
OpenGL ES 1.1 Compliant High
Performance GPU

• OpenGL ES
 is a subset of the OpenGL computer graphics rendering API for

rendering 2D and 3D.

  is a software interface to graphics hardware. The interface consists
 of a set of procedures and functions that allow a programmer to
 specify the objects and operations involved in producing high-quality
 graphical images.

 is designed for embedded systems like smartphones and tablets.
 is cross-language and cross-platform
 is free of charge.
 Versions :-
  For Programmable Hardware:- OpenGL ES 2.x
 OpenGL ES 3.x
  For Fixed-Function Hardware:- OpenGL ES 1.x

• OpenGL ES version 1.1
 is defined relative to the OpenGL 1.5 specification and emphasizes

hardware acceleration of the API.
 is designed for Fixed-Function Hardware.
Implementers (Examples) :-

Vendor Product Operating System

ARM Mali T720,
Mali T760

Linux 3.4

Mali T678
Mali T658

Android 4

Intel Intel® HD Graphics for Intel® Atom™
Processor Z3000 series

Android 4.2.2

Intel® HD Graphics for Intel® Celeron™
Processor N and J series

Apple Apple iPhone 5s, Apple iPhone 4
Apple iPad Air, Apple iPad mini

iOS 7
 "OpenGL ES-CM 1.1”

QUALCOMM MSM 8610 Android 4.3

MSM 8626
MSM 8974

Android 4.2

NVIDIA Tegra 3 Android 4.1

NVIDIA GeForce GTX 590
NVIDIA GeForce GTX 580

Windows

OpenGL ES 1.1 Compliant High
Performance GPU

• OpenGL ES 1.1 :-
 Features :-

Feature Description

Draw Arrays Draws (Points, Line Strips, Line Loops, Separate Lines,
Triangle strip, Triangle Fans, Separate Triangles) from

array vertices.

Enhanced point sprites and
point sprite arrays

- specify texture coordinates that are interpolated
across the point.

- The Point Size Array extension permits an array
of point sizes instead of a fixed input point size.

User-defined clip planes permit for efficient early culling of non-visible
polygons increasing performance and saving power

Enhanced texture
processing

including a minimum of two multi-textures and
texture combiner functionality for effects such as

bump-mapping and per-pixel lighting

Draw Texture defines a mechanism for writing pixel rectangles from
one or more textures to a rectangular region of the

screen which is useful for fast rendering of
background paintings and 2D framing elements in

games.

Auto mipmap generation can offload the application from having to generate
mip-levels.

Buffer objects provide a mechanism that clients can use to allocate,
initialize and render from memory. Buffer objects can
be used to store vertex array and element index data.

State queries This enables OpenGL ES to be used in a sophisticated,
layered software environment

Direct Control Provides direct control over the fundamental
operations of 3D & 2D graphics such as

transformation matrix, lighting equations, and
antialiasing methods.

New Core Additions and
Profile Extensions

There are core additions, required profile extensions,
and optional profile extensions for the Common &

Common-Lite profiles

OpenGL ES 1.1 Compliant High
Performance GPU

• OpenGL ES 1.1 :-
 Profiles :-

Notes:-
1) CL profile applications run without any modification on the GM
2) Apple products use OpenGL ES 1.1 GM

Common-Lite (CL) Profile Common (CM) Profile

- Supports only commands taking fixed-
point arguments.

- Examples:- ClipPlanex, Color4x.

- Supports commands taking floating-
point arguments and commands

taking fixed-point arguments.
- Examples:- ClipPlanef, Color4f
 ClipPlanex, Color4f

- does not support floating-point data
(format FLOAT) in vertex arrays or images

in client memory.

- support floating-point data and fixed-
point data in vertex arrays or images in

client memory.

- GL states are stored in fixed-point
format.

- Applications must call the GetFixedv
command, or the equivalent fixed-point
versions of enumerated queries, such as

GetLightxv, to query such state.

 - GM states are stored in fixed-point
format or floating-point format.

