Safar, M. M., N. F. Abdelkader, E. Ramadan, M. A. Kortam, and A. F. Mohamed, "Novel mechanistic insights towards the repositioning of alogliptin in Parkinson's disease.", Life sciences, vol. 287, pp. 120132, 2021. Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disease that impairs people's lives tremendously. The development of innovative treatment modalities for PD is a significant unmet medical need. The critical function of glucagon-like peptide-1 (GLP-1) in neurodegenerative diseases has raised impetus in investigating the repositioning of a dipeptidyl peptidase IV inhibitor, alogliptin (ALO), as an effective treatment for PD. As a result, the focus of this research was to assess the effect of ALO in a rat rotenone (ROT) model of PD. For 21 days, ROT (1.5 mg/kg) was delivered subcutaneously every other day. ALO (30 mg/kg/day), delivered by gavage for 21 days, recovered motor performance and improved motor coordination in the open-field and rotarod testing. These impacts were highlighted by restoring striatal dopamine content and correcting histological changes that occurred concurrently. The ALO molecular signaling was determined by increasing the quantity of GLP-1 and the protein expression of its downstream signaling pathway, pT172-AMPK/SIRT1/PGC-1α. Furthermore, it curbed neuroinflammation via hampering HMGB1/TLR4/NLRP3 inflammasome activation and conquered striatal microglia activation. Pre-administration of dorsomorphin reversed the neuroprotective effects. In conclusion, the promising neuroprotective effect of ALO highlights the repositioning of ALO as a prospective revolutionary candidate for combating PD.

Elgebaly, S. A., R. Todd, D. L. Kreutzer, R. Christenson, N. El-Khazragy, R. K. Arafa, M. A. Rabie, A. F. Mohamed, L. A. Ahmed, and N. S. El Sayed, "Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure.", International journal of molecular sciences, vol. 22, issue 7, 2021. Abstract

BACKGROUND: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated (marker of cell damage) and (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects.

OBJECTIVES: To test the hypothesis that Nourin-associated and are upregulated in ISO-induced "HF rats" and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in "non-HF rats".

METHODS: 25 male Wistar rats (180-220 g) were used: ISO/saline ( = 6), ISO/CCrP (0.8 g/kg/day) ( = 5), control/saline ( = 5), and control/CCrP (0.8 g/kg/day) ( = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day ( = 3) and a higher dose of 1.2 g/kg/day ( = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of and were measured in serum samples using quantitative real-time PCR (qPCR).

RESULTS: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of and by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, "HF rats," compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of by 44% in the ISO/CCrP rats, "non-HF rats," compared to the ISO/Saline rats, "HF rats." Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function.

CONCLUSIONS: Results suggest a role of Nourin-associated and in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in "non-HF rats" and significantly reduced Nourin gene expression levels in a dose-response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP-as a novel preventive therapy of HF due to ischemia.

Elgebaly, S. A., R. Todd, D. L. Kreutzer, R. Christenson, N. El-Khazragy, R. K. Arafa, M. A. Rabie, A. F. Mohamed, L. A. Ahmed, and N. S. El Sayed, "Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure.", International journal of molecular sciences, vol. 22, issue 7, 2021. Abstract

BACKGROUND: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated (marker of cell damage) and (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects.

OBJECTIVES: To test the hypothesis that Nourin-associated and are upregulated in ISO-induced "HF rats" and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in "non-HF rats".

METHODS: 25 male Wistar rats (180-220 g) were used: ISO/saline ( = 6), ISO/CCrP (0.8 g/kg/day) ( = 5), control/saline ( = 5), and control/CCrP (0.8 g/kg/day) ( = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day ( = 3) and a higher dose of 1.2 g/kg/day ( = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of and were measured in serum samples using quantitative real-time PCR (qPCR).

RESULTS: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of and by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, "HF rats," compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of by 44% in the ISO/CCrP rats, "non-HF rats," compared to the ISO/Saline rats, "HF rats." Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function.

CONCLUSIONS: Results suggest a role of Nourin-associated and in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in "non-HF rats" and significantly reduced Nourin gene expression levels in a dose-response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP-as a novel preventive therapy of HF due to ischemia.

Badawi, G. A., M. M. Shokr, H. F. Zaki, and A. F. Mohamed, "Pentoxifylline prevents epileptic seizure via modulating HMGB1/RAGE/TLR4 signalling pathway and improves memory in pentylenetetrazol kindling rats.", Clinical and experimental pharmacology & physiology, vol. 48, issue 8, pp. 1111-1124, 2021. Abstract

