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An approach to the micro-strain distribution inside nanoparticle structure 
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A B S T R A C T   

Williamson-Hall, Stocks-Wilson, Scherrer, Halder-Wagner, and Size-Strain Plot (SSP) methods are used essen
tially to ensure the material particle size falls at the nano-level. They treat the broadening in the XRD peak as a 
sum of Gauss and Lorentz diffraction probability functions. In this work, an approach to the microstrain dis
tribution is presented as a strain distribution (SD) model, assuming a nanostructure as a liquid drop where 
surface tension controls the particle positions while strain controls the geometry and spacing of the lattice pa
rameters. The number of diffraction planes is considered in the model, treated as a Gaussian-like (or Lorentzian- 
like) function, and estimated with numerical analysis. The SD model writes an equation about the broadening, 
peak position, and lattice parameters to estimate the crystalline size and strain exponent. Williamson-Hall, 
Stocks-Wilson, and Scherrer can be explained as approximations for this model, and the presence of negative 
strain is explained. Possible approximations can show Halder-Wagner and SSP as another face of the SD model 
equation. The strain exponent, which is estimated here, is more useful than the average micro-strain, which is 
obtained from previous models. The strain exponent role in the nanoparticle reactions with materials can be 
discussed and explained. The change in crystal system as bulk material is reduced to nanostructure can be 
negated according to the SD model.   

1. Introduction 

Nanoparticles, in the dimensions of 1–100 nm, possess many unique 
size-dependent physical and chemical properties different from their 
bulk counterparts [1]. It is reported that elastic properties are one of the 
most important physical properties, the tuning of which can modify 
many physical properties such as optical, electrical, surface, etc. Because 
of this, many nanoparticles find enormous application in different 
branches of science, such as optoelectronic devices [2], light-emitting 
diodes [3,4], solar cells [5,6], and drug-delivery applications [7]. 
Many scientists show the effect of reducing the bulk material to micro- 
and nanostructure on the electrical, optical, thermal, etc. properties of 
nanoparticles where the material shows enormous and more useful 
properties [8,9]. 

Explicit modelling of nanostructures is necessary for tailoring the 
material to have specific features. Considering the strain inside the 
nanoparticle is the major issue that changes the point of view to the 
unique properties of the material on the nanoscale. The distribution of 
this strain inside the nanostructure is not well defined. Most current 
models consider the average strain and deal with the X-ray diffraction 

(XRD) structure factor as the main reason for diffraction peak 
broadening. 

Diffraction-peak broadening shows information about nano
structural parameters; particularly lattice strains and the sizes of inco
herently diffracting domains. Three major suggestions [10] have been 
made to characterize the diffraction-peak broadening: (i) The crystal is 
broken into “crystallites” so small (10− 5 to 10− 8 cm in dimensions) that 
diffraction broadening occurs; (ii) the crystal is broken into small crys
tals with different mean lattice parameters; and (iii) the broadening was 
due to distortion of fairly large crystals (~10− 4 cm in linear dimensions). 

To produce a physical specimen that is broadening-free, all effects, 
especially instrumental ones, must be removed. It is worthwhile to study 
the applicability of preset peak-shape functions in the size-strain anal
ysis because of the great interest there is in accurately modelling peak 
broadening in the [11–13] analysis in terms of physical (size and strain) 
parameters [14–16]. Moreover, the results obtained by the 
integral-breadth and/or Warren-Averbach analyses were usually not 
comparable. The integral-breadth method gives volume-weighted 
domain sizes and an upper limit on strain. The Warren-Averbach anal
ysis shows large surface-weighted domain sizes while a mean-square 
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strain averages over some distance perpendicular to the diffracting 
planes. 

