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String theory, general relativity, quantum gravity, and the study of black 
holes all suggest that there could be a minimum observable length of the 
order of Planck’s length. This hint, together with others, led to the General-
ized Uncertainty Principle (GUP), which is presented in numerous publica-
tions. The Schrödinger equation, which forms the basis of quantum 
mechanics, does not explicitly demonstrate this principle, but it is often 
used to solve problems without revealing the full range of possible answers. 
In this study, a particle in a one-dimensional box, one of the well-known 
quantum problems, was used to illustrate some implications of the GUP in 
terms of quantum physics. The study proposes a notation derived from an 
attenuated wavefunction that describes both the particle dimension and the 
wave nature of the particle in terms of a minimal length, to be introduced 
into the Schrödinger equation. Apart from Hawking radiation, this idea can 
also be used to solve problems in high-energy physics and black holes.
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1  INTRODUCTION

The process of reconciling quantum mechanics with the problem of general 
relativity is one of the tasks of theoretical physics for which a closed-form has 
not yet been found. Apart from the fact that there is no complete description of 
quantum gravity, one can predict the existence of a minimal length scale [1]. 
The existence of a minimal length of measurements should also be expected for 
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other reasons [2-4]. Moreover in string theory the associated gravitational 
effects are assumed to perturb the space-time structure when high energies 
resolve small distances. In other words: if sufficient amount of mass-energy can 
be confined to a small region of space, a black hole is created.

According to the theory of quantum gravity, the distance scale must be of 
the order of Planck’s length (LP). The usual Heisenberg uncertainty principle 
can be reorganized in terms of minimal uncertainty (Δx0) in the position 
(minimal length) as follows:

	 ∆
∆

∆x
p

L pP≥ + +

2

1 2η ... 	 (1)

which is known as the Generalized Uncertainty Principle (GUP). Where  is the 
reduced Blank’s constant (h/2π), Δx, and Δp are the uncertainties of the position 
and momentum, respectively. The constant η is independent of the uncertainty 
quantities but can depend on both the position and the momentum [5-9].

The string theory arguments show the minimal length in the uncertainty as:

	 ∆ ∆ ∆ ∆x p L p xP⋅ ≥ + ( ) + ( ) +
  

2
2 2 2η β γ 	 (2)

Quantum mechanics mainly describes wave propagation, and the fundamen-
tal eigenfunction Ψ has the form:

	 ψ =
⋅ −( )

e
i

Et


p x
	 (3)

where E is the energy eigenvalue, t is the time, and i is the imaginary unit. The 
momentum vector p can be defined from the differentiation of the eigenfunc-
tion to the displacement vector x. The total energy remains the same in clas-
sical and quantum mechanical systems, although they differ in their concepts. 
Schrödinger equation and the Hermit operator describe the summation of 
momentum operator and potential terms as follows:

	 ˆ ˆ
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The aim of this work is to reconcile of the GUP and the attenuated wave 
eigenfunction, and to generalize the quantum Schrödinger equation to accept 
the existence of particle dimensions as well as their wave nature for minimal 
length problems.
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2  METHODOLOGY

It is assumed that all particles, regardless of their mass or size, have their own 
de Broglie wave, in which the speed of the wave and the particle are the same. 
The wave is subjected to attenuation (damping) as it propagates. This attenu-
ation is proportional to the displacement x as the wave propagates in the 
material, while its intensity obeys the inverse square law. Hence, the ampli-
tude of the wave function is inversely proportional to the displacement and 
can be approximately considered as exponential decay. The eigenfunction 
can be written as:

	 ψ
α

=
− + ⋅ −( )

e
x

i
p x Et

 	 (5)

where α is the attenuation coefficient (it is generally space-dependant, but for 
the problem under-discussion it is constant). To find the momentum, one can 
apply the differentiation of the eigenfunction to the displacement, which is then 
as follows:
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A similar equation was also obtained from the GUP in [3]. The momentum 
operator consists of three terms: The ∇2 stands for standard quantum mechan-
ics where the eigenfunctions are waveforms, the α2 term can be interpreted 
by classical mechanics where this term alone is not an operator, and the ∇ 
stands for the intermediate region where quantum mechanics and classical 
mechanics work; this region is expected and explained in [10-14]. And it is 
useful for the study of vibrational spectroscopy [15-19] in molecules [20-25], 
and internal friction [26-31].

Since the wave function cannot be determined in the classical view, Eq. 4 
can be approximated according to the new definition of the momentum oper-
ator equation 6 as follows:

	 V
m m

Eψ α ψ ψ ψ− ∇ − ∇ = 2 2
2

2
2

2
	 (7)

This equation consists of both quantum and intermediate regions. This 
equation will be called the extended Schrödinger equation. Now, the coef-
ficient α should be solved to rewrite the Schrödinger equation in its new 
form.



116	 A.S. Abdel-Rahman and Youssef A. Sabry

3  RESULTS AND DISCUSSION

Following the approach outlined above the well-defined quantum problem 
can be studied to show Planck’s length effect and its term in the extended 
Schrödinger equation.

