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1. Introduction

A significant issue in statistical literature is the analysis of the stress-strength model
(SSM). The probability that the stress X will exceed the strength Y is represented by the
parameter R, defined as R = Pr(X < Y). The SSM is commonly utilized in practical
engineering for product life testing, material reliability analysis, and design. For instance,
life tests are essential for aircraft components in the aerospace industry to ensure safety.
Throughout its lifecycle, a product faces various external challenges such as temperature,
humidity, wind, and pressure. Alongside these external factors, the product’s inherent
strength allows it to withstand these stresses. The SSM is now widely used across many
fields, especially for tackling reliability assessment challenges. An insightful monograph
discussing various SSMs was authored by Kotz et al. [1].

The lifespan of a component with strength W under two stresses U and V is dic-
tated by the SSM. A component can survive if its strength W is greater than stress U
and smaller than stress V. The quantity T = P(U < W < V) quantifies the reliability
of the device within the framework of the mechanical reliability of this model. Systolic
and diastolic blood pressure, for instance, have two limits that a person’s blood pressure
should fall within. Consequently, the quantity T, despite being termed the SSM, possesses
applications that extend beyond the assessment of actual SSM. It is applicable in a variety
of fields, including mechanical design, information engineering, quality control, reliability
analysis, and materials science. Chandra and Owen [2] first introduced the methodol-
ogy’s fundamental concept of T. In the literature, various studies regarding the model
T = P(U < W < V) have been conducted by different authors, employing a range of sam-
pling designs and distributions. Ivshin [3] investigated the maximum likelihood estimator
(MLE) and the minimal variance unbiased estimator of T when both stress and strength
are uniform or exponential random variables with an unknown location parameter. With a
Weibull distribution, Hassan et al. [4] concentrated on estimating the parameter Y in the
presence of k outliers. The case of nonparametric inference of T was covered by Guangming
et al. [5]. The estimate of T, assuming that the stresses and strength are independent vari-
ables that adhere to the inverse Kumaraswamy distribution, was examined, respectively,
by Hameed et al. [6] in a complete sample and Hassen et al. [7] in ranked set sampling. In
the work of Abd Elfattah and Taha [8], the reliability estimator of T based on the inverse
Rayleigh distribution was analyzed, taking into account data outliers. Raheem et al. [9]
looked into traditional estimation methods, assuming an inverse Rayleigh distribution for
both stress and strength random variables. Attia and Karam|[10] explored the Bayesian
estimation of T in the context of a Dagum distribution. Choudhary et al. [11] performed
a statistical estimation of Y within a Weibull distribution framework, utilizing progres-
sively censored data. Yousef and Elmetwally [12] investigated the reliability estimator of
T based on progressive first failure. For recent studies, the reader can refer to Yousef et al.
[13], Hassan et al. [14], Alotaibi et al. [15], Moheb et al. [16] and Hassan and Mogran [17].

Cho et al. [18] presented a novel censoring scheme called the generalized progressive
hybrid censoring (GPHC). This plan ensures a sufficient number of failures, which can
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increase the effectiveness of statistical inference, in addition to ending the experiment
within the predetermined testing period. The following is a description of the GPHC.

Assume that our research group consists of n independent units with the same lifetime
distribution, where Z1, Zo, ..., Z,, represent the corresponding lifetime. The integers k£ and
s, k < s, as well as Ry, Ra, ..., R, which can satisfy the equation > ;| R; +s = n function
as preplanned integers and have been under predetermination between zero and n. On the
arrival of the first failure Z7, we withdraw R; units. When the second failure, Zs, occurs,
we remove Ry units at random from the n—2 — Ry survivors. With the rest of the survival
units removed, the process is repeated and ended at 7% = max(min(7, Zs), Zy). It vastly
improved prior approaches by allowing us to choose whether or not to continue the exper-
iment if the sample size is insufficient at the predetermined cut-off time 7. Researchers
would prefer to obtain s failures under the GPHC scheme, but they can alternatively
choose k failures, which are considered the bare minimum. The GPHC scheme is referred
to as Ry, Ra, ..., Rs. Let D be the observed failure times before arriving at the predefined
time 7.

The GPHC scheme can be classified into the following categories:

Case 1: Z1,..., Zg, ..., Zy for 7 < Zy, < Zs,
Case 2: Z1,..., 2y, ..., Zg for Z;, < T < Zs,
Case 3: Z1, ..., 2y, ..., Zs for Z), < Zg < T.

The likelihood function of a random sample with cumulative distribution function (CDF)
F(z) under GPHC is as follows.

Ay kﬁi f(zj:s:n>(1 - F(Zj:s:n))ij<2k:s:n)(1 — F(Zk;s;n))R;; Case 1,
l(v;Z) =4 A ﬁl f(Zjism) (1 — F(z]-:sm))Rj(l — F(T))RZ+1 Case 2, (1)
j=
AS Hl f(zj:s:n)(l - F(zj:s:n))Rj Case 3,
\ J=

k
where «y is the vector of parameters for the lifetime distribution, 47 = [] ZZ:]- (R +
j=1

d s
1), 4 = jnl D p—j(Bk + 1), A3 = jnl 2= (Bx + 1), Ry =n —k - >iZ1 Ri and Ry =
n—d— Z?:l Rz

Tu and Gui [19] considered the estimation of unknown parameters featured by the Ku-
maraswamy distribution based on GPHC. Alotaibi et al. [20] discussed reliability analysis
of Kavya Manoharan Kumaraswamy distribution under GPHC. Nagy et al. [21] recently
employed a GPHC sample from the Burr XII distribution to estimate the unknown pa-
rameters, reliability, and hazard functions. The Runge-Kutta technique was employed by
Maswadah [22] to enhance the maximum likelihood estimation method. Based on GPHC,
Liu and Gui. [23] derived the point and interval estimators for the unknown parame-
ters, reliability, and hazard rate functions of the bathtub model. Abdelwahab et al. [24]
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discussed classical and Bayesian inference for the Kavya—Manoharan generalized exponen-
tial distribution based on GPHC. Wang et al. [25] discussed a competing risk model for
bivariate Kumaraswamy distributed based on GPHC. Hassan et al. [26], [27], and [28]
implemented a GPHC for an inverted Topp-Leone distribution, a generalized inverse ex-
ponential distribution, and a generalized Lomax distribution, respectively. For more see
[29], [30] and [31].

To the best of our knowledge, no prior work has attempted to estimate T using an
exponentiated Weibull distribution (EWD) based on the GPHC scheme, which is the
motivation behind this paper. The importance of the EWD and its extensive use in
numerous fields motivate us to address this issue. Furthermore, this study is thought to
be a generalization of the Yousef et al. [13] research. Thus, the main driving force behind
this can be summed up as follows:

« Establish reliability inferences for T = P(U < W < V), assuming that strength (1)
and two stresses (U and V') have independent EWD with the same scale parameter.

e Derive the MLE as well as the Bayesian estimator of T under symmetric and asym-
metric loss functions.

o Construct asymptotic confidence intervals with the help of the delta method and
provide Bayesian credible intervals.

« Create percentile bootstrap (Boot-P) and bootstrap-t (Boot-T) intervals.

o Markov chain Monte Carlo (MCMC) methods are used to tackle the intricate inte-
grals found in the Bayesian analysis of the posterior distribution.

e Analyze the data and conduct a simulation study to see how various estimates be-
have.

We proceed with the reliability formulation calculation in Section 2 of this paper.
Section 3 includes the derivation of the MLEs, approximate confidence intervals, Boot-
P, and Boot-T intervals of Y. The Bayesian estimators with varying loss functions are
computed in Section 4. In addition, the MCMC algorithm is employed to derive Bayesian
estimators and establish the highest posterior density (HPD) intervals in Section 5. Then,
in Section 6, real data applications are used to demonstrate data analysis. Conclusions
are organized in Section 7.

2. Reliability Formulation

A very adaptable class of probability distribution functions is the three-parameter
EWD, which Mudholkar and Srivastava [32] introduced as an extension of the Weibull
family. The significance of this distribution arises from the fact that the function of
the survival rate takes various forms, making it suitable for studying and covering many
problems of time reconciliation and validity. Many probability distributions are included
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as special cases. Mudholkar et al. [33] provided examples of how the EWD is used in
reliability and survival studies. The probability density function (PDF) of the EWD is
defined as

Fasn A 0) = a6l (1P e >0, nA 60>, (2)
and the corresponding CDF is as follows:
Flain, A, 0) = (1— ™), 3)

where A > 0 and 6 > 0 are the shape parameters and n > 0 is the scale parameter.
Assuming that n is known parameter (n = 1), then we write X ~ EWD(A\, 6).

The hazard function has various shapes depending on parameter values, such as mono-
tone increasing (6 > 1,0\ > 1), monotone decreasing (6§ < 1,6\ < 1), or unimodal
(0 < 1,0\ > 1), see Figure 1 for illustration. These different shapes gave the distribution
more flexibility in fitting different real data. When A = 1, the distribution is referred to
as a Weibull distribution, and when # = 1, it reduces to the exponentiated exponential
distribution (EED). If § = A = 1, the distribution has an exponential constant hazard
function. For additional results and applications, one can see Almalki and Nadarajah [34],
Wu and Lee [35], Ahmad et al. [36], Cheema et al. [37], Rahman et al. [38], Xie [39] and
Ishag et al. [40].

A=1506=1.3
0 —F A=10 6=3
A=0.8 6=2
< - — A=0.7 6=04
— A=5 eﬂ}’
X
=
o~ -
o 4
I I I I I
0 1 2 3 4

Figure 1: hazard function with various parameters values

Let the random variables U ~ EWD(A1,0), W ~ EWD()\2,0,), V ~ EWD()A3,6) be
independent. The reliability formula of the SSM that the probability of a component
strength falling in between two stresses is given by:

T:/00/oo/”f(u;)\1,9)f(w;)\Q,G)f(v;/\g,e)dwdvdu,
0o Ju Ju
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which gets the following formula:

AoAs (4)
A1+ 2A2)(A1 4+ A2+ A3)”

The reliability T of the SSM is shown in Figure 2, and it is clear that the reliability
value increases as the value of the parameter A3 increases. Also, it is observed that as the
parameter values change, the reliability rating does so as well. In most cases, this rating
is high and covers the majority of the values.