Although the instrumental errors come from many issues, they are 
decreased as possible in these models (Scherrer [17–19], Stokes-Wilson 
[20], Williamson-Hall [21,22], Halder-Wagner [23–25], SSP [26–28], 
and strain-distribution (SD) which presented in this work) as follows: 

Scherrer’s equation is derived directly from the XRD scattering 
structure factor without taking instrumental errors into account. Many 
scientists directly use this equation for the intensive peak of the XRD 
pattern. So they estimate the full width at the half maximum of the 
diffraction peak profile FWHM, or w, and thus high errors will be 
incorporated into the results. Other scientists use average crystalline size 
to reduce errors. The more accurate method is taking the slope of the 
best linear fit of the (1/w)-cosθ plot. 

Other models use the linear fit of their plots to reduce the errors; in 
this work, the SD model also uses the plot in Figs. 7 and 8 to reduce the 
instrumentation errors. 

Many studies on nanoparticle size and strain determinations using 
the various methods above were reported. Each method sets a relation 
between diffraction angle and FWHM, and then the determination of 
crystallite size and micro-strain is applicable. In all of the previous 
methods, the Miller indices did not appear directly in their equations, 
even though they were taken into account at the peak position. 

To simplify the material representations, models and simulations are 
built to study the physical conditions and predict the particular con
straints of the situation. This reflects the importance of physical models 
and theoretical approaches in material science. The widespread use of 
nanostructures in our society has increased interest in studying and 
modelling nanoscale materials, as well as adapting these materials to our 
needs. 

This work aims to study more thoroughly the source of broadening 
from another point of view: the diffraction peak in the 3D nanostructure, 
the micro-strain inside the nanoparticle, and the number of diffraction 
planes. In this article, a new model for nanostructure is introduced and 
how it is formed. The faults of the previous models, such as negative 
strain, are explained by this theoretical approach. Drawing the strain 
inside the nanoparticle is possible here, where previous models only 
showed an average strain, which is not enough for our needs. The strain 
exponent role is a major factor that can explain the reaction of the 
nanoparticles with materials. The application of the SD model is 
important for vibration [29–31], of molecules [32], internal friction 
[33–36], and other point physical problems [37–42]. 

2. Methodology 

This study will consider a spherically shaped aggregate in nano
particle size of single-phase crystal lattices; they are accumulated to be 
like a liquid drop. The more general case can be investigated with an 
ellipsoidal structure in the future. There are three micro-strains [43] (εa, 
εb, and εc) that cause the perfect lattices to be compressed non-uniformly 
(due to different lattice parameters) to change the periodic uniform 
structure lattice parameters and orientations in 3D to draw a spherical 
shape; this strain works like surface tension in liquid drops. 

This work shows the effect of curvature strain due to the wrapping of 
material crystals to form nanoparticles (which will be explained in detail 
in Section 2.2). There are different strains, such as thermal, tensile, 
shear, normal, etc., that also affect the nanostructure, but their effects 
are almost equally felt on all crystals inside the nanostructure. The 
curvature strain (from here and later, “strain” only) is taken as the major 
factor that shows the broadening of XRD peaks. 

According to these assumptions, one can predict that the perfect 
crystal lattice (without strain) will hold the center of the nanoparticle 
sphere (x = 0; x is the displacement vector from the center of the sphere 
to its surface) and give the central diffraction peak line (d1 in Fig. 1). 
From the center to the surface of the sphere, the stress (or the strain ε 
[44]) grows up (slight change in the interplanar distance in d2) to reach 

the surface at maximum strain (εmax) at x = D/2, where D is the crys
tallite size. The peak is broadening due to the much larger change in the 
interplanar distances (from d1 to d3). 

Bragg’s diffraction is the major factor in X-ray diffraction and is 
written in direct space as: 

2d0 ⋅ Sin θ0 = nλ (1)  

where d0 is the interplanar spacing of Miller indices hkl at the center of 
the diffraction peak with angle θ0, the diffraction angle is denoted by 
0 to be distinguished from the un-denoted angle that stands for variation 
angle about the peak center, and from here and over, the first order of 
diffraction will be considered (n = 1). 

