

Radiotherapy in cancer larynx

Ashraf Hassouna, MD

Prof. Radiation Oncology

NCI - Cairo University

Contents

- Introduction to RT
- Treatment Algorithm
- Technology
 - o In early stage
 - o Laryngeal preservation
 - o PORT

http://scholar.cu.edu.eg/?q=ashrafhassouna

Publications

Bio

Classes

Images

Ashraf Hamed Mohamed Hassouna Professor of Radiation Oncology

(email)

Bio

Biography

Curriculum Vitae

M.D.

in Radiation Oncology

NCI, Cairo University,

You Can Get This Presentation and... More

Contents

- Introduction to RT
- Treatment Algorithm
- Technology
 - o In early stage
 - o Laryngeal preservation
 - o PORT

RT effects

- Cell death
 - Tumour cell death
 - Normal tissue side effects

- Cell transformation
 - Teratogenesis
 - Carcinogenesis

Radiation Target volumes

TUMOR/TARGET VOLUME

- A) Gross
- B) Clinical
- C) Planning
- D) Treatment portal

TARGET VOLUMES

Therapeutic Ratio

Conventional Fractionation

- 2Gy / Fraction
- 1 Fraction / Day
- 5 Days / Week

Altered Fractionation

- Hyperfractionation
- Hypofractionation
- Accelerated fractionation

5Rs of Radiobiology

- Repair
- Repopulation
- Redistribution
- Reoxygenation
- Radiosensitivity

Doses

- Radical: 70Gy/35F/7W
- Adjuvant: 60Gy/30F/6W
- Palliative: 30Gy/10F/2W

Cobalt Machine

Linear Accelerator (Linac)

2D

2D - 3D CRT - IMRT

IMRT

Gamma Knife

SRS

Cyberknife SRS & SRT

Contents

- Introduction to RT
- Treatment Algorithm
- Technology
 - o In early stage
 - o Laryngeal preservation
 - o PORT

Indications for RT

- Radical in early stage $(T_{1-2}N_0M_0)$
- Laryngeal preservation protocol in T₃N₊M₀
- Postoperative RT: T3-4, N+, close margin, recurrence
- Postoperative CCRT in: ECE or +ve margin

Early stage $(T_{1-2} N_0)$

RT

Surgery

T1-2 Glottic Ca

- RT vs Microsurgery
- RT preferred unless disease is very superficial
- Selected T2 (T2b: impaired cord mobility) may benefit from cisplatin/RT
- LC:
 - RT: T1 85:95%, T2 65:85%.
 - RT including salvage surgery: T1 ~ 95%, T2 ~ 90%.

Advanced Stage $(T_{3-4} \text{ or } N_{+ve})$

Combined Modality

- * Surgery + PORT \pm CT
- * Preoperative CT then Surgery + RT

Organ preservation

- * CCRT
- * Induction CT then CCRT

Palliation

Larynx preserving surgery

Clinical Trials for Laryngeal Preservation

Study	No. of Patients (accrual period)	Site	Stage	Treatment	Response of Primary to Induction Chemotherapy	Larynx Preservation	Overall Survival
VALCSG	332 (1985-1988)	Larynx	III (57%)ª	a) TL → RT	NA	NA	3-year, 5-year
Phase III ¹²		SG (63%) G (37%)	IV (43%)	b) PF × 3 → RT ^b	85% CR + PR	3-year, 62%° Composite end point	a) 56%, 45% b) 53%, 42%
RTOG 91-11 Phase III ^{13,14}	547 (1992-2000)	Larynx SG (69%) G (31%)	III (64%)ª IV (36%)ª	a) PF \times 3 \rightarrow RT ^b b) RT + P c) RT	85% CR + PR NA NA	5-year, 10-year a) 71%, 68% b) 84%, 82% ^f	5-year, 10-year ^d a) 58%, 39% b) 55%, 28%
						c) 66%, 64%	c) 54%, 32%
GORTEC 2000-01 Phase III ¹¹	213 (2000-2005)	Larynx (46%) Hypopharynx (54%)	III, IV	a) PF \times 3 \rightarrow RT ^h b) TPF \times 3 \rightarrow RT ^h	59.2% CR + PR 80% CR + PR (P = .002)	3-year a) 57.5% b) 70.3% (P = .03)	3-year a) 60% b) 60%

Larynx preservation

Estimated long-term (>2 years) rates:

- Concurrent chemo-RT: 80-85%.
- Induction chemo \rightarrow RT: 65-75%.
- RT alone: 60-70%.

Median OAS: 4-6 years; no difference by therapy.

VA Larynx Trial (Wolf, NEJM 1991)

- 332 patients with stage III–IV ca larynx (T1N1 excluded), randomized to surgery + PORT (50–74 Gy) vs. induction cisplatin/5-FU × 2c (with a 3rd cycle if PR/CR) → RT (66–76 Gy). If < PR/CR then surgery → PORT.
- Larynx preservation at 2 years with induction CT 64%.
- No difference in 2-year OS (68%).
- Induction CT decreased DM, but higher LF (12 vs. 2%).
- Salvage laryngectomy was required for 56% of T4 patients.

RTOG 91–11 (Forastiere *NEJM* 2003, *JCO* 2013)

- 547 patients with advanced ca larynx (T2-3 or low-volume T4 [not invading through thyroid cartilage and <1 cm base of tongue invasion], or LN+) randomized to 3 arms: RT alone, CT → RT, or concurrent CT-RT (all 2/70 Gy). Induction CT was cisplatin/5-FU × 2c (with a third cycle if PR/CR, otherwise surgery). Concurrent CT was cisplatin × 3c.
- Over RT alone or induction CT, concurrent CT-RT improved 10-year larynx preservation (64 → 68 → 82%) and LRC (47 → 49 → 65%).
 Trend toward improved distant control with any CT (76 → 83 → 84%).
 No significant difference in 10-year OS (32 → 39 → 28%), although more late deaths unrelated to disease with concurrent CT-RT.