- Applications use the call command
according to the state types.

- Computations are performed in fixed-
point format, but the implementations are
free to use floating-point computations if

they wish.

- Computations are performed in
floating-point format

- Computations Specifications :-
1) Individual results of Fixed Point

operations are accurate within +/- 2^-
15.

2) The maximum representable
magnitude of Fixed-Point number is
at least
- 2^15 for “Positional or normal
coordinates”
- 2^10 for color or texture
coordinates
- 2^15 for other types.
- 0^0 =1, x.0 = 0.x = 0, 1.x = x.1 = x

3) Transformation matrix uses the same
type of data inputs.

- Computations Specifications :-
1) Individual results of FP operations

are accurate to about 1 part in 10^5.
2) The maximum representable

magnitude of FP number is at least
- 2^32 for “Positional or normal
coordinates”
- 2^10 for color or texture
coordinates
- 2^32 for other types.
- 0^0 =1, x.0 = 0.x = 0, 1.x = x.1 = x

3) Transformation matrix uses the
same type of data inputs.

OpenGL ES 1.1 Compliant High
Performance GPU

• OpenGL ES 1.1 :-
 Core Additions and Extensions :-

  some extended functionality that is drawn
 from a set of OpenGL ES–specific extensions
 to the full OpenGL specification.

  Each extension is added to the profile as
 either a core addition or a profile extension.

  Core additions commands and tokens do
 not include extension suffixes in their names
 while profile extension.

  Profile extensions are further divided into
 required (mandatory) and optional extensions

 .

Extension Name Common-Lite (CL)
Profile

Common (CM) Profile

OES byte coordinates core addition core addition

OES fixed point core addition core addition

OES single precision core addition n/a

OES matrix get core addition core addition

OES read format required extension required extension

OES compressed paletted texture required extension required extension

OES point size array required extension required extension

OES point sprite required extension required extension

OES matrix palette optional extension optional extension

OES draw texture optional extension optional extension

 OpenGL Compliance:-
-To label an implementation as an OpenGL ES compliant
implementation, the implementation must pass a set
of conformance Tests.

-Conformance Testing Adopters can download and run the
conformance tests and if the implementation passes, they
can advertise and promote the product as being compliant;
using the OpenGL ES logos and trademarks under a royalty-
free license.

OpenGL ES 1.1 Compliant High
Performance GPU

 Application Programming Interface(API):-
- consists of data types/structures, constants and functions that
other program or application can use in your code to access the
functionality of that external component.

 Application Binary Interface(ABI):-
- is the compiled version of an API (or as an API on the machine-
language level). When you write source code, you access the library
though an API. Once the code is compiled, your application accesses
the binary data in the library through the ABI. The ABI defines the
structures and methods that your compiled application will use to
access the external library (just like the API did), only on a lower level.
-An ABI isn't necessarily something you will explicitly provide unless
you are expecting people to interface with your code using assembly.

 Device Driver:- provides a software interface to hardware devices,
enabling operating systems and other computer programs to access hardware
functions without needing to know precise details of the hardware being used.

- When a calling program invokes a routine in the driver, the driver
issues commands to the device. Once the device sends data back to
the driver, the driver may invoke routines in the original calling
program.
-Drivers are hardware-dependent and operating-system-specific.
- Extension (.DS)

Device
Driver

?
API Program/

Application GPU Operating
System

OpenGL ES 1.1 Headers
<GLES/gl.h> OpenGL ES 1.1 Header
File.
<GLES/glext.h> OpenGL ES 1.1
Extension Header File.
<GLES/glplatform.h> OpenGL ES 1.1
Platform-Dependent Macros.
<GLES/egl.h> EGL Legacy Header File
for OpenGL ES 1.1

OpenGL32 Dynamic Library (.DLL)

http://www.khronos.org/registry/gles/api/GLES/gl.h
http://www.khronos.org/registry/gles/api/GLES/glext.h
http://www.khronos.org/registry/gles/api/GLES/glplatform.h
http://www.khronos.org/registry/gles/api/GLES/egl.h