2.1. Peak profile (probability regime) 

The diffraction peak profiles are treated as the sum of Gaussian G and 
Lorentzian L profiles (a pseudo-Voigt profile may also be introduced, but 
the same results were obtained); this treatment is also used in X-ray 
fluorescence XRF in Ref. [45]. These profiles are probability distribution 
functions that characterize the probability of diffraction on a specific 
plane. Both G and L functions can be expressed in terms of FWHM (w in 
radians) as follows [46,47]: 

G = A⋅exp

(

−
(θ − θ0)

2

w2 ln(16)

)

L = B

[
w2

4(θ − θ0)
2
+ w2

] (2)  

where A and B represent the peak amplitudes in each profile. In both of 
these functions, the intensity falls to their half value when θf-θ0 = w/2. 
They share the same profile and FWHM but differ in the tail shape, 
where the Lorentzian profile has a longer tail than the Gaussian and 
approaches zero slower, as shown in Fig. 2. 

The differentiation of each function according to the angle θ will be: 

dG
dθ

=G′(θ) = − 2A
(θ − θ0)

w2 ln(16)exp

(

−
(θ − θ0)

2

w2 ln(16)

)

=

− 2 ln(16)
(θ − θ0)

w2 G (3)  

dL
dθ

= L′(θ) = − 8B(θ − θ0)
w2

(
4(θ − θ0)

2
+ w2

)2 = − 8
(θ − θ0)

(
4(θ − θ0)

2
+ w2

)L

(4) 

Fig. 1. Micro-strain effect in the nanoparticle.  
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One can try: 

dG
dθ

⃒
⃒
⃒
⃒

θf

θ0

≈
ΔG
Δθ

⃒
⃒
⃒
⃒

θf

θ0

=
A − ½A
θ0 − θf

= −
½A
½w

= −
A
w

(5)  

Also, the same result will be found for Lorentz; the left-hand side of Eqs. 
(3) and (4) at θf will be: 

G′( θf
)
= − 2 ln(16)

½w
w2 ½A= − ln(4)

A
w

L′( θf
)
= −

B
w

(6) 

If it is difficult to calculate the derivative of a function like a Gauss or 
Lorentz profile, it is possible to replace its derivative at FWHM by its 
amplitude value multiplied by Q/w, where the factor Q has a range from 
1 to 1.3863 (=ln(4)). 

2.2. Micro-strain 

One can assume an ellipsoid structure, and so the three strains (εa, εb, 
and εc) are different, but in this work, the spherical shape will be 
introduced. In 2D, the strain εa is zero along the x-axis, and εb is zero 
along the y-axis. As one moves away from the major axis, strain in
creases (causing the lattice lengths to decrease) to reach εmax on the 
surface of the sphere. The value of εmax is direction-independent, where 
all strains regardless of their directions should be equal (i.e., εmax) at D/ 
2. 

Fig. 3 shows a quartile of the nanoparticle (2-dimensional 

projection). Behind the vertical and horizontal curves (parabolas) are 
the strain functions (functions in displacement), and the intercepts of 
these lines represent the location of the atoms. The last vertical arc is the 
circular surface of the nanoparticle. 

According to the circle equation x2+y2=(D/2)2, the definition of the 
compression strain in the x-direction is [48]: 

ε= −
Δx
x

=
x0 − x

x0
(7)  

where x0 is the original location of the subject and x is that location after 
compression, the maximum strain in the x-direction can be found at x0 
= D/2. Then the strained location of the subject will be written in terms 
of maximum strain in the x-direction as: 

x=
D
2
(
1 − εmax

x

)
(8) 

This value is y-dependent and can be substituted in a circle equation 
to find a relation for the maximum strain in the x-direction in terms of 
the y-axis value as follows: 

εmax
x (y)= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
y

D/2

)2
√

(9)  

Since the maximal strain occurs when both x and y values equal D/2̅̅
2

√ , this 
strain value should be 0.293. In the case of 3D, the x-axis strain equation 
will take the form: 

εmax
x (y, z)= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
y

D/2

)2

−

(
z

D/2

)2
√

(10)  

and the maximal strain should be 0.423 as calculated for the isotropic 
sphere (this value is very large and the infinitesimal strains should be 
lower), while the x, y, and z values equal D/2̅̅

3
√ . 