T =

Figure 2: 3D plot of Y reliability in SSM

3. Maximum Likelihood Estimation

The maximum likelihood (ML) procedure is a popular and effective strategy used
by statisticians when dealing with reliability issues and survival analysis. The unknown
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parameters A1, A2, A3, and 6 will are estimated using this method to obtain Y. In order to
start we have one of the following types of observations for each identical EWD component
stress U = (Ulisyimgs U2isyings ooy UDysyomy )y Vo = (Vlissings V2:sgings -y UDs2:s5:ms ) and strength
W = (W1.symys Waisyimas ---s WDy 1:s5:m, ) Saple under GPHC scheme. Throughout the paper,
denote U = (u1, ..., up, ), where uj = wj.s,:n,,J = 1, ..., D1, similarly for v;, and w;.

In our situation, the likelihood function of the observed stress sample U can be obtained
by replacing its CDF and PDF in (1) as shown below.

D1
(O, 650) = AP0 T uf e S (L= e )M (1= (1= e (1= (1= e TN,

=1
where
k1 —1 Casel,
D = dy Case 2,
s1 Case 3.

Let Q = (U, V, W) represents the stress and strength samples, and let v = (A1, A2, A3, 0)
be the vector of parameters. The likelihood function of the observed data can be expressed
as follows based on the observations of the given data under GPHC scheme.

l(’y; Q) = A*A;Ag)\Dl )\DQ)\3D39D1+D2+D3

xHue ! ”/11 g, )M (L = i (ug, 0)M) (1 = (1, O)M) i

D2
X H w?—le—W§¢2(wj, 0))\271(1 . ¢2(w]‘, 9)/\2)Rj2(1 _ ¢2(7’2, 9)A2)R22+1
j—l
% HUG e e (07,00 (1 — s vy, 0)2) 3 (1 — 4py (73, 0)*9) Fassa, (5)
where ; 9 0
Y1(uj,0) =1 —e "9 a(w;,0) = 1 — e, 3(v;,0) =1 — e, (6)

and 1 (71, 0) is as given by Equation (6) with u; = 7. Similarly for (72, 8) and 13(73, ).
By taking the logarithm of (5), say L, we can get the log-likelihood function as:

LZ]DA’{ASAE;-FDlln)\l +D21n)\2+D31n)\3+(D1 +D2+D3)1n9

Dy Do D3
—(0—1)[Zlnuj—|—Zlnwj—|—Zlnvj Zu —}—Zw +Z
j=1 j=1 j=1

Dy
+ (A= 1)) e (u,0) + (A — 1) lez(wj,e) + (A3 —1) Zlnwg(vj,e)
j=1 j=1 J=1
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Dy Dy Ds
+ 3 R In(1 = (iuy, 0)M) + > RipIn(1 — (¢a(w;,0)*) + Y RjsIn(1 — (¢3(v;,60))?)
j=1 j=1 J=1
+ Ry In(1 = (1(m1,0)™) + Riig In(1 — (¢a(72,0))*?) + Rijs 1 In(1 — (¢3(73,0))™).
(7)

We take the partial derivatives of (7) for A1, A2, A3, and 6 respectively, and get a set of
likelihood equations as follows:

D1

O Dt S (. 0) = Ryn9a (1 (a5, 0), M)] — R 19161 (m,6), M),
j=

EXYRY

Do
oL D X
B = /\—22 + Z[ln Yo(wj, 0) — Rjo¥2(v2(wj, 0), A2)] — Ryo 192(12(72,0), A2),
j=1
0L D3 &
67)\3 = /\—; + Z[ln ¢3('Uj, 9) — Rj3193(¢3('0j, 9), )\3)] - R23+1193(¢3(7_37 9), )\3)a
j=1
D1 Do D3
oL D1+ Ds+ D
i % - [z;(ug +1)Inu; + Z;(wje- +1)Inw; + Z;(v? + 1) Invy]
j= j= Jj=

Dy Do
+ (=1 o1 (uy, 0),0) + (o — 1) pa(tha(w), 6), 6)

=1 =1
]D3 Dy ! Do

+ (A= 1) @a(ts(v,0),0) = Y Ruwi(¥1(u;,0),0) = Y Rjpwa(ta(w;, 6),0)
j=1 j=1 j=1

D3
- Z Rjzws(3(vy,0),0) — Ry w1 (¥1(71,0),0) — Ry 1ww2(Y2(72,0),0)
i=1

- R23+1w3(¢3(7—37 9)’ 0)7

where

(- A
9:(44(05.0). 1) = - f‘/’g;fﬂ(’qf)gw In (45, 0).

s L (i, 0)N o
197,(1/%(7—7,70)))‘1) - 1 o (’IIZ)Z(THH)))”' 111’1/]7/(7—2,9)7
AL

Xi(Yilgy,0))™
@i(¥i(q;,0),0) = 1 _(Tébic(]qj,g;)xi wi

(¥i(g5,0),0),

for ¢ = u,v,w, and i = 1,2, 3.
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Since the equations in (8) are nonlinear, it is obvious that simplifying and obtaining
closed-form solutions is difficult. In this situation, Newton’s iteration method can be
applied to get the MLEs of Aj, A2, A3, and 6, and then substitute these estimates into
Equation (4) to gain the MLE of T as:

A3

g (. S—
(A 4+ A2) (A1 + A2 + A3)

(9)

3.1. Asymptotic Confidence Intervals

The asymptotic confidence interval (CI) of T is determined in this subsection using
the asymptotic distribution of Y. A 100(1 — ()% asymptotic CI of T can be constructed

<Y — zlgm,TJrzlg\/VT(Y)) ,

where z; ¢ is the standard normal variate’s upper pth percentile. Var(Y) can be obtained

2
by applying a result of Rao [41] (pp. 387), which gives us

Var(Y) = z; (‘%)j + 2222 (62)% (aL‘)% Cov(%i, 45)-

i i v

The observed Fisher information matrix can be used to determine the variance and co-
variance of A1, A2, A3, and #. Therefore, the observed Fisher information matrix is given
by:

8L
I Y) = L =-F |::| 7i7j = 17273747
where 7 is the parameter vector (A1, Ag, A3,0) with v1 = Aj,72 = Ao, v3 = A3, 74 = 0.
Unfortunately, the exact mathematical expressions for the above expectation are very
difficult to obtain, so it is obtained by dropping the expectation on an operation (see
Cohen [42, 43]). The elements of I(vy) are given as follows

D,
091 (Y1 (uy, A N Ot (Y1 (11,0), A
Iy =— + Zle 8>\j1 6),21) + Ry 1 15(9)\11 ) M) )
| CE 0V2(12(wj,0), A2) . 0U2(1Pa(12,0), A2)
fn=— + ZR” Do T fiz D ’
- o,
003 (13(vj,6), A3) . 003(Y3(13,0), A3
Tas == + ZRJ?’ s Ry 20 é)\:s ik
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Iy =Y |e1(r(uy,0) - leamwl(gg’e)’)\l)} - Rd1+18§1(¢1gé’9)’)\1),
=1t
22 1 89 6),\ 89 9), \
i =" | ean(uw;, 6) - Ry 2(¢2(;)037 ), 2)} Ry, 2(#}2%% ), 2)7
=1t
Ds ¢ ’
Iu=" | os(s(vs,0) - Ry 5793(1#3((;1579),)\3)} 3 R23+1a§3(w3gg,9)7)\3)7
=1t
D1 Dl .
[44:_W Z +Zw +ZU 111 9+ ()\1_1)28@1(%&1;1;]79)’0)
Jj=1 j=1
D2 Dl
890 (1/) (w"e)ve) 890 (¢ (v"e 79) 0w (w (’LL',Q),@)
Tl 1)2 2 289] (e 1)2 o0 _ZRﬂ o0
j=1 7j=1 j=1
D2 3
By Rﬂé)wz(% w;, 6 Z RJ38W3 w;», vj, 0),0) Rd1+law1(¢1a(gl,9),9)
=1
. R* 8w2(¢2(7—27 )50) - R 8w3(w3(7-3a ))9)
d2+1 39 d3+1 80 )
Lo =1y = I13 = I31 = I3 = I53 = 0,
where
09i(Yi(g5,0), Ai) _ (0i(iq;,0), Xi))? 00s(i(75,0), \y) _ (0:(¥i(73,0), X;))?
OA; (ilgz, 00N ONi (i(mi, 0))r 7
96 T 1-(gope op - #i@:0.0)ng —eb).
0mi(vila;,0).0) _ Imi(¥i(a;,0),0) _ Nief($i(;,0).0) | Aililg.0).0) (ilg;, 0)
—\: 2 ?
% 2 |(ila; 0) N = 1] [(s(as. 00 1]

_qf —qY
(g *afe™ [vs(a; 00148+ |

for q= u,v,w,i = 1a 273 and 90;(%(%79),9) = (7/11:((1]',9))2

3.2. Bootstrap Methods

A resampling technique, the bootstrap method for constructing more widely used Cls
is discussed in this subsection. Algorithms 1 and 2 present the algorithms for the Boot-P
and Boot-T methods, respectively.

e Boot-P method:
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Algorithm 1 The algorithm of Boot-P method.

Step 1: Generate three random samples from EWD(Aq,0), EWD()\z,0), and EWD(A3, 6),
and use the GPHC scheme to obtain the observed data.

Step 2: Calculate the ML estimates (for example, A, A, 5\3)

Step 3: Utilize (5\1, ;\2, 5\3), to generate three new samples, respectively.

Step 4: Obtain new ML estimates (5\’{(]“), ;\;(k), ;\g(k)).

Step 5: Compute the bootstrap estimate of T in Step 4 and indicate it by T*.

Step 6: Repeat Steps 3 and 5 B times.

Step 7: Obtain the results ((T%, Y5, ..., T%)).

Step 8: Define h(z) = P(T* < z) be the CDF of T*. Let Tpoor—p(z) = b~ (z) for
a given .

Step 9: The 100(1 — ()% symmetric Boot-P CI for T is

(Y‘Boot—P(C/z)? TBoot‘—P(1 - C/2))

e Boot-T method:

Algorithm 2 The algorithm of Boot-T method.
Steps 1 to b are the same as those in Algorithm 1.