Wishbone Slave

Command Buffer

Instruction Decoder

Data Fetch
Unit

Transformation
matrices

Construction
Vertices

Transformation

Normal, Texture
Coordinates

Transformation

Back-Face Culling

View-Frustum
Clipping

Perspective division
Viewport transformation

Lighting

Clamping

Shading

Point Drawing Line Drawing Triangle Drawing

Attributes Interpolation

Texture
Filtering
(Lookup)

Texture
Address

Calculation

Mipmap
generation

Texture
Caches

Z-buffer
Test

Stencil
Test

Alpha
blending

Frame Buffer
Updating

Scissor
Test

M
em

ory Arbiter&
 Controller

Rasterizer

Clipper Lighting Unit

Vertex Processor

Host Interface

Texture Unit

Fragment Processor

 CPU Interface
 System

 M
em

ory Interface
 G

raphics M
em

ory Interface

Name Address Size (bits) FORMAT

CONTROL REGISTER 0X 0000 32 INTEGER

Vertices Coordinates :-
POINT_1 - X – COORD 0X000 4 32

Single-Precision
Floating Point

POINT_1 - Y – COORD 0X 0008 32

POINT_1 - Z – COORD 0X 000C 32

POINT_2 - X – COORD 0X0010 32

POINT_2 - Y – COORD 0X 0014 32

POINT_2 - Z – COORD 0X0018 32

POINT_3 - X – COORD 0X 001C 32

POINT_3- Y – COORD 0X0020 32

POINT_3 - Z – COORD 0X0024 32

Vertices Attributes (Color, Normal, Texture Coordinate) :-
POINT_1_Color 0X002 8 32

RGBA POINT_2_Color 0X 002C 32

POINT_3_Color 0X 0030 32

POINT_1_X_Normal 0X00234 32

Floating
point

(we may use
one normal
per triangle)

POINT_1_Y_Normal 0X 0038 32

POINT_1_Z_Normal 0X 003C 32

POINT_1_X_Normal 0X00240 32

POINT_1_Y_Normal 0X 0044 32

POINT_1_Z_Normal 0X 0048 32

POINT_1_X_Normal 0X004C 32

POINT_1_Y_Normal 0X 0050 32

POINT_1_Z_Normal 0X 0054 32

POINT_1_U_Coord. 0X0058 32

Floating
point

POINT_1_V_Coord. 0X 005C 32

POINT_2_U_Coord. 0X 0060 32

POINT_2_V_Coord. 0X0064 32

POINT_3_U_Coord. 0X 0068 32

POINT_3_V_Coord. 0X 006C 32

Registers

Name Address Size (bits) FORMAT

Vertex processing stage uniforms:-
FRAME_Buffer_Address
 (Final Colors Buffer)

