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Abstract One of the most important problems in basic physics and astronomy is studying the motion of planets, satellites, and
other celestial bodies. The solution to the two-body problem enables astronomers to predict the orbits of the Moon, satellites, and
spaceships around the Earth. The general analytic solution for the three-body problem stands unsolved except in some special
cases. This reduces the problem to a two-body problem. In this work, the authors present a closed-form approach to the three-body
problem theoretically and numerically based on particle–particle vector analysis. The theoretical approach, which is based on the real
Moon–Sun–Earth problem information, illustrates the perturbation of the Moon in the Sun–Earth problem and shows an expected
orbital motion with a perturbation in the Sun–Earth orbit due to the revolution of the Moon. The numerical investigation uses the
same information to study the same problem and calculate the angular momentums of each pair of objects. The two solutions show
good agreement with the well-known Earth-Moon and Sun–Earth momentums. The Moon–Sun orbit is close to an elliptic shape
with angular momentum of about 3.27×1038 J.s. This approach is the key to future studies for n-body problem solutions.

1 Introduction

In classical mechanics, the two-body problem is used to predict the motion of two massive objects that are abstractly viewed as
point masses. The problem assumes that the two objects interact only gravitationally with one another; all other forces are ignored.

We consider two bodies of masses m1 and m2 with position vectors r1 and r2, respectively. Let r1 and r2 be the vector positions
of the two bodies and m1 and m2 be their masses. The goal is to determine the trajectories r1(t) and r2(t) for all time t, given the
initial positions r1(t � 0) and r2(t � 0) and the initial velocities ṙ1(t � 0) and ṙ2(t � 0).

Newton’s second law states that:

F12(r1) � m1 r̈1 (1)

F21(r2) � m2 r̈2 (2)

where F12 is the force on m1 due to its interactions with m2 and F21 is the force on m2 due to its interactions with m1. The single
or double dots on top of the r position vectors; which are the first or second derivatives with respect to time, represent their velocity
or acceleration vectors, respectively.

If r12 is the vector distance between the two bodies, its time derivatives may be used to rewrite Eqs. 1 and 2 together as:

r̈12 � r̈2 − r̈1 � F21

m2
− F12

m1
(3)

The center of mass vector rcm (where all body masses have an effect) may be introduced from its definition:
n∑

i�1

mi (r i − rcm) � 0 (4)

and written generally as:

rcm �
∑n

i�1 mi r i∑n
i�1 mi (5)
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Both r1 and r2 are vector functions in rcm and r12. They are deduced from the following matrix form:
(
r1

r2

)
�

(
χ11 χ12

χ21 χ22

)(
rcm
r12

)
(6)

The χ ij values can be calculated from the two independent equations r2 − r1 � r12 and m1r1 + m2r2 � (m1 + m2)rcm, where the
first equation can be written as:

(χ21 − χ11)rcm � (1 − χ22 + χ12)r12 (7)

Since the two vectors rcm and r12 are independent, the multiplied scalar terms in each should vanish. In this methodology, the
χ ij values can be set in one matrix as follows:

⎛

⎜⎜⎝

0
1

m1 + m2

0

⎞

⎟⎟⎠ �

⎛

⎜⎜⎝

−1 1 0 0
0 0 −1 1
m1 m2 0 0
0 0 m1 m2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

χ11

χ21

χ12

χ22

⎞

⎟⎟⎠ (8)

By inverting the central matrix and multiplying it by the left-hand matrix, the χ ij values will be determined, and hence the position
vectors of the two-bodies are written as follows:

r1(t) � rcm − m2

m1 + m2
r12

r2(t) � rcm +
m1

m1 + m2
r12

(9)

from which we can deduce the equations of motion for the two-body problem. According to Eqs. 9, the two-body problem is now
reduced to a one-body problem, and the two trajectories r1 and r2 for all time t can be determined. The relative distance vector r12
can be calculated due to the potential V (r12) between the two bodies.

Cowell’s method [1] in celestial mechanics is the simplest way to solve the perturbed two-body problem. This approach is based
on integrating directly the Newtonian equations of motion in rectangular coordinates. If the distance between the two bodies, which
are thought of as point masses, becomes zero, the analytical solution for these differential equations is singular. The numerical
solution loses accuracy also, even if the bodies are considered to have a definite size.