Step 6: Define statistic T4 = (-1

-
Oy

Step 7: Repeat Steps 3 and 6 B times, then we have T;(l), T;(Q), -~ T;(B).

Step 8: Define R(x) = P(T¢ < z) be the CDF of T%. Let T Boot—r = T+ R(z)or.
Step 9: The 100(1 — ¢)% symmetric Boot-T CI for T is

(TBOOt—T(C/Q)a YBoot—T(l - C/Q))

4. Bayesian Estimation

In this section, Bayesian estimation of YT is obtained when data are observed using
GPHC based on a squared error loss function (SELF) and a linear exponential (LINEX)
loss function, which are defined respectively by

Ly = (p,p) = (p—p)%
Ly = (p,p) = PP —c(p—p) — 1,

where p is an estimator of p. Denote the prior and posterior distributions of p by 7(p)
and 7 (p | q), respectively. Under the SELF and LINEX loss functions, the Bayesian
estimation of any function B(p) of p is given by

) —1 . -1 o
VLINEX = 7ln (E(e B(p))) = 7ln </0 e~ Bl (p| q)dp> .

sspLr = E[B(p) | q = /0 " By (o | 9)dp,
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The prior distribution is important for the development of Bayes estimators. Under
the assumption of gamma prior distributions, we investigate this estimation problem.
Therefore, it is assumed here that A1, As, A3, and 6 follow independent gamma distributions
with Ay ~ G(al,bl),)\g ~ G(ag,bg),)\g ~ G(CLg,bg), and 6 ~ G(a4,b4) with probability
densities given by, respectively,

Xili—l Y gaa—l o

Ni) = =—+——¢€ b, 0) = ——a¢ M, \i>0,a;,0;>0,i=1,2,3. 10
(i) F(ai)b?le 7(0) F(a4)bj4e 4 >0,a > 0,4 (10)

Using the informative prior (10) and the likelihood function (5), the joint posterior density
can be derived as follows:

3 \DPitai—1 9a4—1+2?:1 Dy 4

* = AF 2 : b
o) = A T "

Y e Z]‘D::H {(1*9) In uj+“?+%*(/\1*1) In 1 (u,0)—Rj1 In(1— (31 (uy,0)) M )} +RS 1y (1= (91 (71,0))1)

o o Ti [0 w452 (o —1) In o (w5,0) Ry In(1—(2(1;.0))2) |+ Ry In(1— (2 (72.6))°2)
o o Si [ oy o 58— (s =1) In s (u.0)— Rys In(1— (s (05.0))°3) |+ Ry In(1— (5 (73.0)°3)

The marginal posterior densities of the parameters A1, A2, A3, and 6 can be derived as

(A1) x /\{)ﬁ‘“*le* Zﬂpzll [Al(ﬁfln W1(u,0)) =Ry In(1= (1 (u;,0) )] +Ry oy In(1= (91 (71,0))* )’

™ )

*()\2) o /\52-&—112—16* Z?:Ql |:)\2(%*1nw2(’w]',0))*Rj2 ln(1*(¢2(w]‘,9))’\2)] +R§2+11n(1*(¢2(7'2,9)))‘2)

7 (Ag) oc ADsHasT1eT > [A3(%_ln¢3(vj’9))_Rj3 ln(l—(wg(uj,e))ka)] RS, In(1—(¢h3(73,0))13)

Y

3 _0
7 (0) gra—1+2im1 Dig Ty

e POy [U?—‘“nuj—()\l—l) 41 (uj,0)—Rj1 In(1— (41 (u;,0)) M )] +R; oy In(1—(41(11,0))*)

o T w0~ (1) In s (1).6)~ Ryz In(1— (2(w;.0)2) | + Ry In(1—(2(72.0))2)

< e PO [vf—mn v;—(A3—1) Inv3(v;,0)—Rjs ln(l—(wza(vjﬂ))“)] +Rj 41 In(1—(¢3(73,0))13)

(11)
The marginal posterior densities in (11) are not well-known distributions, so we will use
the Metropolis-Hastings (MH) sampler to generate the values of A1, A2, A3, and 6 with a
normal proposal distribution to generate samples from it in (11).

Furthermore, the approach of Chen and Shao [44] is extensively used to construct
HPD intervals with unknown benefit distribution parameters for Bayesian estimates. For
example, a 95% HPD interval can be created using two endpoints from the MCMC sample
outputs: 2.5% and 97.5% percentiles, respectively. The © parameters’ Bayes, trustworthy
intervals are calculated as follows:

i) Sorted parameters as N < N << N = 1,23, M <ol < . <6 , an
Sorted A< 3 AV M < 2! 6N and
T <« TR < . < YW and N is the length of MCMC generated.
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-~~~ N 25 1 975
(ii) The 95% symmetric credible intervals of A1, Ag, A3, # and T become ()\l 1000 )\lL 1000) ,

~r 25 ~r 975 ~7 25 .~ 975
<9L 1000 , HL 1000) and (TL 1000 , TL 1000 ) .

5. Simulation Study

This section presents some simulation findings that demonstrate how the various tactics
discussed in this study perform in real-world situations.

e Various circumstances were used as:
Case I: A1 =0.5,A =4,23=20,0 =0.5 and 7, = 14,75 = 6,73 = 18.
Case H:/\1 = 0.5, /\2 = 1.2, /\3 = 10,9 =3 and T = 1,7’2 = 1.2,7‘3 = 1.6.
Case III)\l = 0.3,)\2 = 0.6,)\3 = 5,9 = 0.8 and T — 2,7’2 = 1.8,7‘3 = 3.
Case IV: A\ = 1.3,X 2 = 5,A\3 = 15,60 = 1.5 and 4 = 2, = 1.8,73 = 3 and
T =2.5,79 = 2.5, 13 =4.

e A variety of sample sizes were selected, ny = 20,no = 25,n3 = 15 with different
effective sample sizes for each sample as s; = 15,89 = 18,53 = 11, and different &
values for each sample as k1 = 12, ko = 16, k3 = 10.

e Big sample sizes were selected as ny = 30,ny = 40,n3 = 30 with different effective
sample sizes for each sample as s; = 17, s9 = 22, s3 = 13, and different k£ values for
each sample as k1 = 15, ko = 20, k3 = 11.

o Two different progressive censoring schemes, namely, Scheme-1 R; = (n1—s1, rep(0, s1—
1)), R2 = (ng — s2,7ep(0,s9 — 1)), Ry = (ng — s3,rep(0, s3 — 1)) and Scheme-1T R; =
(rep(0,s1 —1),n1 — s1), Ra = (rep(0,s9 — 1),n1 — s1), R3 = (rep(0, s3 — 1), ng — s3).

o Calculate the point estimates based on both estimation methods. Also, calculate
the credible and approximate 95% CIs for both loss functions in each instance.

e The procedures are carried out 5000 times, and the results are presented for the bias
and mean squared errors (MSE) for all estimates.

o The average lengths of CI (LCI) with related coverage percentages (CP), average
lengths of Boot-P (LCIBP), average lengths of Boot-T (LCIBT), and average lengths
of HPD credible CI (LCCI) where LCCI1 for SELF, LCCI2 for LINEX when c¢= 0.5
and LCCI3 for LINEX when c¢=1.5.

Elective hyperparameters based on the mean and variance of the gamma prior distri-
bution are used to choose the hyper-parameters for prior distribution. Using the likelihood
method’s estimate and variance-covariance matrix, we may learn how to elicit hyperpa-
rameters of the independent joint prior. The resulting hyperparameters can be represented
as the mean and variance of gamma priors.
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where N is the number of iterations (for more details see Dey et al. [45]). We replicate

the MH algorithm process 10,000 times for MCMC approaches. The following conclusions
can be drawn from the results shown in Tables”1, 2, 3, and 4.

29 J=12,..,p—1,

o Based on the average (AvE), where they approach to the actual values, the estimates
of population parameters for ML and Bayesian methods are pretty good (see Tables
1, 2, 3, and 4).

e The MSE reduces with sample size, as is expected for the ML and Bayesian estima-
tion techniques as seen in Tables 1, 2, 3, and 4.

e As s increases for a given sample size, the MSE likewise gets worse.

e The MSEs fall as the tolerable absolute minimum of failures, k, rises, if n and s are
held constant as seen in Table 1 to Table 4.

o Based on the evidence presented in Tables 1- 4, Scheme II demonstrates clear supe-
riority over Scheme I in terms of bias, MSE, length of CI.

e The Bayesian estimates perform better than ML estimates in terms of bias, MSE,
and length of CI because they take into account prior information based on a gamma
informative prior (see Tables 1-4).

e Bayes estimates derived using asymmetric loss functions are more accurate than
those employing symmetric loss functions, as demonstrated in Tables 1-4.

o For Bayesian estimation, the average length of the HPD credible Cls is preferable to
the average length of an asymptotic CI. The shortest CI is the average bootstrapping
time (see Tables 1-4).

