Adel, A., N. Mohamed, N. Abdel-Maksoud, M. Sobhy, D. Hossam, and A. Elyamani, "On the conservation and re-use of Sednaoui El-Khazender historical building in Attaba", The First Arab Conference for Restoration and Reconstruction, Cairo, Egypt, 9-11October 2017. Abstract

This research paper deals with Sednaoui El-Khazender building which is one of the unique buildings in Cairo dating back to the beginning of the 20th c. It was designed by the famous French Architect Eiffel. The building was visually inspected and the different signs and symptoms of damage were identified. Intervention techniques were proposed for the restoration of the building. A proposal for the rehabilitation of the building is discussed aiming at maximizing the economic benefits of the building.
يتناول هذا البحث أحد المباني ذات الطراز المعماري الفريد وهو مبنى صيدناوي الخازندار بمنطقة العتبة، والذي يرجع تاريخ تشييده إلي أوائل القرن العشرين، وصممه المعماري الفرنسي الشهير إيفل (مصمم برج إيفل بباريس). تمت معاينة المبنى وتشخيص أهم مظاهر وعوامل التلف المؤثرة عليه، ثم تم وضع اقتراحات الترميم والعلاج. لتعظيم الإستفادة الإقتصادية من المبنى فقد تم وضع مقترحات لتأهيله وإعادة إستخدامه بما يتوافق مع محيطه العمراني وقيمته المعمارية الكبيرة.

Salah, E., and A. Elyamani, "Employing of three dimensional virtual shows in the re-use of historical structures and sites", The First Arab Conference for Restoration and Reconstruction, Cairo, Egypt, 9-11October 2017. Abstract

Historical structures and sites are among the important touristic attractions if they are properly managed and exploited. Rehabilitation is one of the important approaches of their re-use. This paper is throwing the light on one of the modern techniques in the rehabilitation which is the three dimensional (3D) virtual shows. The paper presents an inventory about three of these shows including: 3D cinema; 3D shows using projection maps and hologram. This new technique is an out-of-the-box idea in rehabilitation which doesn’t increase the loads on the historical structure since it depends on light and small size devices. As well، this new rehabilitation technique is interesting in attracting new class of visitors for historical structures and sites، i.e. children who are helped via this technique in exploring their history in an attractive way. The paper is written in Arabic since there is a lack in the Arabic literature about these rehabilitation techniques.
إن التكنولجيا سهلت الحياة كثيراً وجعلت ما كان مستحيلاً في الماضي متاحاً للجميع الآن ، ولكن هل يمكن أن تفيدنا التكنولجيا يوماً في مجال تأهيل المباني والمواقع الأثرية؟ لقد حاول العلماء كثيراً أن يسافروا بخيالهم لاختراع ما يسمي بآلة الزمن. فميل الانسان لان يعيش زمن غير زمنه متأصل في فطرته فهل يمكن الرجوع للماضي عن طريق المستقبل لإرضاء فطرة الانسان وفضوله؟ إن فكرة البحث بنظرة أوسع تعتمد علي وجود آلة الزمن في كل مبني أو موقع أثري، واله الزمن بالنسبة لهذا الموضوع هي العروض التخيلية ثلاثية الابعاد والتي أضحت من ضمن التقنيات الحديثة التي يتم الإعتماد عليها في تأهيل وإعادة إستخدام المباني والمواقع الأثرية. ولهذا مردود إقتصادي جيد للسلطات المالكة لهذه الآثار حيث أن الدراسات الإقتصادية واستطلاعات الرأي توضح أن أعداد الداخلين يومياً الي دور السينمات تساوي اضعاف أعداد الداخلين لأشهر المباني الاثرية في العالم. ويسلط البحث الضوء على ثلاث من التقنيات المختلفة التي يتم إستخدامها في هذه العروض وهي: السينما ثلاثية الأبعاد؛ والعرض ثلاثي الأبعاد بطريقة خرائط الإسقاط؛ والهولوجرام. وتظهر أهمية هذه التقنية في الخروج من الدائرة المغلقة لفكرة التأهيل وإعادة التوظيف للمباني الاثرية التقليدية عن طريق تقليل الأحمال الواقعة علي المبنى والناتجة عن إعادة التوظيف التقليدية نظراً حيث أن الوظيفة الجديدة باستخدام هذه التقنية تعتمد علي استخدام أجهزة خفيفة الوزن مستغلة الفراغ والعالم الافتراضي. وكذلك تجذب هذه التقنية فئات جديدة للإستمتاع بالمباني والمواقع الأثرية وهم الأطفال لأن هذه التقنية تساعدهم في معرفة تاريخهم بطريقة شيقة ومبسطة.