Regularization is the process of eliminating singularities from the equations of motion by carefully choosing variables in order
to get regular differential equations [2]. Levi–Civita [3] and Sundman [4, 5] conducted the first essential lines of research on the
regularization of the three-body problem.

The generalization of the special perturbation, in the case of a perturbing force, is entirely or partially derivable from a potential
[6]. Generally, the three-body problem solutions are more accurate than two-body problem perturbed by third one. Based on this,
the three-body problem will be considered analytically and numerically in this work.

Mathematicians have been drawn to the three-body problem for ages because of its enigmatic nature and simplicity. The topic
has been tackled by mathematic giants such as Euler, Lagrange, Laplace, Jacobi, Le Verrier, Hamilton, Poincaré, and Birkhoff,
who have all made significant contributions. Szebehely [7] and Marchal [8] both offer scholarly analyses of the relevant literature
and derivations of the key findings. The three-body problem remains mysterious until now, despite the fact that a great deal has
previously been discovered. However, new findings and renewed interest in the subject have resulted from recent advancements in
nonlinear dynamics and the stimulation of additional solar system data [9].

There is no general closed-form solution to the three-body problem [10] (or a more general one for the n-body problem). This
is also proved by Bruns [11] in 1887, who stated that there is no closed-form solution for the n-body problem, n ≥3. The work of
Euler [12, 13] in 1740 illustrated a family of solutions for many bodies orbiting around a common center of mass. Also, Poincaré
[14] established the existence of an infinite number of periodic solutions [15] to the restricted three-body problem in 1906, together
with techniques for continuing these solutions into the general three-body problem.

Lagrange [16] in 1867 found a solution for the three-body problem, which forms an equilateral triangle [17]. Hénon and Broucke
in the 1970’s each found a family of solutions [18] (the Broucke–Henon–Hadjidemetriou family) involving two masses bouncing
back and forth in the center of a third body’s orbit. Moore [19] in the 1990’s discovered a stable figure-eight orbit of three equal
masses with a zero-angular-momentum solution; this solution was also proved by Chenciner and Montgomery [20, 21]. Šuvakov
and Dmitrašinović [18] also discovered thirteen new families of solutions for the zero-angular-momentum equal-mass three-body
problem [22], and Hudomal [23] discovered fourteen families for the same problem.

Stone and Leigh [24] stated that the chaotic motion of the system happens because its state seems to get randomly shuffled over
time. The motion is perfectly determined between one instant and the next. But it can be thought of as approximately random over
long intervals, such as a pseudo-random system that will, over time, explore all possible configurations consistent with some basic
properties like the energy and angular momentum of the system. The system explores what we call “phase space”, a space of possible
arrangements of position and velocity.

Sundman found a solution to the general three-body problem as a converging infinite series that was added together to solve
the orbit calculation [25, 26]. Because the series converged, successive terms diminished to effectively nothing, so in principle, the
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equation could be written out on paper. However, the convergence of Sundman’s series is so slow that it would take billions of terms
to converge for typical calculations in celestial mechanics.

The closed form of the three-body or n-body problem is still unsolved, but the three-body problem is particularly important
for astronomers and physicists studying the motion of the Moon–Sun–Earth system. The three-body problem is also solvable in
restricted cases, such as a body of negligible mass (the “planetoid”) moving under the influence of two massive bodies.

In this work, an approach to the three-body system’s general solution will be presented and discussed. The Moon–Sun–Earth
problem was restudied according to the Moon’s influence on the Sun–Earth orbit as a third-body perturbation. The three-body
problem solution, which is deduced in this work, was applied to the same system to show how it explained the orbits numerically.
The application of this solution is important for the motion of planets, rotation, vibration [27–31], etc., of molecules [32–37], internal
friction [38–44], and other point mass systems in physics [45–54].

The most important application of this work is in astronomy, especially in satellite orbit design. Traditional satellite engineering
designs the orbit according to the rotation of the body around the Earth. Due to the lack of many-body system solutions, engineers
use a two-body equation in the main problem. In the real environment, the Earth’s Moon (and other celestial bodies) affects the
satellite orbit, and their effect will be clear after a number of satellite revolutions as the orbit becomes narrower. So the satellite orbit
should be corrected (the orbit recovery maneuver) by using propulsion engines that consume fuel. As the fuel runs out, the satellite
becomes out of control and hence falls down into the Earth’s atmosphere and is destroyed. The solution to the three-body problem
can improve the orbit properties where some meters can be added or subtracted from the two-body orbit axes length. This will make
the orbit more stable, and hence, the satellite lifetime increases which decreases the expenses of satellites.