6. Data Analysis

In order to illustrate the approaches suggested in this study, this section looks at a real
data set. The EWD based on the GPHC technique is also displayed using this dataset.
Chapter Three of Nelson’s book [46] contains the results of a stress-strength life test of
transformer insulation. The test included three levels of voltage, which are 35:4kv, 42:4kv,
and 46:7Tkv, respectively, with a normal voltage of 14:4kv.
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Table 1: AvE and MSE for Estimation methods: Case |
A1 =05, 2 =4,A3 =20,0 =0.5
T =14, =6,73 =18 ML SELF LINEX ¢=0.5 LINEX c¢=1.5
ni,ne,ng | Scheme | s1, 82,83 | ki, ko, ks Bias MSE Bias MSE Bias MSE Bias MSE | LACI | CP | LCIBP | LCIBT | LCCI1 | LCCI2 | LCCI3
A1 | 0.0288 | 0.0173 | 0.0085 | 0.0087 | 0.0067 | 0.0086 | 0.0032 | 0.0085 | 0.5032 | 96% | 0.0225 | 0.0224 | 0.3396 | 0.3381 | 0.3351
A2 | 0.1576 | 0.4243 | -0.0038 | 0.0193 | -0.0065 | 0.0193 | -0.0119 | 0.0193 | 2.4799 | 94% | 0.1146 | 0.1148 | 0.5392 | 0.5405 | 0.5382
15,18,11 | 12,16,10 | A3 | 0.0455 | 0.0314 | -0.0114 | 0.0218 | -0.0142 | 0.0220 | -0.0197 | 0.0223 | 0.6724 | 95% | 0.0319 | 0.0319 | 0.5938 | 0.5880 | 0.5829
6 | 0.0048 | 0.0012 | 0.0024 | 0.0011 | 0.0020 | 0.0011 | 0.0011 | 0.0010 | 0.1327 | 95% | 0.0055 | 0.0055 | 0.1297 | 0.1295 | 0.1291
1 T | -0.0072 | 0.0006 | -0.0014 | 0.0003 | -0.0010 | 0.0003 | -0.0004 | 0.0003 | 0.0956 | 96% | 0.0044 | 0.0045 | 0.0651 | 0.0649 | 0.0648
A1 | 0.0356 | 0.0163 | 0.0025 | 0.0053 | 0.0017 | 0.0053 | 0.0002 | 0.0053 | 0.4812 | 95% | 0.0227 | 0.0228 | 0.2787 | 0.2783 | 0.2783
A2 | 0.1404 | 0.4167 | 0.0039 | 0.0081 | 0.0029 | 0.0081 | 0.0010 | 0.0081 | 2.4722 | 94% | 0.1128 | 0.1126 | 0.3422 | 0.3417 | 0.3443
17,22,13 | 15,20,11 | A3 | 0.0425 | 0.0301 | 0.0068 | 0.0081 | 0.0058 | 0.0080 | 0.0038 | 0.0079 | 0.6284 | 99% | 0.0308 | 0.0306 | 0.3472 | 0.3450 | 0.3413
6 | 0.0064 | 0.0011 | 0.0048 | 0.0010 | 0.0045 | 0.0010 | 0.0038 | 0.0009 | 0.1278 | 95% | 0.0055 | 0.0053 | 0.1334 | 0.1329 | 0.1325
20.15.15 T | -0.0086 | 0.0006 | -0.0003 | 0.0002 | -0.0001 | 0.0002 | 0.0002 | 0.0002 | 0.0915 | 95% | 0.0041 | 0.0040 | 0.0534 | 0.0532 | 0.0527
T A1 | 0.0551 | 0.0214 | 0.0124 | 0.0095 | 0.0106 | 0.0093 | 0.0071 | 0.0091 | 0.5320 | 96% | 0.0228 | 0.0229 | 0.3717 | 0.3692 | 0.3641
A2 | 0.2231 | 0.7048 | -0.0037 | 0.0197 | -0.0063 | 0.0198 | -0.0115 | 0.0199 | 3.1757 | 95% | 0.1536 | 0.1519 | 0.5060 | 0.5048 | 0.5059
15,18,11 | 12,16,10 | A3 | 0.0623 | 0.5909 | 0.0051 | 0.0216 | 0.0024 | 0.0215 | -0.0031 | 0.0215 | 3.0064 | 95% | 0.1394 | 0.1416 | 0.5883 | 0.5866 | 0.5928
6 | 0.0067 | 0.0014 | 0.0027 | 0.0013 | 0.0022 | 0.0013 | 0.0011 | 0.0013 | 0.1440 | 95% | 0.0067 | 0.0067 | 0.1298 | 0.1296 | 0.1293
9 T | -0.0134 | 0.0009 | -0.0020 | 0.0003 | -0.0016 | 0.0003 | -0.0009 | 0.0003 | 0.1040 | 96% | 0.0049 | 0.0049 | 0.0712 | 0.0708 | 0.0702
A1 | 0.0363 | 0.0182 | 0.0024 | 0.0055 | 0.0016 | 0.0055 | 0.0000 | 0.0054 | 0.5102 | 96% | 0.0228 | 0.0219 | 0.2805 | 0.2798 | 0.2789
A2 | 0.1437 | 0.3905 | 0.0022 | 0.0083 | 0.0012 | 0.0083 | -0.0008 | 0.0084 | 2.3865 | 95% | 0.1113 | 0.1090 | 0.3542 | 0.3541 | 0.3490
17,22,13 | 15,20,11 | A3 | 0.0144 | 0.1303 | -0.0016 | 0.0087 | -0.0026 | 0.0088 | -0.0047 | 0.0088 | 1.4152 | 99% | 0.0601 | 0.0637 | 0.3829 | 0.3823 | 0.3800
0 | 0.0045 | 0.0013 | 0.0037 | 0.0012 | 0.0033 | 0.0012 | 0.0026 | 0.0012 | 0.1384 | 96% | 0.0059 | 0.0062 | 0.1371 | 0.1373 | 0.1370
T | -0.0088 | 0.0007 | -0.0003 | 0.0002 | -0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0958 | 96% | 0.0044 | 0.0043 | 0.0534 | 0.0532 | 0.0530
A1 | 0.0282 | 0.0105 | 0.0120 | 0.0070 | 0.0104 | 0.0069 | 0.0072 | 0.0067 | 0.3872 | 97% | 0.0186 | 0.0185 | 0.3222 | 0.3217 | 0.3200
A2 | 0.1331 | 0.0243 | 0.0102 | 0.0190 | 0.0075 | 0.0199 | 0.0023 | 0.0199 | 1.8612 | 94% | 0.0786 | 0.0764 | 0.5319 | 0.5279 | 0.5310
25,30,22 | 20,24,20 | A3 | 0.0068 | 0.0011 | -0.0106 | 0.0216 | -0.0132 | 0.0217 | -0.0184 | 0.0218 | 1.4103 | 98% | 0.0662 | 0.0806 | 0.5735 | 0.5757 | 0.5758
6 | 0.0009 | 0.0005 | 0.0000 | 0.0005 | -0.0003 | 0.0005 | -0.0008 | 0.0005 | 0.0905 | 95% | 0.0043 | 0.0043 | 0.0897 | 0.0897 | 0.0896
1 T | -0.0066 | 0.0004 | -0.0022 | 0.0003 | -0.0019 | 0.0002 | -0.0013 | 0.0002 | 0.0731 | 96% | 0.0034 | 0.0035 | 0.0613 | 0.0612 | 0.0608
A1 | 0.0234 | 0.0091 | 0.0060 | 0.0048 | 0.0052 | 0.0048 | 0.0037 | 0.0048 | 0.4103 | 96% | 0.0193 | 0.0194 | 0.2629 | 0.2622 | 0.2610
A2 | 0.0326 | 0.0235 | -0.0042 | 0.0076 | -0.0052 | 0.0076 | -0.0071 | 0.0077 | 1.8923 | 95% | 0.0851 | 0.0690 | 0.3244 | 0.3225 | 0.3220
27,34,26 | 23,30,23 | A3 | 0.0053 | 0.0010 | -0.0002 | 0.0008 | -0.0012 | 0.0084 | -0.0031 | 0.0084 | 0.8675 | 97% | 0.0380 | 0.0381 | 0.3506 | 0.3513 | 0.3511
6 | 0.0024 | 0.0005 | 0.0024 | 0.0005 | 0.0022 | 0.0006 | 0.0017 | 0.0004 | 0.0903 | 95% | 0.0039 | 0.0038 | 0.0950 | 0.0950 | 0.0950
30.40.30 T | -0.0081 | 0.0004 | -0.0009 | 0.0002 | -0.0008 | 0.0002 | -0.0005 | 0.0002 | 0.0761 | 95% | 0.0032 | 0.0032 | 0.0506 | 0.0507 | 0.0507
’ A1 | 0.0374 | 0.0117 | 0.0143 | 0.0080 | 0.0128 | 0.0079 | 0.0098 | 0.0077 | 0.3974 | 95% | 0.0169 | 0.0170 | 0.3298 | 0.3274 | 0.3228
A2 | 0.1411 | 0.3371 | 0.0129 | 0.0194 | 0.0103 | 0.0193 | 0.0051 | 0.0191 | 2.2098 | 95% | 0.0976 | 0.0985 | 0.5626 | 0.5598 | 0.5562
25,30,22 | 20,24,20 | A3 | 0.0702 | 0.0009 | -0.0027 | 0.0008 | -0.0053 | 0.0007 | -0.0106 | 0.0006 | 1.0712 | 97% | 0.0523 | 0.0534 | 0.5576 | 0.5555 | 0.5481
6 | 0.0015 | 0.0007 | 0.0009 | 0.0007 | 0.0006 | 0.0007 | 0.0000 | 0.0007 | 0.1032 | 95% | 0.0048 | 0.0048 | 0.1056 | 0.1057 | 0.1053
9 T | -0.0089 | 0.0004 | -0.0026 | 0.0003 | -0.0023 | 0.0003 | -0.0018 | 0.0003 | 0.0742 | 95% | 0.0033 | 0.0034 | 0.0616 | 0.0614 | 0.0612
A1 | 0.0302 | 0.0113 | 0.0057 | 0.0054 | 0.0050 | 0.0054 | 0.0035 | 0.0053 | 0.3999 | 94% | 0.0159 | 0.0169 | 0.2829 | 0.2816 | 0.2793
A2 | 0.1151 | 0.1259 | -0.0072 | 0.0076 | -0.0082 | 0.0077 | -0.0102 | 0.0077 | 1.9472 | 96% | 0.0885 | 0.0878 | 0.3480 | 0.3489 | 0.3468
27,34,26 | 23,30,23 | A3 | 0.0118 | 0.0008 | 0.0004 | 0.0007 | -0.0007 | 0.0007 | -0.0027 | 0.0006 | 0.9266 | 99% | 0.0410 | 0.0412 | 0.3375 | 0.3362 | 0.3380
6 | 0.0033 | 0.0007 | 0.0028 | 0.0008 | 0.0025 | 0.0006 | 0.0021 | 0.0005 | 0.1023 | 95% | 0.0045 | 0.0045 | 0.1047 | 0.1047 | 0.1049
T | -0.0069 | 0.0004 | -0.0008 | 0.0002 | -0.0007 | 0.0002 | -0.0004 | 0.0002 | 0.0715 | 94% | 0.0032 | 0.0032 | 0.0530 | 0.0529 | 0.0526

At 42:4kv, the dataset is 0.6, 13.4, 15.2, 19.9, 25.0, 30.2, 32.8, 44.4, 56.2.