Epilepsy is a chronic widely prevalent neurologic disorder, affecting brain functions with a broad spectrum of deleterious consequences. High mobility group box1 (HMGB1) is a nuclear non-histone protein that targets vital cell receptor of toll-like receptor 4 (TLR4) and advanced glycation end products (RAGE). HMGB1 mediated TLR4/RAGE cascade has been scored as a key culprit in neuroinflammatory signalling that critically evokes development of impaired cognition and epilepsy. The current study aimed to investigate the neuroprotective effect of pentoxifylline (PTX) on pentylenetetrazol (PTZ)-kindling rats by its anti-inflammatory/antioxidant capacity and its impact on memory and cognition were investigated, too. PTZ was intraperitoneally injected 35 mg/kg, every 48 h, for 14 doses, to evoke kindling model. Phenytoin (30 mg/kg, i.p.) and PTX (60 mg/kg, i.p.) or their combination were given once daily for 27 days. PTX treatment showed a statistically significant effect on behavioural, histopathological and neurochemical analysis. PTX protected the PTZ kindling rats from epileptic seizures and improved memory and cognitive impairment through the Morris water maze (MWM) test. Furthermore, PTX reversed PTZ hippocampal neuronal loss by decreasing protein expression of amyloid-β peptide (Aβ), Tau and β site-amyloid precursor protein cleavage enzyme 1 (BACE1), associated with a marked reduction in expression of inflammatory mediators such as HMGB1, TL4, and RAGE proteins. Furthermore, PTX inhibited hippocampal apoptotic caspase 1 protein, total reactive oxygen species (TROS) along with upregulated erythroid 2-related factor 2 (Nrf2) content. In conclusion, PTX or its combination with phenytoin represent a promising drug to inhibit the epilepsy progression via targeting the HMGB1/TLR4/RAGE signalling pathway.

Safar, M. M., N. N. Shahin, A. F. Mohamed, and N. F. Abdelkader, "Suppression of BACE1 and amyloidogenic/RAGE axis by sitagliptin ameliorates PTZ kindling-induced cognitive deficits in rats.", Chemico-biological interactions, vol. 328, pp. 109144, 2020. Abstract

The debilitating nature of cognitive impairment in epilepsy and the potential of some traditional antiepileptics to further deteriorate cognitive function are areas of growing concern. Glucagon-like peptide-1 (GLP-1) deficiency has been linked to reduced seizure threshold as well as cognitive dysfunction. Here, we tested whether sitagliptin (SITA), by virtue of its neuroprotective properties, could alleviate both epilepsy and associated cognitive dysfunction in a rat model of kindling epilepsy. Chemical kindling was induced by subconvulsive doses of pentylenetetrazol (PTZ) (30 mg/kg; i.p). SITA (50 mg/kg; p.o) was administered 1 h before PTZ injections. SITA conceivably attenuated PTZ hippocampal histological insult, preserved neuronal integrity and amended neurotransmitter perturbations in rat hippocampi paralleled with enhanced hippocampal GLP-1 levels as well as the downstream cAMP content and protein kinase A (PKA) activity. Moreover, SITA improved cognitive functioning of rats in the Morris water maze which was coupled with hampered hippocampal p(Ser)-tau and β-amyloid proteins. SITA replenished p(Ser)-glycogen synthase kinase-3β (GSK-3β). It also opposed the boosted matrix metalloproteinase-9 (MMP-9), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor-1 (IGF-1) levels associated with PTZ administration along with mitigation of both β-secretase-1 (BACE1) immunoreactivity and receptor for advanced glycation end products (RAGE) protein level in rat hippocampi. In conclusion, SITA subdues epileptic and cognitive upshots of PTZ kindling in rats, which might correspond to the modulation of BACE1, amyloidogenic/RAGE axis as well as GSK-3β/MMP-9/BDNF signaling cascade. SITA effects are probably mediated via boosting GLP-1 and subsequently enhancing GLP-1/GLP-1R signaling.

Sayed, N. H., N. Fathy, M. A. Kortam, M. A. Rabie, A. F. Mohamed, and A. S. Kamel, "Vildagliptin Attenuates Huntington's Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model.", Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, vol. 17, issue 1, pp. 252-268, 2020. Abstract

Vildagliptin (Vilda), a dipeptidyl peptidase-4 (DPP-4) inhibitor, has been highlighted as a promising therapeutic agent for neurodegenerative diseases as Alzheimer's and Parkinson's diseases. Vilda's effect is mostly linked to PI3K/Akt signaling in CNS. Moreover, PI3K/Akt activation reportedly enhanced survival and dampened progression of Huntington's disease (HD). However, Vilda's role in HD is yet to be elucidated. Thus, the aim of the study is to uncover the potentiality of Vilda in HD and unfold its link with PI3K/Akt pathway in 3-nitropropionic acid (3NP) rat model. Rats were randomly assigned into 4 groups; group 1 received saline, whereas, groups 2, 3 and 4 received 3NP (10 mg/kg/day; i.p.) for 14 days, concomitantly with Vilda (5 mg/kg/day; p.o.) in groups 3 and 4, and wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) in group 4. Vilda improved cognitive and motor perturbations induced by 3NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. The molecular signaling of Vilda was estimated by elevation of GLP-1 level and protein expressions of survival proteins; p85/p55 (pY458/199)-PI3K, pS473-Akt. Together, it boosted striatal neurotrophic factors and receptor; pS133-CREB, BDNF, pY515-TrKB, which subsequently maintained mitochondrial integrity, as indicated by enhancing both SDH and COX activities, and the redox modulators; Sirt1, Nrf2. Such neuroprotection restored imbalance of neurotransmitters through increasing GABA and suppressing glutamate as well PDE10A. These effects were reversed by WM pre-administration. In conclusion, Vilda purveyed significant anti-Huntington effect which may be mediated, at least in part, via activation of GLP-1/PI3K/Akt pathway in 3NP rat model.