2 Methodology

To solve the three-body system, we need to find the r1, r2, and r3 vectors (at any time t) in terms of the center of mass and relative
distance vectors between every two masses (rcm, r12, r23, and r31). So twelve unknown variables are expected (four variables in
front of each rcm, r12, r23, and r31 in three independent equations of the r1, r2, and r3 vectors). The exact solution requires twelve
independent equations. According to the available equations, only three general equations are written (r3 − r2, r1 − r3, and m1r1 +
m2r2 + m3r3), and the fourth, r2 − r1, will be dropped because it is just a combination of the first two equations.

Due to the leak of enough equations, the solution is hard to find. One can expect the unity of three variables in front of rcm in the
three equations (as that obtained in a two-body problem), using the fact of the relative distance vectors as in Fig. 1 which is given
by:

r12(t) + r23(t) + r31(t) � 0 (10)

The vector r12 will be cancelled out of the treatment since it can be generated from the two vectors r23 and r31 in the three
equations, and they will be written as:

⎛

⎝
r1

r2

r3

⎞

⎠ �
⎛

⎝
rcm
rcm
rcm

⎞

⎠ +

⎛

⎝
χ11 χ12

χ21 χ22

χ31 χ32

⎞

⎠
(
r23

r31

)
(11)

Fig. 1 Three-body system
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By using the same methodology in a two-body problem, there are three independent equations (r3 − r2, r1 − r3, and m1r1 +
m2r2 + m3r3), each of them in a similar form to Eq. (7). There will be six independent equations in six unknowns (χ ij) that can be
grouped in the matrix form as follows:

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
�

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
m1 0 m2 0 m3 0
0 m1 0 m2 0 m3

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

χ11

χ12

χ21

χ22

χ31

χ32

⎞

⎟⎟⎟⎟⎟⎟⎠
(12)

The solution of this matrix gives the following three position vectors to obtain the equations of motion for the three-body problem:

r1(t) � rcm +
m2

m1 + m2 + m3
r23 +

m2 + m3

m1 + m2 + m3
r31

r2(t) � rcm − m1 + m3

m1 + m2 + m3
r23 − m1

m1 + m2 + m3
r31

r3(t) � rcm +
m2

m1 + m2 + m3
r23 − m1

m1 + m2 + m3
r31

(13)

Another methodology can directly find the same solution based on the definition of the center of mass (Eq. 5). The basic vectors
r3 and r2 can be written as:

r3 � r1 − r31

r2 � r3 − r23 � r1 − r23 − r31
(14)

By substituting Eq. 14 in Eq. 5, one can write:

(m1 + m2 + m3)rcm � m1r1 + m2(r1 − r23 − r31) + m3(r1 − r31)

� (m1 + m2 + m3)r1 − m2r23 − (m2 + m3)r31 (15)

The vector r1 can be written as:

r1 � rcm +
m2

m1 + m2 + m3
r23 +

m2 + m3

m1 + m2 + m3
r31 (16)

The other vectors (r2 and r3) can be deduced in the same way.

3 Results and discussion

3.1 Gravitational three-body problem

The three-body analytical solution (Eq. 13) can be applied to three particles with mutual gravitational potentials and centripetal
forces. The equation of motion for these bodies can be written as:

m1 r̈1 � F21 + F31 � −G
m1m2

r3
12

r21 +
L2

12

m1r4
12

r21 − G
m1m3

r3
13

r31 +
L2

31

m1r4
13

r31

m2 r̈2 � F12 + F32 � −G
m1m2

r3
12

r12 +
L2

12

m2r4
12

r12 − G
m2m3

r3
32

r32 +
L2

23

m2r4
23

r32

m3 r̈3 � F23 + F13 � −G
m2m3

r3
23

r23 +
L2

23

m3r4
23

r23 − G
m1m3

r3
13

r13 +
L2

13

m3r4
13

r13

(17)

where G is the general gravitational constant and L12, L23, and L31 are the angular momenta of the three bodies in terms of the
relative distance vectors. These equations are similar to that presented in [55, 56], where they consider the center of mass of the first
two bodies and then interacts with the third one. This is not identical to what is presented here. The third body is treated without
neglecting its mass and hence the total center of mass (rcm) is considered.