At 46:7kv, the dataset is 3.1, 8.3, 8.9, 9.0, 13.6, 14.9, 16.1, 16.9, 21.3,48.1.

At 35:4kv, the dataset is 40.1, 59.4, 71.2, 166.5, 204.7, 229.7, 308.3, and 537.9.

We wish to determine the SSM P(U < W < V) dependability. First, Table 5 presents
estimated values for several measures as: 'Kolmogorov Smirnov distance (KS) statistic
along with its P-value (P-V), Akaike information criterion (AIC), Bayesian information
criterion (BIC), corrected AIC (CAIC), and Hannan-Quinn information criterion (HQIC)’
for the EWD. The EWD fits each data set according to the KS test. The ML estimates
via a complete sample are listed in Table 6 for EWD and EED with stress-strength Y.
According to the value of different measures and P-V of T, it is noted that the EWD
is better than the EED. Also, the SE for the ML estimate is smaller than that of the
other estimates. In light of the GPHC, the Bayesian estimation method represents the
most accurate for the EWD. The Bayesian estimating method’s reliability is higher than
the ML process’s, supporting the stated result. Figures 3, 4, and 5, prove the fitting of
each data set fitted by EWD, according to empirical CDF, histogram, and probability-
probability (P-P) behavior plots.
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Table 2: Bias, MSE, and LCI for Estimation methods: Case Il
N =05 =12x=10,0=3
7 =17m7=12"1=16 ML SELF LINEX ¢=0.5 LINEX c=1.5 ML Bayesian
n1,n2,n3 | Scheme | s1, 52, 83 | k1, ko, k3 Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | LACI | CP | LCIBP | LCIBT | LCCI | LCCI2 | LCCI3
XL | 0.0193 | 0.0155 | 0.0128 | 0.0095 | 0.0111 | 0.0094 | 0.0079 | 0.0092 | 0.4826 | 95% | 0.0231 | 0.0230 | 0.3574 | 0.3550 | 0.3515
Ao | 0.0498 | 0.0708 | -0.0011 | 0.0188 | -0.0036 | 0.0187 | -0.0087 | 0.0187 | 1.0260 | 96% | 0.0476 | 0.0480 | 0.5286 | 0.5272 | 0.5268
15,18,11 | 12,16,10 | As | 1.1425 | 7.8730 | -0.0019 | 0.0238 | -0.0047 | 0.0238 | -0.0105 | 0.0239 | 10.0560 | 96% | 0.4620 | 0.4721 | 0.5673 | 0.5671 | 0.5658
6 | 0.1315 | 0.1374 | 0.0015 | 0.0137 | -0.0006 | 0.0137 | -0.0047 | 0.0138 | 1.3597 | 95% | 0.0637 | 0.0630 | 0.4445 | 0.4448 | 0.4449
| T | 0.0003 | 0.0029 | -0.0049 | 0.0017 | -0.0045 | 0.0017 | -0.0038 | 0.0017 | 0.2119 | 95% | 0.0095 | 0.0097 | 0.1533 | 0.1535 | 0.1541
X1 | 0.0170 | 0.0149 | 0.0059 | 0.0053 | 0.0051 | 0.0052 | 0.0034 | 0.0052 | 0.4509 | 95% | 0.0226 | 0.0226 | 0.2665 | 0.2674 | 0.2695
A2 | 0.0430 | 0.0690 | 0.0003 | 0.0073 | -0.0007 | 0.0073 | -0.0025 | 0.0073 | 1.0168 | 96% | 0.0489 | 0.0474 | 0.3184 | 0.3180 | 0.3178
17,22,13 | 15,20,11 | As | 1.0793 | 4.7472 | 0.0066 | 0.0080 | 0.0056 | 0.0080 | 0.0037 | 0.0080 | 10.0673 | 96% | 0.4718 | 0.4477 | 0.3657 | 0.3658 | 0.3634
6 | 0.0811 | 0.1010 | -0.0009 | 0.0067 | -0.0019 | 0.0067 | -0.0037 | 0.0067 | 1.2054 | 95% | 0.0572 | 0.0570 | 0.3174 | 0.3172 | 0.3150
90.95.15 T | -0.0003 | 0.0028 | -0.0017 | 0.0009 | -0.0015 | 0.0009 | -0.0010 | 0.0009 | 0.2114 | 96% | 0.0099 | 0.0093 | 0.1136 | 0.1141 | 0.1149
2 X1 | 0.0299 | 0.0181 | 0.0099 | 0.0098 | 0.0082 | 0.0097 | 0.0047 | 0.0095 | 0.5152 | 97% | 0.0247 | 0.0246 | 0.3533 | 0.3525 | 0.3527
Ao | 0.0642 | 0.0853 | -0.0010 | 0.0180 | -0.0035 | 0.0180 | -0.0086 | 0.0182 | 1.1182 | 95% | 0.0512 | 0.0504 | 0.5110 | 0.5130 | 0.5080
15,18,11 | 12,16,10 | A3 | 0.7819 | 6.4649 | 0.0077 | 0.0235 | 0.0048 | 0.0233 | -0.0011 | 0.0231 | 9.4937 | 96% | 0.4457 | 0.4583 | 0.6016 | 0.6044 | 0.6026
0 | 0.0913 | 0.1337 | 0.0034 | 0.0154 | 0.0011 | 0.0154 | -0.0036 | 0.0153 | 1.3895 | 94% | 0.0621 | 0.0624 | 0.4865 | 0.4826 | 0.4787
) T | -0.0054 | 0.0033 | -0.0034 | 0.0017 | -0.0030 | 0.0017 | -0.0022 | 0.0017 | 0.2254 | 96% | 0.0110 | 0.0108 | 0.1481 | 0.1481 | 0.1474
X1 | 0.0230 | 0.0160 | -0.0013 | 0.0052 | -0.0021 | 0.0052 | -0.0037 | 0.0052 | 0.4888 | 95% | 0.0220 | 0.0215 | 0.2630 | 0.2625 | 0.2628
Xz | 0.0750 | 0.0843 | 0.0031 | 0.0081 | 0.0022 | 0.0081 | 0.0002 | 0.0081 | 1.1006 | 94% | 0.0489 | 0.0503 | 0.3410 | 0.3388 | 0.3393
17,22,13 | 15,20,11 | A3 | 0.9118 | 3.0464 | -0.0007 | 0.0073 | -0.0017 | 0.0073 | -0.0038 | 0.0073 | 7.2292 | 96% | 0.4381 | 0.4355 | 0.3225 | 0.3224 | 0.3244
6 | 0.0914 | 0.1008 | 0.0011 | 0.0075 | 0.0002 | 0.0075 | -0.0017 | 0.0075 | 1.1930 | 95% | 0.0519 | 0.0530 | 0.3267 | 0.3266 | 0.3260
T | 0.0006 | 0.0028 | 0.0013 | 0.0010 | 0.0015 | 0.0010 | 0.0019 | 0.0010 | 0.2070 | 95% | 0.0103 | 0.0101 | 0.1155 | 0.1155 | 0.1147
X1 | 0.0131 | 0.0087 | 0.0166 | 0.0081 | 0.0150 | 0.0079 | 0.0116 | 0.0076 | 0.3624 | 95% | 0.0157 | 0.0157 | 0.3287 | 0.3232 | 0.3182
X | 0.0421 | 0.0437 | 0.0080 | 0.0159 | 0.0056 | 0.0158 | 0.0009 | 0.0156 | 0.8036 | 95% | 0.0364 | 0.0361 | 0.4913 | 0.4876 | 0.4838
25,30,22 | 20,24,20 | A | 0.9674 | 4.0388 | -0.0012 | 0.0228 | -0.0041 | 0.0229 | -0.0099 | 0.0232 | 6.9122 | 96% | 0.3122 | 0.3125 | 0.6000 | 0.6053 | 0.6134
6 | 0.0804 | 0.0559 | 0.0097 | 0.0124 | 0.0077 | 0.0123 | 0.0037 | 0.0123 | 0.8725 | 96% | 0.0397 | 0.0396 | 0.4200 | 0.4196 | 0.4182
L T | 0.0031 | 0.0016 | -0.0056 | 0.0014 | -0.0052 | 0.0013 | -0.0044 | 0.0013 | 0.1582 | 95% | 0.0067 | 0.0067 | 0.1334 | 0.1325 | 0.1313
X1 | 0.0159 | 0.0079 | 0.0069 | 0.0047 | 0.0062 | 0.0047 | 0.0047 | 0.0046 | 0.3442 | 95% | 0.0143 | 0.0144 | 0.2593 | 0.2584 | 0.2555
A2 | 0.0450 | 0.0391 | 0.0013 | 0.0066 | 0.0004 | 0.0066 | -0.0014 | 0.0066 | 0.7553 | 96% | 0.0339 | 0.0341 | 0.3140 | 0.3159 | 0.3185
27,34,26 | 23,30,23 | Ag | 0.8746 | 3.3364 | 0.0064 | 0.0080 | 0.0053 | 0.0080 | 0.0033 | 0.0080 | 4.2210 | 94% | 0.3042 | 0.3041 | 0.3275 | 0.3269 | 0.3252
0 | 0.0767 | 0.0519 | 0.0068 | 0.0066 | 0.0059 | 0.0066 | 0.0042 | 0.0066 | 0.8190 | 95% | 0.0342 | 0.0314 | 0.3236 | 0.3232 | 0.3205
30,4030 T | 0.0026 | 0.0016 | -0.0021 | 0.0008 | -0.0019 | 0.0008 | -0.0015 | 0.0008 | 0.1565 | 95% | 0.0065 | 0.0064 | 0.1084 | 0.1084 | 0.1084
s X | 0.0255 | 0.0116 | 0.0096 | 0.0069 | 0.0079 | 0.0068 | 0.0047 | 0.0066 | 0.4099 | 95% | 0.0191 | 0.0191 | 0.2993 | 0.2989 | 0.2972
Ao | 0.0562 | 0.0617 | 0.0117 | 0.0191 | 0.0092 | 0.0190 | 0.0044 | 0.0188 | 0.9491 | 95% | 0.0430 | 0.0434 | 0.5359 | 0.5350 | 0.5368
25,30,22 | 20,24,20 | Ag | 0.8660 | 4.2109 | -0.0091 | 0.0225 | -0.0121 | 0.0226 | -0.0180 | 0.0229 | 7.3000 | 95% | 0.3315 | 0.3315 | 0.6000 | 0.5992 | 0.6038
0 | 0.0775 | 0.0794 | 0.0026 | 0.0130 | 0.0004 | 0.0129 | -0.0038 | 0.0129 | 1.0628 | 94% | 0.0490 | 0.0487 | 0.4419 | 0.4416 | 0.4449
) T | -0.0020 | 0.0022 | -0.0030 | 0.0012 | -0.0026 | 0.0012 | -0.0019 | 0.0012 | 0.1832 | 96% | 0.0080 | 0.0078 | 0.1322 | 0.1317 | 0.1309
X | 0.0194 | 0.0114 | 0.0042 | 0.0054 | 0.0034 | 0.0054 | 0.0018 | 0.0053 | 0.3541 | 95% | 0.0152 | 0.0182 | 0.2849 | 0.2851 | 0.2843
Az | 0.0584 | 0.0510 | -0.0008 | 0.0080 | -0.0018 | 0.0080 | -0.0038 | 0.0080 | 0.8556 | 97% | 0.0384 | 0.0382 | 0.3434 | 0.3462 | 0.3461
27,3426 | 23,30,23 | Ay | 0.6843 | 1.6573 | 0.0079 | 0.0081 | 0.0068 | 0.0080 | 0.0046 | 0.0080 | 7.0074 | 95% | 0.2970 | 0.2985 | 0.3455 | 0.3456 | 0.3460
0 | 0.0612 | 0.0579 | 0.0058 | 0.0070 | 0.0049 | 0.0070 | 0.0031 | 0.0069 | 0.9127 | 95% | 0.0389 | 0.0389 | 0.3182 | 0.3170 | 0.3151
T | 0.0001 | 0.0020 | -0.0012 | 0.0010 | -0.0010 | 0.0010 | -0.0006 | 0.0010 | 0.1762 | 95% | 0.0078 | 0.0068 | 0.1205 | 0.1207 | 0.1212
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Figure 3: Empirical CDF, histogram, and P-P plots for the EWD for data set 1
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Figure 6 discussed the profile likelihood of the EWD parameters, which index the