0X0070 32

Integer Screen Width (Nx) 0X 0074 32

Screen Height (Ny) 0X 0078 32

World_Space_left_side (L) 0X007C 32

Floating-Point

World_Space_right_side (R) 0X 0080 32

World_Space_top_side (T) 0X0084 32

World_Space_bottom_side (B) 0X 0088 32

World_Space_near_side (n) 0X008C 32

World_Space_far_side (f) 0X0090 32

Camera_Position_X (Ex) 0X0094 32

Floating-
Point

Camera_Position_Y (Ey) 0X 0098 32

Camera_Position_Z (Ez) 0X009C 32

Camera_Direction_X (Gx) 0X00A0 32

Camera_Direction_Y (Gy) 0X00A4 32

Camera_Direction_Z (Gz) 0X00A8 32

Camera_Up_X (Tx) 0X00AC 32

Camera_Up_Y (Ty) 0X00B0 32

Camera_Up_Z (Tz) 0X00B4 32

Registers

Name Address Size (bits) FORMAT

Fragment processing stage uniforms:-
 Light Source Position_X 0X00B8 32

Floating-Point Light Source Position_Y 0X00BC 32

 Light Source Position_Z 0X00C0 32

 Light Source Color 0X00C4 32 RGBA

 Texture_Base_Address 0X00C8 32

Integer Texture width 0X 00CC 32

 Texture height 0X00D0 32

 Stencil_Base_Address 0X 00D4 32 Integer

 Stencil_reference_value 0X00D8 8 Integer
(the remaining

24-bits are zeros) Stencil_Input_value 0X0DC 8

 Z-Buffer-Base Address 0X00E0 32 Integer

 Scissor-ref-X-Coord. 0X00E4 32

Integer
 Scissor-ref-Y-Coord. 0X00E8 32

 Scissor-Frame-width 0X00EC 32

 Scissor-Frame-height 0X00F0 32

 Surface-Ambient-Coefficient (Ka) 0X00F4 8

Fixed-Point
 Diffuse Coefficient (Kd) 8

 Specular Coefficient (Ks) 8

 Ambient-Light-Intensity (Ia) 8

 Shadow-Coefficient 0X00F8 32

Registers

Control Register
Field-Name Bits-number Description

 Operation [0][4] [0] Draw Line
[1]  Draw Triangle

[2]  Draw Bezier curve
[3]  Draw Circle
[4]  Draw Ellipse

 Dimension [5] 0 2D
1 3D

 Color-Key Enable [6] Rendering image with
transparency

 Coloring Method [7] Flat or Gradient

 Bezier Fill [8] 0 inside
1 outside

 Texture Enable [9] --

 Blending Enable [10] --

 Scissor Enable [11] --

 Stencil Enable [12] --

 Shading-Model [13][14] --

 Normal type [15] 0 per-vertex
1 per-triangle

 Number of light sources [16][18] --

 Reserved-bits [19][23] --

 FIFO Size [24] [31] --

Registers

Vertex Processing stage

Position Matrix
Construction

(M)

Register File

Attrite Registers
Vertices Coordinates
 (V1,V2, V3)

Vertices Normal
(N1, N2, N3)

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Normal Matrix
Construction

(N)

Uniform Registers
 -Eye Location (Ex, Ey, Ez)
 -Eye Direction (Gx, Gy, Gz)
 -Up-vector (Tx, Ty, Tz)

World Space
[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Matrix
Multiplier

Normal
Manipulation

Vertex
Coordinates Vertex

Coordinates
& Normal

Notes :-
 1) we support 2D & 3D.
 2) input vertices are in world-space
 3) till now, we not support draw objects (meshes or
 stripes).
 4) we support single -normal/triangle &
 normal/vertex.
 5) we use “perspective projection”
 6) the view-port transformation & division are
 delayed after the culling/clipping stage.
 - to have:- make all transformations before division
 7) camera looking in the –z direction with his head
 pointing in the y-direction.
 8) the view volume is bounded by [l, r] , [t, b], [n, f]
 9) the screen space: X € [-0.5 , nx-0.5]
 Y € [-0.5 , ny- 0.5]
 10) The project plane is the near plane (Z=n).

Vertex Processing stage

Position Matrix
Construction

(M)

Register File

Attrite Registers
Vertices Coordinates
 (V1,V2, V3)

Vertices Normal
(N1, N2, N3)

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Normal Matrix
Construction

(N)

Uniform Registers
 -Eye Location (Ex, Ey, Ez)
 -Eye Direction (Gx, Gy, Gz)
 -Up-vector (Tx, Ty, Tz)

World Space
[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Matrix
Multiplier

Normal
Manipulation

Vertex
Coordinates Vertex

Coordinates
& Normal

Coordinates Matrix Construction: (M)-
 If (3D object)
 M = Mcam x Mper
 Else
 M = Mcam.