In Fig. 3, one can notice the change of cubic structure into ortho
rhombic or tetragonal structures; this was noticed recently in nano
particles of gold [49], where it differs from the usual face-centered cubic 
bulk structure of gold. Due to the overlap of XRD diffractions of these 
structures, one can predict the change of crystal structure to another 
point group in the nanostructure. The appropriate expression to describe 
this issue is not to consider a change in crystal structure but rather a 
strained crystal nanostructure. 

To describe the strain function (vertical parabolas intercepting the x- 
axis at integer multipliers of a), one can estimate the gradient of the 
strain function curvature on the basis of very small strains. The change 
of strain from Eq. (7) is: 

ε =
dx
x

and dε = −
d(dx)

x
+
(dx)2

x2 ≈ ε2 (11) 

According to the derivations of the Extended Mooney-Rivlin model 
for neo-Hookean solids [48], the behaviour of small strains before the 
critical elongation suggests the change of strain is inversely proportional 
to the displacement x; hence, Equ. 11 can be corrected to: 

dε = A
ε2

x
or

dε
ε = A

dx
x2

(12) 

Integration of Equ. 12 and applying the boundary condition 
( x→D/2 ε→εmax ) to the micro-strain equation can be written as 
follows: 

εx = εmax exp
(

− c
(

D/2
x

− 1
))

(13)  

While c is constant, it represents the growth of the strain from the center 
of the sphere to its surface and will be called the strain exponent. 

The reciprocal space will be introduced, and all asterisked terms will 

Fig. 2. Gaussian and Lorentzian profiles.  

Fig. 3. Quartile of the nanoparticle 2D projection with micro-strain functions.  
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be reciprocals and related to the direct term inversely. The reciprocal 
strain function may be written as: 

ε ∗ = εmax ∗ exp
(

c
(

Dx∗
2

− 1
))

(14) 

The summation of strains in any direction, one over the other, will 
reduce the whole nanoparticle’s dimensions to a sphere’s radius, so one 
can write: 

maa(1 − εmax)=mbb(1 − εmax)=mcc(1 − εmax)=
D
2

(15)  

where ma, mb, and mc are the number of atoms in each direction from the 
center of the sphere to its surface, the maximum strain can also be 
expressed in terms of these numbers: 

εmax ≈maεa = mbεb = mcεc (16)  

and so one can write them in reciprocal space as: 

a∗
εa∗

=
b∗
εb∗

=
c∗
εc∗

≈
x∗
ε∗ (17) 

This equation illustrates the ratio of longitudinal to transverse strain, 
with the longest lattice parameters meeting the highest strain, so all 
lattice directions reach the nanoparticle surface on one foot. 

2.3. Interplanar distance 

In this work, the change of lattice angles with strains is neglected 
(this assumption was verified by applying the model to different lattice 
systems, which showed the validity of the SD model), so the general 
form of lattices that can be studied is the orthorhombic lattice, and the 
reciprocal interplanar distance can be written as follows: 

d0 ∗ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2a∗2 + k2b∗2 + l2c∗2

√
(18)  

and the strained interplanar distance is 

d ∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2

a2
(

1 − x∗
ε∗ a
)2 +

k2

b2
(

1 − x∗
ε∗ b
)2 +

l2

c2
(

1 − x∗
ε∗ c
)2

√
√
√
√ (19) 

The derivation of the term (x*/ε*) which respect to x* is: 

d
dx∗

(x∗
ε∗

)
=

1
ε∗

(
1 − c(D / 2)

x∗
ε∗

)
(20) 

The derivation of the reciprocal interplanar distance with respect to 
the reciprocal displacement vector (instead of the strain) is approxi
mated to be: 

∂d∗
∂x∗

≈
1

d0 ∗ ε∗

[
1 − c(D / 2)

x∗
ε∗

][h2

a
+

k2

b
+

l2

c

]

(21)  

2.4. Number of diffraction planes 

The diffraction intensity is directly proportional to the number of 
diffraction planes (N). According to this main assumption, as one moves 
away from the center of the nanoparticle, the strain grows, the lattice 
parameters decrease, and hence the interplanar distances decrease. So it 
is more suitable to study the variation of the number of diffraction 
planes with the diffraction angle. The definition of the number of 
diffraction planes may be clear from Fig. 4, which illustrates the d21 and 
its relation to the displacement in 2D. 