estimators’” maximum log-likelihood values.

Figure 7 discussed count-our plots of log-

likelihood values with EWD parameters which are indicated by the estimators’ uniqueness.

The posterior distribution for the MCMC estimate of the SSM for the EWD based
on the GPHC is shown in Figure 8 along with its trace and normal curve. Figure 10
presents the MCMC samples as a pairs plot, which shows the pairwise correlation between
parameters in the top plot, correlation coefficients in the bottom plot, and marginal fre-
quency distribution for each parameter on the diagonal. Additionally, as seen in Figure 9,
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Table 3: Bias, MSE, and LCI for Estimation methods: Case Il
M =032 =06X3=50=08
n=27=1871=3 ML SELF LINEX ¢=0.5 | LINEX c=L15 ML Bayesian
ni,ne,ng | Scheme | s1, 82,83 | ki, ko, ks Bias MSE Bias MSE Bias MSE Bias MSE | LACI | CP | LCIBP | LCIBT | LCCI1 | LCCI2 | LCCI3
X1 | 0.0082 | 0.0078 | 0.0196 | 0.0062 | 0.0183 | 0.0060 | 0.0156 | 0.0058 | 0.3461 | 95% | 0.0148 | 0.0145 | 0.2770 | 0.2757 | 0.2731
A2 | 0.0091 |0.0254 | 0.0076 | 0.0120 | 0.0055 | 0.0119 | 0.0015 | 0.0117 | 0.6240 | 95% | 0.0268 | 0.0269 | 0.4186 | 0.4188 | 0.4189
15,18,11 | 12,16,10 | Ag | 0.3314 | 1.8832 | -0.0060 | 0.0209 | -0.0086 | 0.0211 | -0.0138 | 0.0213 | 5.2253 | 96% | 0.2362 | 0.2366 | 0.5804 | 0.5804 | 0.5847
6 | 0.0484 | 0.0256 | 0.0063 | 0.0081 | 0.0047 | 0.0081 | 0.0014 | 0.0080 | 0.5990 | 94% | 0.0264 | 0.0263 | 0.3331 | 0.3323 | 0.3296
L T | -0.0048 | 0.0040 | -0.0126 | 0.0033 | -0.0123 | 0.0033 | -0.0115 | 0.0032 | 0.2477 | 94% | 0.0110 | 0.0111 | 0.2177 | 0.2171 | 0.2177
A1 | 0.0112 | 0.0068 | -0.0002 | 0.0038 | -0.0009 | 0.0038 | -0.0022 | 0.0038 | 0.3202 | 95% | 0.0144 | 0.0142 | 0.2323 | 0.2315 | 0.2283
A2 | 0.0142 | 0.0248 | -0.0034 | 0.0058 | -0.0043 | 0.0058 | -0.0060 | 0.0058 | 0.6148 | 96% | 0.0285 | 0.0283 | 0.2935 | 0.2928 | 0.2915
17,22,13 | 15,20,11 | Az | 0.2902 | 1.6877 | 0.0059 | 0.0076 | 0.0049 | 0.0076 | 0.0030 | 0.0076 | 4.9689 | 97% | 0.2380 | 0.2384 | 0.3390 | 0.3395 | 0.3378
6 | 0.0359 | 0.0206 | 0.0048 | 0.0048 | 0.0040 | 0.0047 | 0.0025 | 0.0047 | 0.5454 | 94% | 0.0255 | 0.0257 | 0.2535 | 0.2537 | 0.2544
90.95.15 T | -0.0067 | 0.0038 | 0.0002 | 0.0023 | 0.0005 | 0.0023 | 0.0010 | 0.0023 | 0.2417 | 95% | 0.0112 | 0.0113 | 0.1803 | 0.1801 | 0.1801
e X1 | 0.0081 | 0.0084 | 0.0134 | 0.0065 | 0.0121 | 0.0063 | 0.0093 | 0.0060 | 0.3578 | 95% | 0.0153 | 0.0154 | 0.2818 | 0.2793 | 0.2762
A2 | 0.0085 | 0.0278 | -0.0062 | 0.0139 | -0.0084 | 0.0138 | -0.0126 | 0.0136 | 0.6536 | 95% | 0.0285 | 0.0282 | 0.4266 | 0.4253 | 0.4255
15,18,11 | 12,16,10 | A3 | 0.3314 | 1.9484 | -0.0040 | 0.0230 | -0.0068 | 0.0231 | -0.0124 | 0.0233 | 5.3205 | 96% | 0.2465 | 0.2366 | 0.5550 | 0.5529 | 0.5541
6 | 0.0454 | 0.0211 | 0.0122 | 0.0097 | 0.0104 | 0.0096 | 0.0067 | 0.0094 | 0.5413 | 96% | 0.0236 | 0.0229 | 0.3715 | 0.3714 | 0.3683
) T | -0.0059 | 0.0043 | -0.0113 | 0.0034 | -0.0110 | 0.0034 | -0.0102 | 0.0033 | 0.2573 | 96% | 0.0111 | 0.0111 | 0.2102 | 0.2107 | 0.2077
X1 | 0.0181 | 0.0082 | 0.0041 | 0.0041 | 0.0035 | 0.0041 | 0.0021 | 0.0040 | 0.3483 | 95% | 0.0147 | 0.0148 | 0.2394 | 0.2391 | 0.2378
A2 | 0.0287 | 0.0265 | 0.0004 | 0.0069 | -0.0004 | 0.0069 | -0.0022 | 0.0068 | 0.6289 | 97% | 0.0272 | 0.0272 | 0.3203 | 0.3194 | 0.3150
17,22,13 | 15,20,11 | Ag | 0.3534 | 1.7370 | -0.0012 | 0.0081 | -0.0022 | 0.0081 | -0.0043 | 0.0081 | 4.9821 | 96% | 0.2196 | 0.2212 | 0.3555 | 0.3566 | 0.3577
6 | 0.0253 | 0.0184 | 0.0047 | 0.0056 | 0.0040 | 0.0056 | 0.0024 | 0.0056 | 0.5223 | 94% | 0.0224 | 0.0214 | 0.2910 | 0.2913 | 0.2905
T | -0.0052 | 0.0042 | -0.0023 | 0.0025 | -0.0021 | 0.0025 | -0.0015 | 0.0025 | 0.2468 | 95% | 0.0110 | 0.0103 | 0.1845 | 0.1851 | 0.1866
X1 | 0.0081 | 0.0042 | 0.0128 | 0.0037 | 0.0118 | 0.0037 | 0.0098 | 0.0035 | 0.2508 | 95% | 0.0113 | 0.0112 | 0.2233 | 0.2218 | 0.2178
X2 | 0.0179 | 0.0138 | 0.0095 | 0.0092 | 0.0078 | 0.0090 | 0.0044 | 0.0089 | 0.4561 | 95% | 0.0190 | 0.0190 | 0.3643 | 0.3640 | 0.3636
28,30,28 | 18,2222 | A3 | 0.3321 | 0.6837 | 0.0020 | 0.0211 | -0.0008 | 0.0211 | -0.0063 | 0.0211 | 2.9713 | 95% | 0.1332 | 0.1349 | 0.5546 | 0.5509 | 0.5515
6 | 0.0278 | 0.0085 | 0.0081 | 0.0052 | 0.0069 | 0.0052 | 0.0044 | 0.0051 | 0.3439 | 96% | 0.0153 | 0.0153 | 0.2760 | 0.2757 | 0.2782
L T | 0.0006 | 0.0022 | -0.0077 | 0.0021 | -0.0074 | 0.0021 | -0.0068 | 0.0021 | 0.1834 | 97% | 0.0079 | 0.0079 | 0.1712 | 0.1709 | 0.1709
A1 | 0.0057 | 0.0039 | 0.0083 | 0.0032 | 0.0077 | 0.0031 | 0.0064 | 0.0030 | 0.2440 | 95% | 0.0110 | 0.0106 | 0.2069 | 0.2060 | 0.2022
A2 | 0.0135 | 0.0115 | 0.0072 | 0.0050 | 0.0065 | 0.0050 | 0.0049 | 0.0050 | 0.4173 | 96% | 0.0187 | 0.0191 | 0.2734 | 0.2718 | 0.2716
25,35,35 | 22,30,30 | A3 | 0.2902 | 0.6492 | 0.0060 | 0.0079 | 0.0050 | 0.0079 | 0.0030 | 0.0078 | 3.0593 | 96% | 0.1241 | 0.1421 | 0.3382 | 0.3369 | 0.3343
6 | 0.0306 | 0.0077 | 0.0049 | 0.0036 | 0.0043 | 0.0036 | 0.0030 | 0.0036 | 0.3221 | 96% | 0.0150 | 0.0156 | 0.2283 | 0.2288 | 0.2295
30.40.30 T | 0.0016 | 0.0021 | -0.0038 | 0.0017 | -0.0035 | 0.0017 | -0.0030 | 0.0016 | 0.1800 | 95% | 0.0077 | 0.0077 | 0.1514 | 0.1512 | 0.1495
’ A1 | 0.0161 | 0.0060 | 0.0180 | 0.0052 | 0.0168 | 0.0051 | 0.0144 | 0.0049 | 0.2979 | 96% | 0.0139 | 0.0140 | 0.2627 | 0.2620 | 0.2612
A2 | 0.0230 | 0.0150 | 0.0122 | 0.0110 | 0.0104 | 0.0109 | 0.0068 | 0.0106 | 0.4720 | 94% | 0.0223 | 0.0221 | 0.3958 | 0.3897 | 0.3834
28,30,28 | 18,22,22 | A3 | 0.3658 | 1.0361 | -0.0004 | 0.0222 | -0.0034 | 0.0223 | -0.0093 | 0.0223 | 3.7274 | 95% | 0.1684 | 0.1759 | 0.5571 | 0.5613 | 0.5589
6 | 0.0272 | 0.0098 | 0.0105 | 0.0062 | 0.0090 | 0.0061 | 0.0061 | 0.0060 | 0.3737 | 95% | 0.0173 | 0.0170 | 0.3030 | 0.3012 | 0.3014
) T | -0.0025 | 0.0027 | -0.0102 | 0.0026 | -0.0099 | 0.0025 | -0.0092 | 0.0025 | 0.2030 | 96% | 0.0086 | 0.0086 | 0.1905 | 0.1900 | 0.1899
X1 | 0.0095 | 0.0042 | 0.0105 | 0.0031 | 0.0099 | 0.0031 | 0.0086 | 0.0030 | 0.2527 | 95% | 0.0109 | 0.0109 | 0.2035 | 0.2019 | 0.2014
Ao | 0.0255 | 0.0152 | -0.0007 | 0.0050 | -0.0015 | 0.0050 | -0.0030 | 0.0049 | 0.4736 | 95% | 0.0225 | 0.0225 | 0.2685 | 0.2683 | 0.2683
25,35,35 | 22,30,30 | A3 | 0.3813 | 0.9327 | -0.0045 | 0.0075 | -0.0055 | 0.0075 | -0.0075 | 0.0075 | 3.4817 | 95% | 0.1526 | 0.1498 | 0.3194 | 0.3201 | 0.3195
6 | 0.0283 | 0.0081 | 0.0084 | 0.0040 | 0.0077 | 0.0039 | 0.0064 | 0.0039 | 0.3356 | 95% | 0.0149 | 0.0147 | 0.2323 | 0.2319 | 0.2320
T | 0.0016 | 0.0022 | -0.0072 | 0.0017 | -0.0070 | 0.0017 | -0.0065 | 0.0017 | 0.1855 | 95% | 0.0078 | 0.0079 | 0.1558 | 0.1558 | 0.1551
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Figure 4: Empirical CDF, histogram, and P-P plots for the EWD for data set 2