Caselles, J. O., J. Clapes, P. Roca, and A. Elyamani, "Approach to Seismic Behavior of Mallorca Cathedral", 15th World Conference of Earthquake Engineering, Lisbon, Portugal, 24-28 September , 2012. Abstractapproach_to_seismic_behavior_of_mallorca_cathedral.pdf

The paper presents the current state of an on-going research aimed at characterizing the seismic response of Mallorca cathedral. Mallorca cathedral is an audacious Gothic structure built in the island of Mallorca during 14th-16th centuries, characterized for its large dimensions and slender structural members. So far, experimental and numerical modal analysis, in addition to tentative model updating and seismic analysis, have been performed. The dynamic identification tests have been carried out by ambient vibration testing, while the frequency domain decomposition (FDD) technique has been used to obtain the modal parameters. A 3D Finite Element (FE) model has been used to determine the vibration modes. The model has been updated by modifying some structural parameters to improve the matching between experimental and numerical modal parameters. Once updated, the model has been utilized to study the seismic response of the cathedral using non-linear static pushover analysis. Conclusions on the possible collapse mechanisms and the seismic performance of the structure are presented.

Elyamani, A., P. Roca, O. Caselles, and J. Clapes, "Seismic safety assessment of historical structures using updated numerical models: The case of Mallorca cathedral in Spain", Engineering Failure Analysis, issue 74, pp. 54-79, 2017. AbstractWebsite

The paper presents an integrated approach aimed at assessing the seismic safety of Mallorca cathedral. This cathedral is an extraordinary historical construction dating back to the middle ages. The experimental modal parameters of the cathedral were identified using Ambient Vibration Testing (AVT). The cathedral numerical model was updated using the identified modal parameters. This updated model was then used to study the seismic response of the cathedral using non-linear static (pushover) analysis. A sensitively analysis was carried out to reveal the dependency of the seismic capacity on the input materials properties. To assess the seismic performance and the safety of the cathedral, the N2 method was employed. It was found that the cathedral is safe when subjected to the earthquakes expected in Mallorca Island.

Elyamani, A., "Conservation-Oriented Structural Analysis of the Spire of Barcelona Cathedral", International Journal of Materials Science and Applications , vol. 5, issue 6-2, pp. 1-9, 2016. AbstractWebsite

The spire of Barcelona cathedral suffered from severe problems due to the corrosion of the steel ties used in reinforcing its stone masonry beams. Wide visible cracks were noticed in the stone beams and large parts were detached. Therefore, the full spire was dismantled and reconstructed using titanium ties to eliminate the corrosion problem. A finite element model of the spire was created and analyzed using DIANA software to support this decision. This analysis helped in understanding the role and strength contributions of these ties in resisting the applied loads on the spire, specifically, the lateral loads of earthquakes and wind. A nonlinear static (pushover) analysis was carried out to assess the spire capacity under the lateral loads. A number of constitutive models for modeling the masonry behavior were tried. Also, a number of seismic actions patterns were considered. As a main conclusion of this study, the ties were highly needed to carry the tensile stresses caused by earthquakes and wind loads. Therefore, in the reconstruction of the spire, such ties must be kept in the masonry beams.