Each force between any two bodies has a gravitational potential and a centripetal potential; this is the effective potential of a
rotating frame of reference. The centripetal force is related to the angular momentum of rotation; it is conserved in a two-body
problem since no external torque is applied. The total energy in the three-body problem is conserved, but generally the angular
momentum is not since each of the two rotating bodies is under the external torque of the third one. In our case, the Moon–Sun–Earth
problem, the influence of the Moon on the Sun–Earth orbit is so small (clarification is at the end of this section). So the angular
momentums L23 and L31 are identical to the Sun–Earth and Earth–Moon angular momentums in the two-body problem. Since the
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moon’s orbit around the sun is nearly elliptical, the Moon–Sun angular momentum L12 should be considered. It can be approximated
as a constant because the variation of the rotation angle is very small. This will be verified in the numerical approach section.

The general solution for this case will be written as follows:

m1m2 r̈23 + (m1m2 + m1m3)r̈31 �
(

−GM
m1m2

r3
12

+
ML2

12

m1r4
12

)
r23

+

(
−GM

m1m2

r3
12

+
ML2

12

m1r4
12

− GM
m1m3

r3
13

+
ML2

31

m1r4
13

)
r31

(m1m2 + m2m3)r̈23 + m1m2 r̈31 �
(

−GM
m1m2

r3
12

+
ML2

12

m2r4
12

− GM
m2m3

r3
23

+
ML2

23

m2r4
23

)
r23

+

(
−GM

m1m2

r3
12

+
ML2

12

m2r4
12

)
r31

m2m3 r̈23 − m1m3 r̈31 �
(

−GM
m2m3

r3
23

+
ML2

23

m3r4
23

)
r23 −

(
−GM

m1m3

r3
13

+
ML2

13

m3r4
13

)
r31 (18)

where M is the sum of the system masses. One can rewrite these equations in terms of one acceleration vector to clearly show the
direction of each acceleration vector with respect to the particle–particle vector:

m1m3 r̈31 �
(

−G

[
m1m3(m1 + m3)

r3
13

+
m1m2m3

r3
12

]
+
L2

31

r4
31

[
m1

m3
+
m3

m1

]
+
m3L2

12

m1r4
12

)
r31

+

(
−Gm1m2m3

[
1

r3
12

− 1

r3
23

]
+
m3L2

12

m1r4
12

− m1L2
23

m3r4
23

)
r23

m2m3 r̈23 �
(

−G

[
m2m3(m2 + m3)

r3
23

+
m1m2m3

r3
12

]
+
L2

23

r4
23

[
m2

m3
+
m3

m2

]
+
m3L2

12

m2r4
12

)
r23

+

(
−Gm1m2m3

[
1

r3
12

− 1

r3
13

]
+
m3L2

12

m2r4
12

− m2L2
13

m3r4
13

)
r31 (19)

It is clear that the particle–particle acceleration vectors have components for each vector, and thus, the solution to this deferential
equation is very difficult, except in some special cases.

3.2 Theoretical approach to the Moon–Sun–Earth problem

An important solution for astronomers and physicists is the Moon–Sun–Earth problem; this case was studied as a two-body problem
by neglecting the Moon’s mass as affected by the forces of the Sun and Earth. The masses were m1 � 7.35×1022 kg, m2 � 1.99×
1030 kg, and m3 � 5.97×1024 kg for the Moon, Sun, and Earth, respectively. The gravitational force constant G is taken as 6.67×
10–11 N m2/kg2. The solutions to the two-body problem due to Kepler were (m is the body’s mass, which revolves around M body
mass):

r � a
(
1−e2

)

1−e cos θ
, dθ

dt � L
mr2 , a � L2

(1−e2)GMm2 , T �
√

4π2a3

GM
(20)

In this work, this case will be investigated without neglecting any parties. If the three masses are selected to be the Moon, Sun,
and Earth, respectively, one can notice the Moon–Sun and Sun–Earth vector lengths are nearly equal and is very large compared to
Moon–Earth vector length (|r12|≈|r23|�|r13|). The Earth’s mass is too large (nearly one hundred times) compared to that of Moon
(m3 �m1); so the r̈31 equation of Eq. 19 could be approximately written as:

r̈31 �
(

−G
m1 + m3

r3
13

+
L2

31

r4
13

[
1

m2
1

+
1

m2
3

])
r31 (21)

The solution to this differential equation can be written as:

r31 � a31
(
1 − e2

31

)