3.1  Quantum solution
The current work focuses on the problem of the potential well (1D particle in 
a box) and can be extended to other problems. The potential of the particle in 
a 1D-box can be described as follows:

	 V
x L
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
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0 0
	 (8)

where L is the width of the barrier, the quantum solution to this problem is:
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where n (=1, 2, 3, …) is an integer representing the energy level. It can be seen 
that the particle in this box can only have one of the energy levels, namely the 
lowest level that is not zero, with a small kinetic energy assigned to the particle 
at this level. In this case, the uncertainty can be expressed as follows:

	 ∆ ∆x p
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2 3
2

2 2π
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The application of the GUP equation 1 shows the following relationship 
between the Plank’s minimal length and the barrier width:
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The first energy level shows a very small minimal length (Lp≈L/12) compared 
to the next successive levels, these levels can estimate the minimal length as:
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3.2  Modified quantum solution
Applying Eq. 7 to find the solution when the material validates the quantum 
and intermediate regions, the eigenfunction can be written as follows (b and 
c are constants):

	 ψ = cebx 	 (13)

And then it is converted into a quadratic equation to find the constant b and 
the solution of this equation shows the eigenfunction and eigenstates as:
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To obtain the uncertainty of position and momentum, one can determine <x>, 
<x2>, <p>, and <p2>. They were found as:
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The terms Δx and Δp/ were found by approximation to the values 3 2α 
and 2α, respectively. Both terms are L- and n-dependent, and therefore the 
uncertainty equation according to this eigenfunction (Eq. 14) and the momen-
tum operator (Eq. 7) can be written as follows:



118	 A.S. Abdel-Rahman and Youssef A. Sabry

	 α2
2

6 1

4
≤ −

LP

	 (16)

The minimal length therefore can be estimated to be 0.6/α and then the 
extended Schrödinger equation can be rewritten as follows according to the 
Generalized Uncertainty minimal length:
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This equation describes the mechanics in the neighbour of Plank’s length 
(i.e., high-energy physics and black matter). The attenuation coefficient may 
be imaginary, which will be discussed in the next section.

3.3  Solution limit
Quantum mechanics treats with particles as a matter waves associated 
with a point mass and neglects the particle dimensions. The 1D particle in 
a box quantum solution cannot consider a particle associated with a zero 
energy eigenvalue, but this can be considered when particle size is taken 
into account. If the barrier width L, which can be considered as the range 
of interaction, is narrow as it encloses the particle and touches its ends; 
the barrier width L is equal to the particle diameter D, the particle should 
be restricted in its position and unable to hold any amount of energy 
(appears fixed).

For the first energy level E1, a particle with zero energy can be interpreted 
in Eq. 14, since the bracket term vanishes. The value of the attenuation coef-
ficient α is:

	 α π= i
D

	 (18)

This can be explained by the fact that the actual particle size is D/π while the 
residual space of the particle is its field region and is kept free of others. The 
eigenfunction can be rewritten as:
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Since the attenuation coefficient is imaginary, the extended Schrödinger 
equation is written in its complex form as:
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The wavefunction is completely harmonic and has a complex solution in which 
both the real and imaginary parts are harmonic, and which satisfies the real and 
imaginary parts of the complex Schrödinger equation Eq. 20. This result is in 
good agreement with induced nuclear fission. The neutron-nuclei interaction 
can be assumed to be a potential well problem, in which no Coulomb potentials 
are present. Neutrons enter fission only when their energy is >1 MeV [32, 33], 
which corresponds to a momentum of 2.32×10-20 Kg.m/s, and the value of the 
interaction range D (Eq. 16 and Eq. 9) is 4.55 fm. This value is too close to the 
limit of the potential barrier width L≈D (the neutron diameter 1.6 fm [34, 35]) 
divided by π which is 5.03 fm. At this value, the interaction is classical, and 
above this energy, the scattering cross section increases (similar to quantum 
wave scattering) and the probability of capture is lower.

One can consider the full form of the modified Schrödinger equation as 
shown in Eq. 7, where the coefficient α can be restricted to these values for 
quantum mechanical solutions:

	 − ≤ ≤ −π α
2

2
2

2
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4  CONCLUSION

The minimal length, expected for many reasons in quantum gravity, and string 
theory, was found to be of the order of Planck’s length, but its appearance in the 
quantum solutions was not drawn while it appears in the Generalized Uncertainty 
Principle. The well-known quantum problem; a particle in a one-dimensional box 
was discussed in terms of the attenuated wavefunction. It concludes with the addi-
tion of some terms to the Schrödinger equation to also describe the particle dimen-
sion as well as its wave nature according to a minimal length. The solution to the 
problem shows the limits to which quantum mechanics can still be applied; this 
result is confirmed by the neutron-induced fission energy. The concept obtained can 
be used to explain problems with black holes and high-energy physics.
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