.2836 | 0.0291 | 0.4065 | 0.0863 0.6581 0.1568
MLE 0.4289 | 0.0179 | 1.1547 | 4.2872 0.9952 0.0965
SLF 0.1958 | 0.0752 | 02797 | 0.1632 0.4543 0.4047
S, LLE-1 0.1666 | 0.0921 | 02391 | 0.1898 0.3865 0.4958
LLF-2 0.2237 | 0.0610 | 0.3211 | 0.1398 0.5190 0.3283
PRLF 02291 | 0.0569 | 0.3272 | 0.1338 0.5316 0.3066

Source: created by researchers utilizing the R programming language.
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Table 5(b). The Avg. and MSE of different weighted entropy estimates for BXIID under PT-IIC
schemes at (8, 1) = (1.5, 2.5) and (n, m) = (40, 30)

DWCRTE DWCRRE DWCRHCE
(t,¢) Sch. Estimate
Avg. MSE Avg. MSE Avg. MSE
MLE 1.3110 | 0.0342 | 2.1955 | 0.3041 2.2381 0.0995
SLF 1.1581 | 0.0580 | 1.7958 | 0.2938 1.9770 0.1692
S: LLF-1 1.1276 | 0.0706 | 1.7270 | 0.3326 1.9250 0.2057
LLE-2 1.1872 | 0.0482 | 1.8640 | 0.2651 2.0267 0.1405
PRLF 1.1907 | 0.0461 | 1.8710 | 0.2569 2.0327 0.1344
MLE 1.3152 | 0.0380 | 2.2154 | 0.3439 2.2453 0.1108
SLF 1.1294 | 0.0749 | 1.7371 | 0.3508 1.9281 0.2183
S, LLF-1 1.0968 | 0.0911 | 1.6660 | 0.3996 1.8724 0.2656
LLF-2 1.1605 | 0.0619 | 1.8075 | 0.3128 1.9811 0.1805
PRLF 1.1645 | 0.0592 | 1.8150 | 0.3028 1.9879 0.1724
0515 MLE 1.3155 | 0.0391 | 2.2181 | 0.3516 2.2457 0.1140
SLF 1.1232 | 0.0810 | 1.7264 | 0.3695 1.9174 0.2359
S5 LLF-1 1.0909 | 0.0979 | 1.6567 | 0.4192 1.8623 0.2853
LLF-2 1.1539 | 0.0673 | 1.7955 | 0.3305 1.9699 0.1961
PRLF 1.1581 | 0.0643 | 1.8034 | 0.3199 1.9770 0.1873
MLE 1.3186 | 0.0432 | 2.2352 | 0.3925 2.2510 0.1258
SLF 1.0939 | 0.1014 | 1.6684 | 0.4316 1.8674 0.2954
S, LLF-1 1.0580 | 0.1235 | 1.5936 | 0.4944 1.8061 0.3600
LLF-2 1.1280 | 0.0834 | 1.7424 | 0.3812 1.9256 0.2431
PRLF 1.1326 | 0.0795 | 1.7508 | 0.3684 1.9335 0.2317
MLE 0.4198 | 0.0054 | 0.6888 | 0.0451 0.9740 0.0292
SLF 0.3519 | 0.0082 | 0.5220 | 0.0349 0.8166 0.0439
S: LLF-1 0.3406 | 0.0097 | 0.4983 | 0.0389 0.7903 0.0522
LLE-2 0.3630 | 0.0069 | 0.5460 | 0.0321 0.8424 0.0373
PRLF 0.3637 | 0.0067 | 0.5469 | 0.0312 0.8439 0.0361
MLE 0.4219 | 0.0062 | 0.7046 | 0.0948 0.9791 0.0335
SLF 0.3421 | 0.0102 | 0.5037 | 0.0411 0.7937 0.0551
S, LLF-1 0.3301 | 0.0121 | 0.4795 | 0.0460 0.7660 0.0653
LLF-2 0.3537 | 0.0087 | 0.5282 | 0.0375 0.8207 0.0467
PRLF 0.3545 | 0.0084 | 0.5293 | 0.0365 0.8225 0.0452
(1.525) MLE 0.4217 | 0.0063 | 0.7094 | 0.1337 0.9784 0.0341
SLF 0.3406 | 0.0107 | 0.5014 | 0.0425 0.7903 0.0577
S5 LLF-1 0.3289 | 0.0126 | 0.4778 | 0.0474 0.7632 0.0681
LLE-2 0.3520 | 0.0091 | 0.5252 | 0.0388 0.8167 0.0491
PRLF 0.3528 | 0.0088 | 0.5265 | 0.0378 0.8187 0.0476
MLE 0.4239 | 0.0073 | 0.7324 | 0.2407 0.9837 0.0390
SLF 0.3301 | 0.0132 | 0.4824 | 0.0493 0.7660 0.0709
S, LLF-1 0.3173 | 0.0156 | 0.4573 | 0.0553 0.7363 0.0841
LLF-2 0.3426 | 0.0111 | 0.5078 | 0.0445 0.7949 0.0600
PRLF 0.3435 | 0.0108 | 0.5091 | 0.0434 0.7971 0.0580