Elyamani, A., Integrated monitoring and structural analysis strategies for the study of large historical construction. Application to Mallorca cathedral, , Barcelona, Technical University of Catalonia, 2015. Abstract

Historical structures are vital to the realization of how the technical, artistic, and scientific skills of the human kind have developed over time. These structures are one of the motors of the tourism industry, and therefore, the studies related to their conservation do not only have social benefits but as well economical ones. It is unfortunately that many countries rich with valuable architectural heritage are characterized by high seismic activity, Italy and Turkey are obvious examples. Due to earthquakes, many invaluable historical structures have been lost forever. Consequently, there is an increasing need for more research on the topic of seismic assessment and protection of this class of buildings. This work contributes to the methodological approaches adopted for the seismic assessment of historical structures. In many cases, due to the lack of knowledge about the assessed historical structure, it is essential to combine many investigation activities in such approaches. The aim is to minimize any possibly required seismic strengthening interventions (minimum intervention concept) by increasing the level of knowledge about the structure. In the current research, the employed experimental investigation activities are the dynamic identification tests and the dynamic monitoring. Most approaches for dynamic monitoring are based on the use of a threshold limit which is used to trigger the system when the parameters measured surpass the limit. Here, an alternative is considered that consists of a continuous monitoring system based on the permanent measurement of the ambient vibration. A thermography monitoring is used as a complementary system for the measurement of temperature. The integration between the dynamic investigation and the numerical modeling is essential and it includes two main features. On one hand, tentative structural analyses are carried out to identify important aspects of the dynamic tests and monitoring strategies such as critical points of the structure where to place the sensors. On the other hand, the results of the dynamic investigation are used to perform model updating until obtaining a satisfactory structural model adequately matching the measured dynamic properties of the structure. Once the structural model is validated, it is used to carry out the seismic assessment of the structure. This assessment is performed using different methods, to cross check the results, including the pushover analysis, the kinematic limit analysis and the nonlinear dynamic analysis. It is then possible with these assessments to identify the seismic behavior of the structure. Using the N2 method, the evaluation of the structural performance and its safety are carried out. Hence, the needs for any possible seismic strengthening are revealed, keeping in mind, the respect to the "minimum intervention" concept. As an application, the cathedral of Mallorca (Spain) is taken as a case study. This structure is one of the largest cathedrals built during the Middle Age. For each of the previously mentioned research steps, the followed criteria and the experience gained are transferred into recommended methodological approaches to be applied to other historical structures. Finally, the integration of these partial steps into one integrated methodology is discussed.

Elyamani, A., Wind and earthquake analysis of spire of cimborio of Barcelona cathedral, , Barcelona, Spain, Technical university of Catalonia, 2009. Abstract

Barcelona Cathedral is one of the most important monuments not only in Spain but also all over the world. The construction of the Gothic cathedral started in 1298 under King Jaume II and in 1460 the main building was completed. The two architects Josep Oriol Mestres and August Font i Carreras completed the construction of the gothic façade in 1889 and the central spire in 1913, following the same design previously proposed by the French architect Charles Galters in 1408. The central spire reaches a height of 90 m over ground level which makes it very vulnerable when subjected to lateral loads like wind and earthquakes. Being finished at the beginning of the 20th century (when the concept of reinforced concrete was being widely spread) gave the builders the chance to centrally reinforce all masonry beams of the spire with steel ties and nowadays these steel ties are facing very severe problems due to corrosion. A complete project for restoration of the spire is being executed nowadays in which a complete dismantling and reconstruction will be carried out. The steel ties will be replaced with titanium ones in order to eliminate the corrosion problem. In order to understand wind and seismic performance of the spire and the role and strength contributions of the steel ties, the different applied loads on the spire which are self weight, wind loads and earthquake loads have been estimated ,then a numerical model of the spire has been created and analyzed using the finite element program DIANA. First a linear elastic analysis under the effect of spire self weight then a combination of spire self weight and wind loads and finally a combination of spire self weight and earthquake loads. The high tensile stresses in masonry beams under the effect of the combination of spire self weight and wind loads and the combination of spire self weight and earthquake loads meant that linear elastic analysis wasn't enough to describe the structure behavior and a nonlinear analysis was essential. A nonlinear analysis under the effect of spire self weight (using three different constitutive models to describe masonry nonlinear behavior) was investigated and it revealed an elevated safety margin as the spire can carry more than ten times its self weight. Then to investigate the seismic performance of the spire a nonlinear static pushover analysis (using two different constitutive models) has been carried out.As a conclusion of this study the steel ties are highly needed to carry the tensile stresses resulted from seismic actions and the spire would be able to resist a maximum base shear of 420 KN (16% of the spire self weight).