Ahmed, L. A., A. F. Mohamed, E. A. Abd El-Haleim, and D. M. El-Tanbouly, "Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats.", Frontiers in pharmacology, vol. 12, pp. 651150, 2021. Abstract

Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in -Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.

Mohamed, A. F., M. M. Safar, H. F. Zaki, and H. M. Sayed, "Telluric Acid Ameliorates Endotoxemic Kidney Injury in Mice: Involvement of TLR4, Nrf2, and PI3K/Akt Signaling Pathways.", Inflammation, vol. 40, issue 5, pp. 1742-1752, 2017 Oct. Abstract

Being one of the most abundant trace elements in the human body, the therapeutic potential of tellurium-based compounds has been a target of interest. Recent reports denoted their redox-modulating and anti-inflammatory activities in experimental endotoxemia. However, their potential nephroprotective effect against endotoxemic kidney injury is yet to be elucidated. This study investigated the possible renoprotective effect of telluric acid (TEL) against lipopolysaccharide (LPS)-induced acute kidney injury (AKI) in mice, targeting toll-like receptor 4 (TLR4), phosphoinositide 3-kinase (PI3K)/Akt, and nuclear factor-erythroid 2-related factor-2 (Nrf2) pathways as possible mechanistic contributors to TEL's effect. AKI was induced by LPS (2 mg/kg). TEL (60 μg/kg; i.p.) was administered once daily for seven consecutive days before LPS injection. Pretreatment with TEL alleviated LPS-induced AKI as evidenced by the hampered serum levels of creatinine and cystatin C. TEL also opposed LPS-induced elevation in renal kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, nuclear factor-kappa B p65, interleukin-1β, and thiobarbituric acid-reactive substance contents. This was accompanied by a replenishment of renal glutathione, transcriptional upregulation of Nrf2, enhancement of heme oxygenase-1 activity, and a marked upregulation of phospho-PI3K and phospho-Akt protein expressions. Histopathological findings corroborated with the amendment of biochemical parameters. In view of these findings, we may conclude that TEL pretreatment purveyed novel nephroprotective effects against endotoxemic kidney injury, which might be partly attributed to the modulation of TLR4, PI3K/Akt, and Nrf2 signaling pathways and may hence provide a valuable asset for the management of endotoxemic renal complications.

Mohamed, A. F., M. F. El-Yamany, F. A. El-Batrawy, and M. T. Abdel-Aziz, "JNJ7777120 Ameliorates Inflammatory and Oxidative Manifestations in a Murine Model of Contact Hypersensitivity via Modulation of TLR and Nrf2 Signaling.", Inflammation, vol. 41, issue 2, pp. 378-389, 2018 Mar. Abstract

JNJ7777120, a histamine H4 receptor antagonist, was shown to be effective in different experimental settings of allergic inflammation, including contact hypersensitivity. Toll-like receptors (TLRs) are thought to function as a link between innate and adaptive immune responses to various haptens. Here, we studied the suppression of TLR signaling as a possible mechanism by which JNJ7777120 exerts its anti-inflammatory effects against the chemical hapten, fluorescein isothiocyanate (FITC). The potential anti-oxidant effect of JNJ7777120 in this model was also examined. Mice subjected to FITC sensitization and challenge showed significantly elevated plasma immunoglobulin E (IgE) level, ear interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-α), and thiobarbituric acid reactive substance (TBARS) contents as well as increased myeloid differentiation factor 88 (MyD88) gene expression, nuclear factor-kappa B p65 (NF-κB p65), and phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) protein expression. This was accompanied by enhanced ear myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities as well as diminished glutathione (GSH) content and superoxide dismutase (SOD) activity. JNJ7777120 treatment perceivably reversed these effects, denoting profound anti-inflammatory and anti-oxidant character of JNJ7777120 which was confirmed by its mitigation of FITC-induced pathological changes in mouse ear. JNJ7777120 additionally enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), providing a novel mechanism by which JNJ7777120 functions as an anti-oxidant in this model. To conclude, JNJ7777120 afforded a remarkable amendment of FITC skin insult by virtue of its anti-inflammatory and anti-oxidant effects; the mechanistic basis of these effects may include modulation of TLR and Nrf2 pathways.

aziz, M. A. T., F. A. El-Batrawy, M. F. El-yamany, and A. F. Mohamed, A study of the anti-inflammatory effect of histamine H1 and H4 receptor antagonists on dermatitis in mice, , 2015.
Tourism