Source: created by researchers utilizing the R programming language.
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Table 5(c). The Avg. and MSE, of different weighted entropy estimates for BXIID under PT-IIC
schemes at (§,4) = (2.5,1.5) and (n, m) = (60,40)

DWCRTE DWCRRE DWCRHCE
(t,¢) Sch. Estimate
Avg. MSE Avg. MSE Avg. MSE
MLE 1.3122 | 0.0258 | 2.1817 | 0.2285 2.2401 0.0751
SLF 1.2038 | 0.0334 | 1.8889 | 0.1946 2.0550 0.0974
S: LLF-1 1.1833 | 0.0385 | 1.8390 | 0.2104 2.0199 0.1121
LLF-2 1.2237 | 0.0294 | 1.9385 | 0.1839 2.0891 0.0858
PRLF 1.2259 | 0.0286 | 1.9432 | 0.1800 2.0928 0.0832
MLE 1.3162 | 0.0300 | 2.2017 | 0.2704 2.2469 0.0874
SLF 1.1725 | 0.0464 | 1.8201 | 0.2450 2.0016 0.1353
S, LLE-1 1.1502 | 0.0538 | 1.7681 | 0.2688 1.9635 0.1569
LLF-2 1.1941 | 0.0404 | 1.8718 | 0.2268 2.0384 0.1176
PRLF 1.1966 | 0.0391 | 1.8771 | 0.2215 2.0427 0.1138
05.15) MLE 1.3166 | 0.0308 | 2.2042 | 0.2768 2.2476 0.0896
SLF 1.1687 | 0.0494 | 1.8136 | 0.2570 1.9951 0.1440
Ss LLE-1 1.1469 | 0.0570 | 1.7631 | 0.2808 1.9580 0.1660
LLF-2 1.1898 | 0.0432 | 1.8638 | 0.2387 2.0311 0.1259
PRLF 1.1925 | 0.0418 | 1.8695 | 0.2331 2.0358 0.1218
MLE 1.3190 | 0.0358 | 2.2210 | 0.3236 2.2516 0.1042
SLF 1.1347 | 0.0678 | 1.7424 | 0.3206 1.9370 0.1977
S, LLE-1 1.1093 | 0.0792 | 1.6861 | 0.3558 1.8937 0.2308
LLF-2 1.1591 | 0.0584 | 1.7983 | 0.2923 1.9787 0.1701
PRLF 1.1622 | 0.0563 | 1.8045 | 0.2848 1.9841 0.1641
MLE 0.4174 | 0.0039 | 0.6745 | 0.0313 0.9686 0.0213
SLF 0.3685 | 0.0048 | 0.5522 | 0.0233 0.8551 0.0261
S: LLF-1 0.3605 | 0.0055 | 0.5345 | 0.0251 0.8365 0.0298
LLF-2 0.3764 | 0.0043 | 05701 | 0.0221 0.8733 0.0231
PRLF 0.3767 | 0.0042 | 05706 | 0.0217 0.8742 0.0226
MLE 0.4195 | 0.0048 | 0.6845 | 0.0393 0.9734 0.0258
SLF 0.3573 | 0.0066 | 0.5304 | 0.0294 0.8291 0.0358
S, LLF-1 0.3488 | 0.0076 | 0.5122 | 0.0320 0.8094 0.0409
LLE-2 0.3657 | 0.0058 | 0.5488 | 0.0275 0.8485 0.0315
PRLF 0.3662 | 0.0057 | 0.5495 | 0.0270 0.8496 0.0307
1525 MLE 0.4192 | 0.0048 | 0.6839 | 0.0393 0.9728 0.0259
SLF 0.3568 | 0.0069 | 0.5297 | 0.0302 0.8279 0.0369
S5 LLF-1 0.3486 | 0.0078 | 0.5122 | 0.0327 0.8089 0.0420
LLF-2 0.3648 | 0.0061 | 0.5474 | 0.0284 0.8465 0.0327
PRLF 0.3654 | 0.0059 | 0.5483 | 0.0278 0.8478 0.0319
MLE 0.4211 | 0.0058 | 0.6993 | 0.0829 0.9772 0.0313
SLF 0.3442 | 0.0093 | 0.5060 | 0.0376 0.7988 0.0499
S, LLF-1 0.3349 | 0.0106 | 0.4866 | 0.0411 0.7770 0.0573
LLE-2 0.3534 | 0.0081 | 0.5255 | 0.0347 0.8201 0.0437
PRLF 0.3541 | 0.0079 | 0.5264 | 0.0340 0.8216 0.0426