convergence starts at 2000 iterations or less for the SSM estimate for EWD based on the
entire sample. Figures 13 and 12 show the MCMC samples as a pairs plot that represents
the pairwise relationship between parameters as independent with the scatter plot matrix
in the top plot, correlation coefficients in the bottom plot, and marginal frequency distri-
bution for each parameter on the diagonal. In this picture, the parameters p3 and p4 are
shown to be medially related, where pl is a A1, p2 is a A9, p3 is a A3, and p4 is a 6.

For each component of this model, we suggested using the following GPHC sample as

follows:
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Table 4: Bias, MSE, and LCI for Estimation methods: Case IV
M =13 =5X=150=15
ny = 30,19 = 40,n3 = 40 ML SELF LINEX ¢=0.5 LINEX c¢=1.5 ML Bayesian
71,72, T3 | Scheme | s1,89,83 | k1, ko, k3 Bias MSE Bias MSE Bias MSE Bias MSE | LACI | CP | LCIBP | LCIBT | LCCI1 | LCCI2 | LCCI3
X1 | 0.0436 | 0.0673 | 0.0268 | 0.0132 | 0.0169 | 0.0124 | -0.0025 | 0.0114 | 1.0034 | 95% | 0.0455 | 0.0460 | 0.4201 | 0.4178 | 0.4044
A2 | 0.1569 | 0.7586 | 0.0122 | 0.0787 | -0.0201 | 0.0779 | -0.0825 | 0.0842 | 3.3618 | 96% | 0.1516 | 0.1512 | 1.0791 | 1.0632 | 1.0881
20,28,28 | 18,22,22 | Az | 0.1916 | 1.8396 | -0.0229 | 0.5429 | -0.0932 | 0.5571 | -0.2204 | 0.6113 | 5.2688 | 94% | 0.2449 | 0.2454 | 2.8574 | 2.7490 | 2.6732
0 | 0.0118 | 0.0062 | 0.0025 | 0.0044 | 0.0003 | 0.0044 | -0.0040 | 0.0044 | 0.3049 | 95% | 0.0141 | 0.0142 | 0.2574 | 0.2570 | 0.2553
| T | -0.0055 | 0.0012 | -0.0037 | 0.0003 | -0.0033 | 0.0003 | -0.0023 | 0.0002 | 0.1336 | 95% | 0.0062 | 0.0062 | 0.0584 | 0.0569 | 0.0560
X1 | 0.0588 | 0.0617 | 0.0288 | 0.0121 | 0.0210 | 0.0120 | 0.0056 | 0.0109 | 0.9804 | 96% | 0.0448 | 0.0472 | 0.5470 | 0.5410 | 0.5312
A2 | 0.1264 | 0.7014 | -0.0015 | 0.0749 | -0.0166 | 0.0729 | -0.0462 | 0.0817 | 3.2487 | 95% | 0.1430 | 0.1370 | 1.1184 | 1.1026 | 1.0797
25,35,35 | 22,30,30 | A3 | 0.1802 | 1.2887 | 0.0000 | 0.1828 | -0.0226 | 0.1841 | -0.0664 | 0.1901 | 4.8852 | 94% | 0.2367 | 0.2357 | 1.6691 | 1.6675 | 1.6510
0 | 0.0074 | 0.0051 | 0.0015 | 0.0037 | -0.0003 | 0.0037 | -0.0038 | 0.0037 | 0.2794 | 96% | 0.0124 | 0.0124 | 0.2292 | 0.2278 | 0.2265
9183 T | -0.0068 | 0.0011 | -0.0033 | 0.0003 | -0.0027 | 0.0003 | -0.0013 | 0.0003 | 0.1372 | 96% | 0.0058 | 0.0058 | 0.0625 | 0.0616 | 0.0619
e X1 | 0.0583 | 0.0914 | 0.0257 | 0.0127 | 0.0147 | 0.0119 | -0.0067 | 0.0109 | 1.1637 | 96% | 0.0501 | 0.0501 | 0.4224 | 0.4134 | 0.3968
Az | 0.1521 | 0.8848 | 0.0049 | 0.0707 | -0.0277 | 0.0703 | -0.0903 | 0.0774 | 3.6424 | 97% | 0.1535 | 0.1535 | 1.0520 | 1.0518 | 1.0699
20,28,28 | 18,22,22 | A3 | 0.2225 | 2.9436 | 0.0244 | 0.5724 | -0.0503 | 0.5641 | -0.1839 | 0.5905 | 6.6753 | 95% | 0.2892 | 0.2902 | 2.9323 | 2.8524 | 2.7197
0 | 0.0128 | 0.0078 | 0.0046 | 0.0049 | 0.0022 | 0.0049 | -0.0026 | 0.0048 | 0.3419 | 95% | 0.0151 | 0.0152 | 0.2682 | 0.2675 | 0.2660
) T | -0.0071 | 0.0014 | -0.0030 | 0.0002 | -0.0025 | 0.0002 | -0.0013 | 0.0002 | 0.1437 | 94% | 0.0068 | 0.0070 | 0.0564 | 0.0563 | 0.0559
X1 | 0.0552 | 0.0900 | 0.0261 | 0.0129 | 0.0180 | 0.0109 | 0.0021 | 0.0108 | 1.1571 | 96% | 0.0495 | 0.0495 | 0.4945 | 0.5197 | 0.5101
A2 | 0.2528 | 0.8691 | 0.0063 | 0.0681 | -0.0087 | 0.0681 | -0.0382 | 0.0618 | 3.6131 | 94% | 0.1508 | 0.1529 | 1.0891 | 1.0761 | 1.0816
25,35,35 | 22,30,30 | A3 | 0.1178 | 1.8800 | 0.0102 | 0.1480 | -0.0109 | 0.1484 | -0.0521 | 0.1533 | 5.3603 | 95% | 0.2305 | 0.2290 | 1.5367 | 1.5377 | 1.4936
6 | 0.0087 | 0.0053 | 0.0019 | 0.0040 | 0.0001 | 0.0040 | -0.0037 | 0.0040 | 0.2840 | 96% | 0.0133 | 0.0130 | 0.2419 | 0.2420 | 0.2424
T | -0.0076 | 0.0013 | -0.0029 | 0.0002 | -0.0021 | 0.0003 | -0.0007 | 0.0002 | 0.1390 | 96% | 0.0055 | 0.0057 | 0.0598 | 0.0598 | 0.0612
X1 | 0.0416 | 0.0659 | 0.0117 | 0.0132 | 0.0095 | 0.0131 | 0.0050 | 0.0130 | 1.0038 | 95% | 0.0421 | 0.0432 | 0.4289 | 0.4290 | 0.4309
A2 | 0.1320 | 0.7271 | -0.0161 | 0.0220 | -0.0188 | 0.0222 | -0.0241 | 0.0227 | 3.4061 | 95% | 0.1578 | 0.1571 | 0.5741 | 0.5771 | 0.5809
20,28,28 | 18,22,22 | A3 | 0.1546 | 1.6025 | -0.0066 | 0.0230 | -0.0095 | 0.0232 | -0.0153 | 0.0235 | 5.5506 | 95% | 0.2547 | 0.2547 | 0.5874 | 0.5837 | 0.5918
0 | 0.0178 | 0.0061 | 0.0095 | 0.0044 | 0.0084 | 0.0044 | 0.0060 | 0.0043 | 0.2992 | 95% | 0.0136 | 0.0133 | 0.2610 | 0.2612 | 0.2603
| T | -0.0080 | 0.0011 | -0.0012 | 0.0002 | -0.0010 | 0.0002 | -0.0005 | 0.0002 | 0.1261 | 95% | 0.0058 | 0.0058 | 0.0498 | 0.0498 | 0.0506
X1 | 0.0409 | 0.0624 | -0.0006 | 0.0069 | -0.0015 | 0.0069 | -0.0033 | 0.0069 | 0.9773 | 95% | 0.0420 | 0.0424 | 0.3138 | 0.3137 | 0.3120
A2 | 0.1143 | 0.6581 | 0.0070 | 0.0081 | 0.0060 | 0.0081 | 0.0040 | 0.0080 | 3.1516 | 95% | 0.1392 | 0.1445 | 0.3528 | 0.3523 | 0.3511
25,35,35 | 22,30,30 | Az | 0.1512 | 1.1030 | 0.0018 | 0.0085 | 0.0008 | 0.0084 | -0.0011 | 0.0084 | 5.5025 | 95% | 0.2440 | 0.2438 | 0.3480 | 0.3471 | 0.3481
0 | 0.0097 | 0.0044 | 0.0022 | 0.0033 | 0.0016 | 0.0033 | 0.0004 | 0.0033 | 0.2589 | 95% | 0.0130 | 0.0128 | 0.2213 | 0.2208 | 0.2199
95954 T | -0.0040 | 0.0010 | 0.0002 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0001 | 0.1258 | 95% | 0.0056 | 0.0056 | 0.0357 | 0.0357 | 0.0356
e X1 | 0.0315 | 0.0862 | -0.0093 | 0.0126 | -0.0115 | 0.0157 | -0.0159 | 0.0158 | 1.1455 | 95% | 0.0523 | 0.0523 | 0.4861 | 0.4858 | 0.4857
A2 | 0.1702 | 0.8386 | -0.0208 | 0.0219 | -0.0235 | 0.0221 | -0.0290 | 0.0226 | 3.5308 | 95% | 0.1509 | 0.1506 | 0.5741 | 0.5742 | 0.5848
20,28,28 | 18,22,22 | Az | 0.0818 | 2.0260 | -0.0086 | 0.0253 | -0.0117 | 0.0254 | -0.0180 | 0.0258 | 5.5759 | 95% | 0.2527 | 0.2540 | 0.6038 | 0.6118 | 0.6167
0 | 0.0136 | 0.0061 | 0.0027 | 0.0045 | 0.0014 | 0.0054 | -0.0012 | 0.0054 | 0.3021 | 96% | 0.0133 | 0.0133 | 0.2822 | 0.2813 | 0.2818
) T | -0.0049 | 0.0014 | 0.0012 | 0.0002 | 0.0015 | 0.0002 | 0.0019 | 0.0002 | 0.1430 | 95% | 0.0063 | 0.0061 | 0.0567 | 0.0560 | 0.0561
A1 | 0.0524 | 0.0754 | 0.0008 | 0.0070 | -0.0001 | 0.0070 | -0.0020 | 0.0070 | 1.0576 | 97% | 0.0473 | 0.0472 | 0.3323 | 0.3330 | 0.3302
A2 | 0.1255 | 0.8078 | 0.0048 | 0.0079 | 0.0038 | 0.0079 | 0.0018 | 0.0079 | 2.6264 | 96% | 0.1464 | 0.1473 | 0.3296 | 0.3299 | 0.3308
25,35,35 | 22,30,30 | Az | 0.0900 | 1.9416 | 0.0088 | 0.0093 | 0.0077 | 0.0092 | 0.0056 | 0.0091 | 4.0894 | 93% | 0.2170 | 0.2171 | 0.3673 | 0.3665 | 0.3669
0 | 0.0091 | 0.0049 | 0.0018 | 0.0035 | 0.0012 | 0.0035 | 0.0000 | 0.0035 | 0.2729 | 94% | 0.0124 | 0.0124 | 0.2251 | 0.2252 | 0.2247
T | -0.0080 | 0.0014 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0004 | 0.0001 | 0.1408 | 96% | 0.0064 | 0.0063 | 0.0389 | 0.0388 | 0.0389
Table 5: ML estimates for parameters of EWD with different measures
Estimates SE KS P-V AIC CAIC BIC HQIC
v EWD M 20.6859 9.2567 0.1680 0.8978  75.6779 77.3921 76.2830 75.0140
0 0.4841 0.0557
w EWD A2 10.2683 3.5525 0.2689 0.4039 106.5047 108.0047 107.3005 106.0030
0 0.3303 0.0398
v  EWD A3 39.2764 211171 0.1479 0.9810 141.3349 143.0492 141.9401 140.6710