RTOG 91-11

Phase III clinical randomized trial for advanced ca larynx

	RT	$CT \rightarrow RT$	concurrent CRT
• 10-year larynx preservation	64	68	82%
• LRC			65%
• Distant control	76	83	84%
• 10-year OAS	32		28%

GORTEC 2000-01 (Pointreau, JNCI 2009)

- 220 patients with locally advanced larynx/hypopharynx cancer randomized to 3c of TPF vs PF.
- If CR/PR and larynx mobility \rightarrow RT. If no response \rightarrow surgery + PORT.
- TPF improved overall response (59 \rightarrow 80%) and 3-year larynx preservation (58 \rightarrow 70%), but with more neutropenia.
- No difference in 3-year OS or PFS.

T3 Glottic Larynx: Treatment Approach

- Larynx preservation is the central concept.
- To be a candidate for larynx preservation, patient must have a functional larynx (able to breathe and swallow).

T4 Glottic larynx: Treatment Approach

• Is a "surgical disease" based on poor outcome of T4 cases in VA larynx trial.

• Beware of the trap of offering T4 patients larynx preservation with the idea of saving total laryngectomy for salvage

Not all recurrences can be salvaged

Contents

- Introduction to RT
- Treatment Algorithm
- Technology
 - o In early stage
 - o Laryngeal preservation
 - o PORT

Position & Fixation

• Supine

• Neck extension

Simulation

Contouring

RT Plan Acceptance

EPID

DRR EPID

CBCT

Primary tumor CTV

Microscopic tumour infiltration occurs within a distance of
 0-10 mm from the edge of the GTV defined as the macroscopic tumour specimen.

• While it is recognized that a "5+5 mm margin" may not encompass 100% of tumour extensions, the benefit of further widening the margin around the GTV-P must be balanced against the increased risk of RT induced morbidity.

Target Volumes (Radical)

• GTV:

Gross tumor (primary or LN)

- CTV_{70} : GTV + 5 mm margin
- CTV₆₀:
 CTV₇₀ + remaining larynx + high risk LN regions
- CTV₅₄:

 Low risk LN regions

LN CTV in Ca Larynx

For early-stage

- Glottic: nodal RT is not indicated.
- Subglottic or supraglottic: nodal RT is indicated.

For advanced stages:

- Include levels II through IV.
- Include level V for any N+ or extension to the BOT. Include retropharyngeal nodes if extension to pharyngeal wall (possibly glossopharyngeal sulcus) or BOT. Consider level VIb nodal coverage for hypopharyngeal extension

Dose & Fractionation

- Radical
 - 66-70 Gy / 33-35 F/ 7 W
- Adjuvant
 - 60 Gy / 30 F / 6 w (-ve margin)
 - 66Gy / 33 F / 6.5 w (+ve margin)

Yamazaki, IJROBP 2006

- 180 patients with T_1N_0 glottic ca randomized to 60Gy/30f (if \leq 2/3 TVC involved) or 66 Gy (if >2/3 TVC involved) vs. 56.25-63 Gy (2.25Gy/f).
- Higher fraction size improved 5-year LC (77 → 92%), but not CSS (97 vs. 100%) or toxicity.

Hypofractionation in Early Glottic Ca (2.25 Gy/f)

• Tis: 58.5 Gy / 26f / 5w

• T_1N_0 : 63 Gy / 28f / 6w

• T_2N_0 : 65.25 Gy / 29f / 6w

- 55Gy / 20 f / 4 w (2.75 Gy/f)
- 50Gy / 16 f / 22 d (3.125 Gy/f)

T₁ Glottic ca (2D Planning)

T3-4 glottic ca (2D planning)

CRT for T_{1a} of the left glottis with three beams

Superior border: mid-body of the hyoid bone.

Inferior border: inferior margin of the cricoid cartilage.

Carotid Sparing
IMRT

Three-field IMRT for T1 glottic cancer
Dose: 63 Gy / 28 f
30Gy isodose line at the anteromedial edges of the carotids

Single vocal cord irradiation by IMRT

Tumor on left vocal cord

IMRT reduced contralateral vocal cord dose

Conventional

Coplanar IMRT

Non-coplanar IMRT

66Gy 39Gy Contralateral vocal cord dose

36**G**y

T1aN0 Glottic Cancer

Randomisation 1:1

Arm A (Standard arm)
Whole larynx
63Gy/28F

Arm B (experimental)
SVCI
58Gy/16F

Preliminary Results

- Patients accrued: 57
- Started: 12.2019
- Ongoing

Target Volumes (post-operative)

CTV66:

Very high risk regions (+ve margin)

CTV60:

Tumor bed + 1 cm margin + High risk LN regions

CTV54:

Low risk LN regions

Adjuvant RT for a pT₄N₀ laryngeal tumor

Tissue planes are difficult to define in the postoperative setting.

The stoma (arrowed) included within the treated volume.

RT Adverse Events

Time

- Early (acute)
- Late (chronic)

• Skin

Mucosa

Spinal cord

Parotid

http://scholar.cu.edu.eg/?q=ashrafhassouna

Publications

Bio

Classes

Images

Ashraf Hamed Mohamed Hassouna Professor of Radiation Oncology

(email)

Bio

Biography

Curriculum Vitae

M.D.

in Radiation Oncology

NCI, Cairo University,

You Can Get This Presentation and... More