- Mcam (3D) =

𝑋𝑢
𝑋𝑣
𝑋𝑤
0

𝑌𝑢
𝑌𝑣
𝑌𝑤
0

𝑍𝑢
𝑍𝑣
𝑍𝑤
0

0
0
0
1

 X

1
0
0
0

0
1
0
0

0
0
1
0

−𝑋𝑋
−𝑌𝑌
−𝑍𝑍

1

 where (𝑊 = −𝑔
| 𝑔 |

 ,𝑢 = 𝑡 ×𝑤
| 𝑡×𝑤 |

 , 𝑣 = 𝑤 × 𝑢)

-Mcam (2D) =
1 0 −𝑋𝑋
0 1 −𝑌𝑌
0 0 1

Mper =
2∗𝑛 𝑟−𝑙⁄

0
0
0

0
2∗𝑛 𝑡−𝑏⁄

0
0

(𝑙 + 𝑟) (𝑙 − 𝑟)⁄
(𝑏 + 𝑡) (𝑏 − 𝑡)⁄
(𝑓 + 𝑛) (𝑓 − 𝑛)⁄

1

0
0

(2 ∗ 𝑛 ∗ 𝑓) (𝑓 − 𝑛)⁄
0

Vertex Processing stage

Position Matrix
Construction

(M)

Register File

Attrite Registers
Vertices Coordinates
 (V1,V2, V3)

Vertices Normal
(N1, N2, N3)

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Normal Matrix
Construction

(N)

Uniform Registers
 -Eye Location (Ex, Ey, Ez)
 -Eye Direction (Gx, Gy, Gz)
 -Up-vector (Tx, Ty, Tz)

World Space
[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Matrix
Multiplier

Normal
Manipulation

Vertex
Coordinates Vertex

Normal

Normal Matrix Construction (N):-

Normal Manipulation (N):-
- For Line or per-vertex normal
 - New_normal = N x i/p_Normal

- We can obtain per-triangle normal as

 - (V2 – V0) X (V1 – V0)

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Notes :-
 1) till now, we not support “draw objects”. So, the
 object culling is bypassed.
 2) back-facing culling:- if the triangle is oriented away
 from the eye point, then this triangle is not visible.
 3) View-Frustum Clipping: we use Cohen-Sutherland
 Line Clipping Algorithm.

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

Back-Face Culling :-
- The plane of the triangle is N.X =d
 - where N is the normal of the plane, and
 X is any vertex of the triangle.
- The triangle is oriented away from the eye point

 if N.E <d where E is the Eye direction
--
Algorithm:-
 - Calculate (P- V0). N by

 Det (−𝑥0 x1 − x0 x2 − x0
−𝑦0 y1 − y0 y2 − y0
−𝑧0 z1 − z0 z2 − z0

)
 - If (P-V0). N <0 then the triangle is back-
 facing (cull it)

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

View-Frustum Clipping :-
Cohen-Sutherland Line Clipping in 2D

 - Divide plane into 9 regions
 - Compute the sign bit of 4 comparisons between
 a vertex and an edge

 𝑦𝑚𝑚𝑚 − 𝑦; 𝑦 − 𝑦𝑚𝑚𝑚; 𝑥𝑚𝑚𝑚 − 𝑥; 𝑥 − 𝑥𝑚𝑚𝑚
 (point lies inside only if all four sign bits are)
 0, otherwise exceeds edge

 - 4 bit outcode records results of four bounds tests:
 First bit: above top edge
 Second bit: below bottom edge
 Third bit: to the right of right edge
 Fourth bit: to the left of left edge

Clip Rectangle

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

View-Frustum Clipping :-
Cohen-Sutherland Line Clipping in 2D
 - Compute outcodes for both vertices of each line
 (denoted OC0 and OC1)
 Lines with OC0 = 0 and OC1 = 0 can be trivially
 accepted.
  Lines lying entirely in a half plane outside an edge
 can be trivially rejected if (OC0 AND OC1) ≠ 0
 If we can neither trivially accept/reject (T/A, T/R),
 divide and conquer
 -Subdivide line into two segments; then T/A
 or T/R one or both segments:

 - use a clip edge to cut line
 - use outcodes to choose the edges that are
 crossed.
 - pick an order for checking edges: top – bottom –
 right – left
 - compute the intersection point