0 0.2623 0.0283

V = (40.1, 59.4, 71.2, 166.5, 204.7, 229.7, 308.3),
U= (3.1, 8.3, 8.9, 9.0, 13.6, 14.9, 16.1),

W= (0.6, 13.4, 15.2, 19.9, 25.0, 30.2, 32.8, 44.4),

Ry =(0,0,0,0,0,0,0,1,0), R =(0,0,0,0,0,0,0,0, 1), R3=(0, 0, 0, 0, 0, 0, 0, 2).

Table 7 discusses the ML and Bayesian estimates of the EWD parameters based on
the GPHC sample of the SSM. Figure 11 displays the posterior distribution’s trace and
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Table 6: ML and Bayesian estimates for reliability in SSM based on complete sample for EWD and EED

ML Bayesian
Estimates SE Lower  Upper | Estimates SE Lower Upper

A1 7.6867 2.5593  2.6704 12.7030 2.5194 0.7976  1.0926 4.0157

A2 9.1172 2.8817 3.4691 14.7654 3.4328 1.1334  1.4230 5.6384
EWD A3 75.7190  34.8958 7.3232 144.1147 72.1292 25.4282 23.7217 122.9561

0 0.3036 0.0204 0.2636  0.3437 0.0620 0.0064  0.0526 0.0726

T 0.3744 0.3910

A1 0.6170 0.2216 0.1827  1.0513 0.6506 0.1647  0.2896 1.0329
EED A2 0.5031 0.1781 0.1540  0.8523 0.5416 0.1716  0.2189 0.8249

A3 3.6845 1.7466 0.2612  7.1077 4.0167 1.6591  1.0943 7.0266

T 0.3445 0.3503

normal curve for the SSM estimation for EWD based on the GPHC. Figure 12, which dis-
plays the pairwise correlation between parameters in the top plot, correlation coefficients
in the bottom plot, and the marginal frequency distribution for each parameter on the
diagonal, presents the MCMC samples as a pairs plot. Additionally, as shown in Figure
13, convergence starts at 2000 iterations or less for the reliability estimate of the SSM for

EWD based on the censored sample.

Table 7: ML and Bayesian estimates for reliability of SSM

ML Bayesian
T1, T2, T3 Estimates SE Lower  Upper | Estimates SE Lower Upper
Al 7.7896 2.8023 2.2970 13.2821 8.1878 2.7952  3.3206  14.2400
A2 8.7026 3.0212  2.7810 14.6241 9.3778 2.9498  3.9458  15.1873
20,50,500 A3z  68.6337  39.8506 1.4735 146.7409 | 85.1238  38.3644 15.9283 172.4221
0 0.3108 0.0281  0.2557  0.3660 0.3155 0.0250  0.2681 0.3648
T 0.4254 0.4425
Al 7.8717 2.8090 2.3660 13.3773 8.3905 2.7092 27466  14.6373
A2 8.6463 2.9969 2.7725 14.5202 8.9148 2.8299  3.9046  14.4624
25,60,550 Az 74.3011  41.5613 2.1590 155.7611 | 84.1920  36.4978 21.1738 154.9815
0 0.3156 0.0263 0.2641  0.3670 0.3180 0.0230  0.2749 0.3650
T 0.4282 0.4293
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Figure 7: Count-our plots of log-likelihood values with EWD parameters
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Figure 8: Trace and normal curve of posterior distribution for MCMC estimation of SSM for EWD based on
complete sample

7. Summary and Conclusion

In this paper, it is explained how to draw the statistical conclusion that T = P(U <
W < V) for a component with a strength that is independent of opposite lower and upper
bound stresses when the stresses and strength both follow EWD. We presume that the
random variables for stresses and strength are both independent and have an EWD with a
shared scale parameter. Due to ML and Bayesian methods, various point and interval es-
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Figure 10: Pairs plot of the MCMC samples for parameter estimates of SSM for EWD based on complete sample

timates for the reliability model T are derived using a GPHC design. The MCMC method
and the MH algorithm, which are both based on the SELF and LINEX loss functions and
are all carried out in the context of informative priors, both produce Bayesian estimators.
Asymptotic distribution theory and the construction of Bayes credible intervals are used
to derive Cls. Boot-T is preferable to Boot-P, according to discussions on bootstrap Cls.
In order to compare the usefulness of the suggested estimates using several metrics, in-
cluding average values, mean squared error, and length of CIs, the Monte Carlo simulation
is carried out. The study’s findings show that, for four parameters and SSM based on the
GPHC scheme, the Bayes estimates produce lower MSE. For illustrative reasons, an actual
data set that has been gradually suppressed is given. This study’s main limitations in-
volve using ML estimation and MCMC techniques for T = P(U < W < V') computation.
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Future work might consider (1) Tierney-Kadane approximations instead of MCMC, and
(2) using the maximum product spacing estimation method as a substitute for the ML
estimation method.

Data Availability Statement: The data used to support the findings of this study are

included within the article.
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