As shown in Fig. 4, the number of interplanar distances is defined as 
the ratio between the displacement and the interplanar distance pro
jection on this displacement and may be written in 3D as follows: 

Nm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xm+1 − xm)
2
+ (ym+1 − ym)

2
+ (zm+1 − zm)

2
√

dm cos φ
(22)  

In this work, the displacement xm is arbitrary inside the nanoparticle, so 
it is chosen in the x-direction only and parallel to the interplanar dis
tance. where m is an integer that represents the step number in which 
interplanar distance appears constant; m = 0 represents the N0 region 
(maximum intensity); as m increases, the number of interplanar dis
tances decreases. where m∞ is the maximal value of m, which happens at 
the surface of the particle, and typically m∞ has a large value, such as 
thousands (by assuming the lattice parameter is in the range of a few 
angstroms and the crystalline size D is about 100 nm), where the ratio 
between the particle size and the used wavelength is in the order of 103. 
Then the number of d-planes is: 

Nm =
(xm+1 − xm)

dm
≈

1
d0(1 − εm)

[(m+ 1)a(1 − εm+1) − ma(1 − εm)]

=
a

d0(1 − εm)
[1+m(εm − εm+1) − εm+1]

(23) 

One can estimate the displacement xf at FWHM, where the number of 
d-planes is reduced to its half value. 

2.5. Numerical analysis 

The number of interplanar distances is calculated based on Eq. (23) 
for different values of c, D/2, a, and d0 to investigate the profile of N 
regarding the displacement integer m. Fig. 5 shows this profile with 
some selected values of c. The full numeric data is presented in the 
supplementary document. 

The values of c < 0.6 cannot be considered for variation in the 
number of interplanar distances due to their unacceptable shape. The 
profile shown is similar to that of Gauss and Lorentz, but it is built on the 
effect of strain on the interplanar distances. Eq. (23) can be considered 
as a XRD peak profile, and the upcoming results are based on it. This 
numeric analysis will also benefit the approximation and correlation of 
terms, which will be discussed in the next section. 

Fig. 4. The interplanar distance d21 and displacement vector in 2D.  

Fig. 5. The number of the interplanar distances N and displacement integer m.  
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3. Results and discussion 

3.1. General formula 

Since the number of d-planes has the same profile as Gauss/Lorentz 
and the differentiation of Eq. (23) is too complicated, one can predict: 

∂N
∂x∗

⃒
⃒
⃒
⃒

xf ∗

x0∗

=
1
Q

⋅
N0 − ½N0
(
sd0 ∗ − xf ∗

)=
1
Q

⋅
N0

2
(
sd0 ∗ − xf ∗

) (24) 

The number of d-planes at the center of the sphere is N0 and corre
sponds to x0 = 0, and this cannot be used for x*(=∞), so one can 
approximate it to sd0*, where s is a constant. 

The micro-strain that happens inside the nanoparticles is the major 
factor affecting Bragg’s diffraction, where the interplanar spacing and 
diffraction angle are functions of this strain, so the derivation of Bragg’s 
equation in reciprocal space may be written as follows: 

∂d∗
∂θ

=
2
λ

Cos θ (25) 

To study the diffraction peak and its broadening, the variation of the 
number of diffraction planes (which represents intensity) to the 
diffraction angle may be written by the chain rule as follows: 

∂N
∂θ

=
∂N
∂x∗

⋅
∂x∗
∂d∗

⋅
∂d∗
∂θ

=
∂N
∂x∗

⋅
1

∂d ∗ /∂x∗
⋅
∂d∗
∂θ

(26)  

and at FWHM, the left-hand side term in Eq. (26) can be written as 
follows: 