1 − e31 cos θ31
,

dθ31

dt
�

L31

√
m2

1 + m2
3

r2
31m1m3

,

L31 �
√(

1 − e2
31

)
Gm2

1m
2
3(m1 + m3)a31(

m2
1 + m2

3

) , T31 �
√

4π2a3
31

G(m1 + m3)
(22)

123



  895 Page 6 of 10 Eur. Phys. J. Plus         (2024) 139:895 

Table 1 Earth–Moon orbit data
[59–61]

Term Definition Unit Value Error References

a Orbital major axis length m 3.84×108 observed [53–56, 59–61]

e Eccentricity 5.49×10–2 observed [53–56, 59–61]

L Angular momentum J.s 2.900×1034 observed [60, 61]

2.870×1034 Kepler solution 1.0423

2.887×1034 this work 0.4426

T Revolution periodic s 2.361×106 observed [60]

2.369×106 Kepler solution 0.3692

2.355×106 this work 0.2430

By applying these equations with the given values of the orbit’s major axis and eccentricity, the angular momentum of the moon
and the periodic time of the moon’s orbit are calculated. The obtained values are presented in Table 1 beside the absolute error.

The obtained results of this work show more accurate values than those of Kepler for angular momentum and periodic time,
which validates the accuracy of this method in calculating the orbit of satellites due to the Satellite–Earth–Moon problem.

So the r̈23 equation of Eq. 19 could be approximately written as follows:

r̈23 �
(

−G
M

r3
23

+
L2

23

r4
23

[
1

m2
2

+
1

m2
3

])
r23 −

(
−G

m1

r3
31

+
L2

31

m2
3r

4
31

)
r31 (23)

The Sun–Earth orbit was affected by the presence of the moon in the system. As the length of r31 is smaller than that of r23, one
can assume the r31-term in Eq. 23 is a perturbation to the elliptic orbit r23. Since the Earth–Moon orbit plane is inclined by 5.15° to
the Sun–Earth orbit plane, the current solution will neglect this orbital inclination and assume Moon–Sun–Earth is a planar problem.

To solve Eq. 23, the perturbation limits only will be considered since the moon’s revolution around the earth is nearly circular (the
Moon–Earth orbit eccentricity is too small). The Earth’s revolution radius around the sun is a harmonic function of the Moon–Earth
angle. The extreme points are enough to determine the full revolution function; hence, the maximum and minimum radii can be
studied in the following two cases with introducing the unit vector r̂23.

Case 1: When Earth is located between the Sun and the Moon (i.e., θ31 − θ23 � (2n + 1)π , n � 0,1,2,3,…), the gravitational
force due to the Moon on the Earth reduces the gravitational force due to the Sun on the Earth, and Eq. 23 can be written as:

r̈23|θ31−θ23�(2n+1)π �
(

−G

(
M

r2
23

− m1

r2
31

)
+
L2

23

r3
23

[
1

m2
2

+
1

m2
3

]
− L2

31

m2
3r

3
31

)
r̂23 (24)

Case 2: When the Moon becomes between the Sun and the Earth (i.e., θ31 − θ23 � (2n)π), the gravitational forces due to the
Sun and the Moon on the Earth become greater, and Eq. 23 will be written as:

r̈23|θ31−θ23�(2n)π �
(

−G

(
M

r2
23

+
m1

r2
31

)
+
L2

23

r3
23

[
1

m2
2

+
1

m2
3

]
+

L2
31

m2
3r

3
31

)
r̂23 (25)

The third term in both of Eqs. 24 and 25 is very small compared to the middle term and will be neglected. Rewriting them as:

r̈23 �
(

−GM

r2
23

(
1 − m1

〈
r2

23

〉

M
〈
r2

31

〉 cos(θ31 − θ23)

)
+
L2

23

r3
23

[
1

m2
2

+
1

m2
3

])
r̂23 (26)

The mean values were used instead of the lengths:

〈r〉 �
∫ 2π

0

a
(
1 − e2

)

1 − e cos θ
dθ � 2πa

√
1 − e2

〈
r2〉 �

∫ 2π

0

a2
(
1 − e2

)2

(1 − e cos θ)2 dθ � 2πa2
√

1 − e2

(27)

Although the harmonic term in Eq. 26 is time-dependent, its variation is very small and can be considered as a time-independent
value. The solution to Eq. 26 will be:

r23 � a23
(
1 − e2

23

)

1 − e23 cos θ23
· 1

1 − γ cos(θ31 − θ23)