Source: created by researchers utilizing the R programming language.
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Table 5(d). The Avg. and MSE of different weighted entropy estimates for BXIID under PT-IIC
schemes at(§, 1) = (2.5,1.5) and (n, m) = (60, 50)

0 Sch. Estimate DWCRTE DWCRRE DWCRHCE
Avg. MSE Avg. MSE Avg. MSE
MLE 1.3126 | 0.0213 | 2.1735 | 0.1882 2.2407 0.0620
SLF 1.2278 | 0.0238 | 1.9409 | 0.1514 2.0960 0.0694
S1 LLF-1 12117 | 0.0265 | 1.9003 | 0.1590 2.0685 0.0773
LLF-2 1.2435 | 0.0218 | 1.9812 | 0.1470 2.1228 0.0635
PRLF 1.2450 | 0.0213 | 1.9846 | 0.1448 2.1254 0.0621
MLE 1.3142 | 0.0224 | 2.1803 | 0.199 2.2434 0.0653
SLF 1.2190 | 0.0263 | 1.9201 | 0.1614 2.0809 0.0766
S, LLF-1 1.2026 | 0.0294 | 1.8794 | 0.1707 2.0530 0.0856
LLF-2 1.2349 | 0.0239 | 1.9606 | 0.1555 2.1081 0.0696
PRLF 1.2365 | 0.0233 | 1.9641 | 0.1530 2.1108 0.0680
(0515 MLE 1.3145 | 0.0229 | 2.1820 | 0.2035 2.2440 0.0666
SLF 12161 | 0.0276 | 1.9141 | 0.1672 2.0760 0.0803
S3 LLF-1 1.1999 | 0.0308 | 1.8740 | 0.1769 2.0484 0.0897
LLF-2 1.2319 | 0.0250 | 1.9540 | 0.1608 2.1029 0.0729
PRLF 1.2335 | 0.0245 | 1.9577 | 0.1582 2.1057 0.0713
MLE 1.3156 | 0.0238 | 2.1871 | 0.2132 2.2458 0.0695
SLF 1.2088 | 0.0297 | 1.8970 | 0.1757 2.0635 0.0866
S, LLF-1 1.1919 | 0.0334 | 1.8555 | 0.1872 2.0347 0.0973
LLF-2 1.2252 | 0.0268 | 1.9383 | 0.1678 2.0916 0.0781
PRLF 1.2269 | 0.0262 | 1.9419 | 0.1649 2.0944 0.0762
MLE 0.4170 | 0.0032 | 0.6694 | 0.0252 0.9675 0.0174
SLF 0.3775 | 0.0035 | 0.5698 | 0.0181 0.8760 0.0188
S1 LLF-1 0.3711 | 0.0039 | 0.5551 | 0.0191 0.8611 0.0210
LLF-2 0.3839 | 0.0032 | 0.5847 | 0.0176 0.8908 0.0172
PRLF 0.3841 | 0.0031 | 0.5850 | 0.0173 0.8913 0.0169
MLE 0.4177 | 0.0035 | 0.6726 | 0.0274 0.9693 0.0187
SLF 0.3743 | 0.0039 | 0.5632 | 0.0196 0.8685 0.0209
S, LLF-1 0.3678 | 0.0043 | 0.5485 | 0.0207 0.8534 0.0233
LLF-2 0.3807 | 0.0035 | 0.5781 | 0.0189 0.8835 0.0190
PRLF 0.3810 | 0.0035 | 0.5784 | 0.0186 0.8840 0.0187
(1.5.2:5) MLE 0.4177 | 0.0035 | 0.6727 | 0.0278 0.9692 0.0190
SLF 0.3735 | 0.0040 | 0.5617 | 0.0201 0.8667 0.0217
S3 LLF-1 0.3671 | 0.0045 | 0.5473 | 0.0213 0.8518 0.0242
LLF-2 0.3798 | 0.0037 | 05763 | 0.0194 0.8813 0.0197
PRLF 0.3801 | 0.0036 | 0.5767 | 0.0191 0.8820 0.0194
MLE 0.4184 | 0.0038 | 0.6759 | 0.0300 0.9709 0.0202
SLF 0.3705 | 0.0044 | 0.5557 | 0.0215 0.8598 0.0237
S, LLF-1 0.3639 | 0.0049 | 0.5407 | 0.0228 0.8443 0.0265
LLF-2 0.3771 | 0.0040 | 0.5708 | 0.0206 0.8751 0.0215
PRLF 03774 | 0.0039 | 05712 | 0.0203 0.8757 0.0211