∂N
∂θ

⃒
⃒
⃒
⃒

θf

θ0

=
1
Q

⋅
N0 − ½N0

θ0 − θf
= −

1
Q

⋅
N0

w
(27) 

By introducing equations (21), (24), (25) and (27) at FWHM, equa
tion (26) can be rewritten as: 

w cos θf =
2

εf ∗

[

1 − c(D / 2)
xf ∗

εf ∗

]
1

d0∗

[
h2

a
+

k2

b
+

l2

c

]
(
λxf ∗ − 2s sin θ0

)
(28) 

This equation is very similar to those of Williamson-Hall, Scherrer, 
and Stokes-Wilson by approximating the FWHM angle θf to the diffrac

tion angle θ0 and assuming both 1
d0∗

[
h2

a +k2

b +
l2
c

]
and xf* terms are 

constants: 

w cos θ0 =
Kλ
D

+ 4ε sin θ0 (29) 

The relation between wcosθ0 and sinθ0 should be linear, and the 
slope is wavelength-independent, as expected by Stokes, while the 
interception is typical of Scherrer’s equation. 

Another important issue is the negative sign in the sinθ0 term. Arti
cles such as [50,51] notice the negative microstrain (slope in 
Williamson-Hall), which is physically meaningless. The negative 
micro-strain here can be attributed to the approximations in the 
Williamson-Hall method, and its plot results in very scattering points, as 
discussed in Ref. [45]. 

Upon this comparison, one can predict that Williamson-Hall, 
Scherrer, and Stokes-Wilson are approximations of what is driven in 
this work. Since xf* is the displacement inside the nanoparticle where 
the number of d-planes is reduced to half, this term is not constant and 
depends on the broadening w as follows: 

xf ∗ =
k
w

(30)  

where k is constant, another issue; the cosine of the angle θf in Eq. (28) 
can be written as: 

cos θf = cos
(

θ0 +
w
2

)
≈ cos θ0 −

w
2

sin θ0 (31) 

This methodology results in another modification to Eq. (28) to be a 
strain-distribution (SD) model inside nanostructures and will be written 
as: 

w2
(

cos θ0 −
w
2 sin θ0

)

d0

[
h2

a + k2

b + l2
c

] =
2

εf ∗

[

1 − c(D / 2)
xf ∗

εf ∗

]

(λk − 2s(w sin θ0)) (32) 

One can notice a similar form between this equation and the Halder- 
Wagner and SSP methods by the appearance of broadening in square 
form. To verify the deduced model by applying it to different lattice 
systems, six real XRD patterns for CuO [45], LaFeO3 [13], Mn3O4 [52], 
Fe2O3 [53], ZnO [54], and MgO [55] were used. Fig. 6 shows the XRD 
patterns for theses samples. 

The SD model (Eq. (32)) was used to plot the relation between 
w2(cos θ0 −

w
2 sin θ0)

d0

[
h2
a +

k2
b +

l2
c

] and wsinθ0 and is presented in Figs. 7 and 8 for different 

lattice systems, as explained in Table 1. They show a linear dependence 
as predicted by the model, and the error bars are used to reduce the 
calculation errors as much as possible. 

According to the above data, the model has been successfully applied 
to all crystal systems, and although the Williamson-Hall strain is positive 
in all systems, the relationships in the figures have negative slopes, and 
the positional intercepts are consistent with Eq. (32). 

3.2. Crystalline size and strain exponent 

According to Eq. (32), both slope and intercept are functions in c and 

D; by using the numeric data, the term 2
εf ∗

[
1 − c(D /2) xf ∗

εf ∗

]
was plotted 

against the constant c and seems to be in an inverse relationship after c 
> 0.6, as shown in Fig. 9. 

This term is correlated and multiplied by the constant s, which is 
found at an average of 0.005. By introducing the average value of 
broadening wav = 0.008 rad, one can estimate the correlation between 

the term 2xf ∗

εf ∗

[
1 − c(D /2) xf ∗

εf ∗

]
and D/2 (Fig. 10). 