 -the clip edge fixes either x or y
 -can substitute into the line equation

 - iterate for the newly shortened line, “extra” clips
 may happen (e.g., E-I at H)

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

View-Frustum Clipping :-
Cohen-Sutherland Line Clipping in 2D
- Algorithm :-
 ComputeOutCode(x0, y0, outcode0);
 ComputeOutCode(x1, y1, outcode1);
 repeat

 check for trivial reject or trivial accept
 pick the point that is outside the clip rectangle
 if TOP then
 x = x0 + (x1 – x0) * (ymax – y0) / (y1 – y0);
 y = ymax;
 else if BOTTOM then
 x = x0 + (x1 – x0) * (ymin – y0) / (y1 – y0);
 y = ymin;
 else if RIGHT then
 y = y0 + (y1 – y0) * (xmax – x0) / (x1 – x0);
 x = xmax;
 else if LEFT then
 y = y0 + (y1 – y0) * (xmin – x0) / (x1 – x0);
 x = xmin;
 if (x0, y0 is the outer point) then
 x0 = x; y0 = y; ComputeOutCode(x0, y0, outcode0)
 else
 x1 = x; y1 = y; ComputeOutCode(x1, y1, outcode1)

 until done

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

View-Frustum Clipping :-
Cohen-Sutherland Line Clipping in 3D

 - very similar to 2D
 - Divide volume into 27 regions
 - 6-bit outcode records results of 6 bounds
 tests
 First bit: behind back plane
 Second bit: in front of front plane
 Third bit: above top plane
 Fourth bit: below bottom plane
 Fifth bit: to the right of right plane
 Sixth bit: to the left of left plane
 - note, outcodes may be calculated by D = H.P
  D >= 0 (pass through)
  D < 0 (cull or reject)

 - Intersection Calculation: Insert explicit equation of line into
 implicit equation of plane
 L(t) = P0 + t * (P1 – P0)

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

View-Frustum Clipping :-
Cohen-Sutherland Line Clipping in 3D
- Algorithm:-
ComputeOutCode(x0, y0, z0, outcode0);
ComputeOutCode(x1, y1, z1, outcode1);
repeat

check for trivial reject or trivial accept
pick the point that is outside the clip rectangle
if TOP then
 x = x0 + (x1 – x0) * (ymax – y0) / (y1 – y0);
 z = z0 + (z1 – z0) * (ymax – y0) / (y1 – y0);
 y = ymax;
else if BOTTOM then
 x = x0 + (x1 – x0) * (ymin – y0) / (y1 – y0);
 z = z0 + (z1 – z0) * (ymin – y0) / (y1 – y0);
 y = ymin;
else if RIGHT then
 y = y0 + (y1 – y0) * (xmax – x0) / (x1 – x0);
 z = z0 + (z1 – z0) * (xmax – x0) / (x1 – x0);
 x = xmax;
else if LEFT then
 y = y0 + (y1 – y0) * (xmin – x0) / (x1 – x0);
 z = z0 + (z1 – z0) * (xmin – x0) / (x1 – x0);
 x = xmin;
else if NEAR then
 x = x0 + (x1 – x0) * (zmax – z0) / (z1 – z0);
 y = y0 + (y1 – y0) * (zmax – z0) / (z1 – z0);
 z = zmax;
else if FAR then
 x = x0 + (x1 – x0) * (zmin – z0) / (z1 – z0);
 y = y0 + (y1 – y0) * (zmin – z0) / (z1 – z0);
 z = zmin;

if (x0, y0, z0 is the outer point) then
 x0 = x; y0 = y; z0 = z;
 ComputeOutCode(x0, y0, z0, outcode0)
else
 x1 = x; y1 = y; z1 = z;
 ComputeOutCode(x1, y1, z1, outcode1)

until done

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

Perspective Division:-
 - [x y z w] → [x/w y/w z/w]
 homogeneous normalized device
 clip space coordinates (NDC)