L23 �
√
a23

(
1 − e2

23

)
GMm2

2m
2
3(

m2
2 + m2

3

)

123



Eur. Phys. J. Plus         (2024) 139:895 Page 7 of 10   895 

Table 2 Sun-Earth orbit data
[59–61]

Term Definition Unit Value Error (%) References

a Orbital major axis length m 1.50×1011 observed [59–61]

e Eccentricity 1.67×10–2 observed [59–61]

L Angular momentum J.s 2.660×1040 observed [60, 61]

2.659×1040 Kepler solution 0.0255

2.659×1040 this work 0.0253

T Revolution periodic s 3.156×107 observed [60]

3.156×107 Kepler solution 0.0173

3.156×107 this work 0.0152

Fig. 2 Moon–Sun–Earth three-body problem

γ � m1a2
23

Ma2
31

√
1 − e2

23

1 − e2
31

dθ23

dt
�

L23

√
m2

2 + m2
3

r2
23m2m3

T23 �
√

4π2a3
23

GM
(28)

This solution was used for calculating the Sun–Earth orbit characteristics, which are displayed in Table 2.
The approximation in Eq. 21 can show an approximate value for the unknown Moon–Sun angular momentum L12 of 3.2749×

1038 J.s, assuming that its orbit is too close to an ellipse (the orbit is nearly an ellipse where the Earth–Sun distance is one thousand
the Earth–Moon distance).

The solution of the Earth–Sun orbit is a perturbed ellipse with a constant γ of about 5.611×10–3. Figure 2 shows the Moon—
Sun–Earth orbits, which are in good agreement with [57, 58]. The locations of the Earth and the Moon have also been shown in two
different positions (same phases) in the inset figures in Fig. 2.

3.3 Numerical approach to the Moon–Sun–Earth problem

A hand-made VBA application was built to use the Kepler solution for Earth–Moon and Sun–Earth orbits to draw a full system
position with a time interval of 863.27 s. The three-body equation (Eq. 19) was considered to estimate the values of angular momenta
L12, L23, and L31 without any further approximations. The vectors r23, r13, r̈31, and r̈23 are analyzed in polar coordinates as follows:

r � r r̂ + (rθ)θ̂ � r r̂ + β θ̂ (29)

123



  895 Page 8 of 10 Eur. Phys. J. Plus         (2024) 139:895 

Fig. 3 Moon–Sun–Earth orbital radii

where r represents the radial term and β represents the tangent term of the vector. Based on this, the orbital radii of the system are
shown in Fig. 3.

The obtained results for the Earth’s tangential speed component around the Sun and for the Moon’s tangential speed component
around the Earth are about 30 km/s and about 1 km/s, respectively; these values are close to those of the real values.

Equation 19 can be written in terms of four parameters (a1, a2, a3, and a4) as:

r̈31 � a1r31 + a2r23

β̈31 � a1β31 + a2β23

r̈23 � a3r23 + a4r31

β̈23 � a3β23 + a4β31 (30)

They can be solved simultaneously to produce these parameters. They will be used in the following equation to get the squares
of the system’s angular momenta. The solution produces time-dependent momenta; Table 3 shows these results.

L2
31
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1

+
1
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3
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1
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31
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12
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1
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1r

4
12

]
� a1 + G

[
(m1 + m3)

r3
13

+
m2

r3
12

]

L2
12

[
1

m2
1r

4
12

]
− L2

23

[
1

m2
3r

4
23

]
� a2 + G

[
1
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12

− 1

r3
23

]
m2

L2
23

[
1

m2
2

+
1

m2
3

]
1

r4
23

+ L2
12

[
1

m2
2r

4
12

]
� a3 + G

[
(m2 + m3)

r3
23

+
m1

r3
12

]

L2
12

[
1

m2
2r

4
12

]
− L2

13

[
1

m2
3r

4
13

]
� a4 + G

[
1

r3
12

− 1

r3
13

]
m1 (31)

The numerical approaches validate the same results obtained from the approximate theoretical solution.