Thus, Eq. (32) can finally be written in its approximate form: 

w2
(

cos θ0 −
w
2 sin θ0

)

d0

[
h2

a + k2

b + l2
c

] =
4 × 10− 3

D
λ −

3.1 × 10− 3

c
(w sin θ0) (33) 

This equation was applied to Table 1 to compare the SD model results 
with what had been estimated before. The obtained results are listed in 
Table 2 beside the percentage errors between the SD model and previous 
models. The large errors may be attributed to the large values of the 
micro-strains. This is also noticed as a relatively high difference between 
the XRD peak broadening crystalline size and that obtained from the 
scanning electron microscope (SEM) in Ref. [56]. 

Eq. (33) may be approximated to this formula in order to facilitate its 

Fig. 6. XRD patterns of the six samples used for verification.  
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application to users. 

w(2cot θ0 − w) =
1.6 × 10− 3

D
d0

w
−

6.2 × 10− 3

c
(34)  

4. Conclusions 

In order to determine the behaviour of materials in the nano
structure, it is necessary to explain a model based on a predicted image 
of the internal structure and demonstrate it as a theoretical approach. 
The strain is the major factor that redistributes the lattice parameters 
and hence the intermolecular distances, leading to XRD peak broad
ening. A novel strain-distribution (SD) model is theoretically built with a 
peak profile that agrees with the experimental data, and an equation is 
deduced to calculate the strain exponent and crystalline size. 
Throughout its methodology, the change in crystal lattice as material is 
reduced to nanostructure is negated via the strain distribution. The 
longitudinal strains alone were considered, while the shear strains affect 
the lattice angles, and their changes were ignored due to the fact that the 
application of this model to different crystal systems is valid. The well- 
known Scherrer and Williamson-Hall equations for nanostructures were 
deduced as approximations of the model, besides showing the reason for 
negative microstrain. Also, the Halder-Wagner and SSP equations are 
possible as another approximation. An important part of the SD model is 
the strain exponent, which plays a big role in the explanation of the 
reaction of the nanoparticles with the host material. The strain exponent 
value shows the possibility of aggregates of nanoparticles rather than 
interactions with the host material. This model is recommended for 
considering nanostructure studies, especially the interaction of nano
particles with the host matter. 

Ethical approval 

No experiments are carried out on human tissues or living organisms 
by any kind. 

Funding declaration 

This research received no specific grant from any funding agency in 

Fig. 7. SD model application on CuO, FeLaO3, and Mn3O4 nanoparticles.  

Fig. 8. SD model application on Fe2O3, ZnO, and MgO nanoparticles.  

Table 1 
Application of SD model to many lattice systems.  

Material Lattice Space group Slope ( ×
10− 3) 

Interception ( ×
10− 5) 

CuO Monoclinic C2/c [15] − 1.48 1.45 
LaFeO3 Orthorhombic Pnma [62] − 0.72 1.53 
Mn3O4 Tetragonal I41/amd 

[141] 
− 0.86 2.87 

Fe2O3 Trigonal R 3 c [167] − 1.98 2.14 
ZnO Hexagonal P6mm [183] − 1.76 3.71 
MgO Cubic Fm 3 m 

[225] 
− 6.22 17.75  

Fig. 9. Term correlation with strain exponent c.  

Fig. 10. Term correlation with half-crystalline size D/2.  

Table 2 
Obtained results from the SD model.  

Material Da (nm) εa ( × 10− 3) D (nm) Error (%) c 

CuO 44.79 0.84 42.4 5.34 2.09 
LaFeO3 38.71 1.26 40.1 3.59 4.28 
Mn3O4 30.74 2.49 21.4 30.38 3.62 
Fe2O3 34.87 1.78 28.7 17.69 1.56 
ZnO 33.36 0.94 34.7 4.02 0.50 
MgO 13.44 1.39 16.6 23.51 1.75  

a Average values from the Williamson-Hall, Halder-Wagner, and SSP methods. 
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