The View-port Transformation :-

- Mvp =0.5 *

𝑛𝑛 1⁄
0
0
0

0
𝑛𝑛 1⁄

0
0

0
0

1/2
0

𝑛𝑛 − 1 1⁄
𝑛𝑛 − 1 1⁄

0
1/2

Culling & Clipping Register File

Modified
Vertices (homogenous)

Modified
Normal

Vertices Z-
values

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle #1 vertices

Back-Face
Culling

Object
Culling

View-Frustum
Clipping

Prespective division

View-port
Transformation

Attributes
Interpolation

Attributes Interpolation:-
 - We have to interpolate the vertex attributes
 such as (color(c), normal(n), texture(t)) to determine
 the attributes of the new vertices.
 - we are going to ignore the Z-coordinate in the
 interpolation for simplification.
 - we uses the Ground interpolation for the
 barcentric coordinates.
 - Algorithm :-
 - For point P(x, y) between two endpoints P1(X1,Y1)
 and P2(X2, Y2) :-

  f01(x, y) = (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0,
  f12(x, y) = (y1 − y2)x + (x2 − x1)y + x1y2 − x2y1
  α = f12(x, y)/f12(x0, y0)
  β = f20(x, y)/f20(x1, y1)
 Then,
 c = α*c0 + β*c1
 t = α*t0 + β*t1
 n = α*n0 + β*n1

Rasterization Register File

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Attributes
Interpolation

Line
Drawing

Triangle
Drawing

Bezier Surface
Drawing

Triangle #1 vertices ⁞ ⁞

Fragment Color Normal Texture Coor.

Notes :-
 1) we use the Incremental mid-point Algorithm for
 the line Drawing.
 2) For triangles, we uses the Ground interpolation for
 the barcentric coordinates.
 3) Till now, we have not design a bezier surface
 drawing.
 4) what about Circle & Ellipse drawing ?

Rasterization Register File

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Line Drawing & interpolating Algorithm:-
Sort(x0,x1);
Sort(y0,y1);
M = (y1-y0)/(x1-x0);
If (m > -1 && m < 1)
{ y = y0;
 If(m > 0) {D = f(x0,y0-0.5);}
 If(m < 0) {D = f(x0,y0+0.5);}
 For x= x0 to x1
 {Draw (x,y) pixel with c, n, t
 If (m > 0){ D = D + (x1 – x0) + (y0 – y1);
 If(D > 0) y = y+1;}
 if(m < 0){ D = D + (x1 – x0) – (y0 – y1);
 if (D < 0) y = y-1;}
If (m < -1 || m > 1)
{ x = x0;
 If(m > 0) {D = f(x0-0.5,y0);}
 If(m < 0) {D = f(x0+0.5,y0);}
 For y= yo to y1
 {Draw (x,y)
 If (m > 0){ D = D - (x1 – x0) + (y0 – y1);
 If(D > 0) x = x+1;}
 if(m < 0){ D = D - (x1 – xo) + (yo – y1)
 if (D < 0) x = x-1;}
--
Draw (x,y) with c, n, t
{
 f01(x, y) = (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0,
 f12(x, y) = (y1 − y2)x + (x2 − x1)y + x1y2 − x2y1
 α = f12(x, y)/f12(x0, y0);
 β = f20(x, y)/f20(x1, y1);
 Then,
 c = α*c0 + β*c1
 t = α*t0 + β*t1
 n = α*n0 + β*n1

 update buffer
}

Attributes
Interpolation

Line
Drawing

Triangle
Drawing

Bezier Surface
Drawing

Triangle #1 vertices ⁞ ⁞

Fragment Color Normal Texture Coor.