4 Conclusions

Finding the closed-form solution for the general three-body problem is essential for describing the orbital motions of planets,
satellites, and other celestial bodies. The solution based on nonzero-angular momentum was presented for the Moon–Sun–Earth
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Table 3 Numerical approach
results

Term Definition Unit Value Tolerance/error (%)

L12 Moon’s angular momentum around
the Sun

J.s 3.2338×1038 Min

3.3256×1038 Max 2.80×10–4 tolerance

3.2745×1038 Avg 1.22×10–6 error

3.2749×1038 Cal

L23 Earth’s angular momentum around
the Sun

J.s 2.6593×1040 Min

2.6594×1040 Max 3.80×10–7 tolerance

2.6593×1040 Avg 2.63×10–6 error

2.660×1040 Obs

L31 Moon’s angular momentum around
the Earth

J.s 2.8043×1034 Min

2.9727×1034 Max 5.82×10–4 tolerance

2.8922×1034 Avg 2.69×10–5 error

2.900×1034 Obs

problem without neglecting any mass. The solution to this problem shows an ordinary Earth-Moon orbit with angular momentum
too close to that found in the two-body problem. The Sun–Earth orbit shows small perturbation oscillations due to the effect of the
Moon’s revolution around the Earth. The Moon–Sun total angular momentum was determined.

Acknowledgements Authors thank Professor A.A. Saud from Physics University, Faculty of Science, and Prof. F.A. Abd El-Salam from Department of
Astronomy, Faculty of Science, Cairo University, for helping in the calculations of the problems investigated in this work.

Author contribution The authors confirm contribution to the paper as follows: ASA-R and YAS contributed to the study conception and design; ASA-R
collected the data; ASA-R and YAS analyzed and interpreted the results; ASA-R and EMA drafted the manuscript preparation; YAS performed the numerical
analysis. All authors reviewed the results and approved the final version of the manuscript.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge
Bank (EKB).

Data availability statement The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable
request. The manuscript has associated data in a data repository

Declarations

Conflict of interest Authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. R.H. Battin, An introduction to the mathematics and methods of astrodynamics, in AIAA Education Series, AIAA, Reston, VA, p. 447 (1999)
2. V. Szebehely, Lect. Notes Math. 461, 257–263 (1975). https://doi.org/10.1007/BFb0074156
3. T. Levi-Civita, Questioni di Meccanica Classica e Relativista (Zanichelli, Bologna, 1924)
4. K.F. Sundman, Acta Societatis Scientiarum Fennicae 34(6), 1–43 (1907)
5. K.F. Sundman, Acta Math. 36(1), 105–179 (1912)
6. J. Pelaez, J.M. Hedo, P.R. de Andres, Celest. Mech. Dyn. Astron. 97(2), 131–150 (2007)
7. V. Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc., New York (1967). https://doi.org/10.1016/B978-0-12-

395732-0.50007-6
8. C. Marchal. The Three-Body Problem. Elsevier, Oxford (1990) ISBN 9780444566980
9. C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781139174817

10. J. Barrow-Green, The three-body problem, in The Princeton Companion to Mathematics. ed. by T. Gowers, J. Barrow-Green, I. Leader (Princeton
University Press, Princeton, 2008), pp.726–728

11. H. Bruns, Über die Integrale des Vielkörper-Problems. Acta Math. 11, 25–96 (1887). https://doi.org/10.1007/BF02612319

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BFb0074156
https://doi.org/10.1016/B978-0-12-395732-0.50007-6
https://doi.org/10.1017/CBO9781139174817
https://doi.org/10.1007/BF02612319


  895 Page 10 of 10 Eur. Phys. J. Plus         (2024) 139:895 

12. L. Euler, Nov. Comm. Acad. Imp. Petropolitanae 10, 207–242 (1740)
13. L. Euler, Nov. Comm. Acad. Imp. Petropolitanae, 11, 152–184; Mémoires de l’Acad. de Berlin, 11, 228–249 (1740)
14. J.H. Poincaré, The three-body problem and the equations of dynamics: Poincaré’s foundational work on dynamical systems theory. Popp, Bruce D.

(translator). Springer, Cham (2017) ISBN 9783319528984
15. F. Diacu, The solution of the n-body problem. Math. Intell. 18(3), 66–70 (1996). https://doi.org/10.1007/BF03024313
16. J.-L. Lagrange, Tome 6, Chapitre II: Essai sur le problème des trois corps. Œuvres de Lagrange (in French). Gauthier-Villars., pp 229–334 (1867–1892)
17. R. Broucke, J.D. Anderson, L. Blitzer, Periodic solutions about the collinear Lagrangian solution in the general problem of three bodies. Celest. Mech.

24, 63–82 (1981). https://doi.org/10.1007/BF01228794
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