Source: created by researchers utilizing the R programming language.



STATISTICS IN TRANSITION new series, June 2025

4-

77

It is evident from the tabulated result values that:
As n and m increase, the MSE of the Bayes estimate gradually decreases.

In comparison to other estimates, the MSE of all estimates based on DWCRTE
frequently yields the smallest values.

As can be seen in Tables 4 (a) to 4 (d), in the majority of the cases, the precision
measures of DWCRTE, DWCRRE and DWCRHCE under PRLF and LLF-2 are
preferable to the corresponding estimates under LLF-1 and SLF for all schemes.

At true values T*(c) = 0.3434 and 1.3621, the BEs of T*(¢) under all loss functions
are preferred over the other entropy measures for all schemes (see Tables 4(a) and
4(d)).

The MLEs and BEs of T*(c), R*(c) and H*(c) under different loss functions are
decreasing as n and m increase from (40, 20) to (60, 50) (see Tables 4(a) and 4(d)).

The MSE of all BEs of T*(c) gets the smallest values compared to the others for all
schemes at (n, m) = (60, 40) and (¢, ¢) = (0.5, 1.5) and (1.5, 2.5) (see Table 5(c)).

In most cases, the MSEs of all estimates have the largest values in the case of S; and
S4 compared to other schemes, at (n, m) = (60, 50), (¢, ¢) = (0.5, 1.5) and (1.5, 2.5)
(see Table 5(d)).

The MSE of T*(c) gets the smallest values under all loss functions in the case of S, at

m =20, n =40 (see Figure 4).

At true values of H*(c) = 0.7968 and T*(c) = 0.3434, it can be observed that the BE
of DWCRHCE gets the largest MSE, while the BE of DWCRTE gets the smallest
value for all loss functions in Sch.1 (see Figure 5).

2 B DWCRTE DWCRRE DWCRHCE B DWCRTE DWCRRE DWCRHCE
15 r. 0,25 —
g 0,2
w —
wv w —
sS1 — — 20,15 N
01 — — -
0,5
L i ] o d
0 05 . : . .
SLF LLF-1 LLF-2  PRLF SLF LLF-1 LLF-2 PRLF

Figure 4. The MSE of different entropy
estimates at £ = 0.5

Figure 5. The MSE of different entropy
estimates at £t =1.5

Source: created by researchers utilizing Microsoft Excel.
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10-The MSE of the BE forR*(c) based on S, has the biggest values at m = 50, n = 60 and
t =0.5 (see Figure 6).
11-The MSE of the DWCRTE estimate under different loss functions based on S,
typically produces the smallest values when compared to other estimates at m = 50,
n = 60 and t=1.5 (see Figure 7).
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Figure 6. MSE of different Entropy estimates at

t=10.5,m=50,and n = 60
Source: created by researchers utilizing Microsoft Excel.

Figure 7. MSE of different Entropy estimates at
t=1.5

12-It can be observed from Figure 8 that the MSE of 7*(c) under PRLF takes the smallest
values compared to the others in Sch. 4 at m = 20, n = 40, and ¢ = 0.5.
13-At m = 20, n = 40, where the true value of T*(c) = 0.3434, the MSE of T*(c) under

LLEF-2 takes the smallest values compared to the others under S4 (Figure 9).

14-When compared to the other estimates from S,, Ss, and Ss, the MSE of all entropy

estimates based on S; often has the smallest values. The majority of entropy
estimates (MLE, SLF, LLF-1, LLF-2, and PRLF) show a slight decrease as tincreases.
15-1It should be highlighted that, in comparison to the other estimates based on Sy, S3
often produces the shortest MSE outcomes.

mS1

S2

S3

S4

MSE

o L N w B~ wv
!

BRS

A d -

SLF

LLF-1

LLF-2

PRLF

ms1

S2

S3

S4

LLF-1

'go,1- -

0,05 - — —

oL B
SLF

LLF-2

PRLF

Figure 8. MSE of DWCRTE for different loss
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Figure 9. MSE of DWCRTE for different loss

functions when t =1.5
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16- As can be seen in Figures 10 and 11, as n and m increase, the MSEs of R*(c) under
different loss functions are decreasing.

0,25 A)=(40; 4 H (n,m)=(40,20)
(n,m)=(40,30) (n,m)=(40,30)
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(7] wv 2 -
= 2
0,1 A
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SLF LLF-1  LLF2  PRLF SLtF - LLF1 LLF-2 PRLF
Figure 10. MSE of DWCRRE for different Figure 9. MSE of DWCRRE for different
estimates under S3at § = 1.5,4 = 2.5and estimates under Ss at§ = 1.5,4 = 2.5 and
t=1.5 t=0.5

Source: created by researchers utilizing Microsoft Excel.

8. Concluding Remarks

This article introduces the DWCRHC as an additional measure of uncertainty
surrounding the residual lifetime function, particularly relevant in fields like survival
analysis and reliability. The DWCRHC measure is formally defined within this work.
We investigate the estimation of the DWCRHC, along with its related measures,
DWCRRE and DWCRTE, for the BXIID under PT-IIC. Maximum and Bayesian
estimation methods are employed. For the Bayesian estimation, we utilize the MCMC
approach with the M-H algorithm, assuming a gamma prior distribution and
considering three different loss functions. The article features the application,
simulation studies, and an evaluation of the accuracy of the DWCRTE, DWCRRE, and
DWCRHCE estimates for the BXIID.

Simulation results demonstrate that the BE of DWCRTE converges to the true value
as the sample size increases. Generally, BEs under the PRLF exhibit the lowest MSE
values, followed by the LLF-2, making them preferable over competing estimates.
Furthermore, Sch. 1, compared to other schemes, often yields the lowest MSE values,
followed in most cases by Sch. 2. The conclusions drawn from the simulated data are
corroborated by the examination of actual data, particularly the water capacity data
from the Shasta reservoir. These results are helpful in making well-informed decisions
about the management of water resources. Future research could explore the
application of the E-Bayesian technique to estimate other uncertainty metrics, such as
dynamic weighted cumulative residual Shannon entropy.
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