Rasterization Register File

Uniform Registers
World Space

[l, r] , [t, b], [n, f]

Screen Space
[Nx, Ny]

Triangle Drawing & Interpolation Algorithm:-
 - xmin = floor (xi)
 xmax = ceiling (xi)
 ymin = floor (yi)
 ymax = ceiling (yi)
 f01(x, y) = (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0,
 f12(x, y) = (y1 − y2)x + (x2 − x1)y + x1y2 − x2y1,
 f20(x, y) = (y2 − y0)x + (x0 − x2)y + x2y0 − x0y2.
 for y = ymin to ymax do
 for x = xmin to xmax do
 α = f12(x, y)/f12(x0, y0)
 β = f20(x, y)/f20(x1, y1)
 γ = f01(x, y)/f01(x2, y2)
 if (α > 0 and β > 0 and γ > 0) then
 c = α*c0 + β*c1 + γ*c2
 n = α*n0 + β*n1 + γ*n2
 t = α*t0 + β*t1 + γ*t2
 update buffer

Attributes
Interpolation

Line
Drawing

Triangle
Drawing

Bezier Surface
Drawing

Triangle #1 vertices ⁞ ⁞

Fragment Color Normal Texture Coor.

Fragment Processing Algorithm
1. Getting the shading parameters as inputs

and the fragment position & color from
varying registers

2. Calculate the pixel’s color from direct
equation

3. Check if the pixel is in shadow or not

• Using a comparator , if the two z-values are equal
then it’s in light otherwise it’s in shadow

• .
• If it’s in shadow , we get the new color for the pixel

which is more darker than usual color

• Multiplying the original color with the shadowing

coeff

• Note: : enabling shadows & shading is similar to
enabling 2D/3D

• Some control registers to determine the shading
model and the number of light sources

• 5 comparator, 2 adders, 4 multipliers,SFU. (expected
to increase)

Applying direct equation :
𝐶𝑅 𝑜𝑜 𝐵 𝑜𝑜 𝐺 = 𝐾𝑎𝐼𝑎 + 𝐾𝑑 𝑖max 0,𝑛. 𝑖 + 𝐾𝑠𝑖max 0,𝑛.ℎ 𝑝
For more light sources :
𝐶𝑅 𝑜𝑜 𝐵 𝑜𝑜 𝐺 = 𝐾𝑎𝐼𝑎 + ∑ 𝐾𝑑𝑁

𝑘=1 𝑖𝑘 max 0,𝑛. 𝑖𝑘 + 𝐾𝑠𝑖𝑘 max 0,𝑛.ℎ 𝑝
For shadows :
𝐶𝑛𝑛𝑛 = 𝑆 ∗ 𝐶𝑜𝑜𝑜

Per-fragment Processor

Per-fragment Processor Diagram

Uniforms Register

Varying
Register

Scissor
&

Stencil
Tests

Texture
Mappin

g

Shading
&

shadows

Alpha
Blending

&
Z Test

Memory
(Frame Buffer)

Wishbone
Master

Tests Algorithm
1. If scissor test is enabled check whether your

pixel is located in it or not using adders &
comparators

• If not the pixel is discarded

1. If stencil test is enabled check with the

stencil buffer is going to be updated or not

2. If two pixels have the same position (x,y)
check with the depth test which is
foreground and which is background

3. Determinig the final color if we have
transparent objects with Alpha Blending test

4. Finally , Updating the frame buffer with the
ready-to-display pixel.

• 6 comparator, 3 adders,1 subtract, 2

multipliers. (expected to increase)

For scissor :
𝑙𝑙𝑙𝑙 ≤ 𝑥 𝑎𝑎𝑎𝑎 𝑥 + 1 < 𝑙𝑙𝑙𝑙 + 𝑤𝑤𝑤𝑤ℎ
 𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑦 𝑎𝑎𝑎𝑎 𝑦 + 1 , 𝑏𝑏𝑏𝑏𝑏𝑏 + ℎ𝑒𝑒𝑒ℎ𝑡
For Alpha Blending :
𝐶 = 𝛼𝐶𝑓+(255 − 𝛼) 𝐶𝑏

	OpenGL ES 1.1 Compliant High Performance GPU
	OpenGL ES 1.1 Compliant High Performance GPU
	OpenGL ES 1.1 Compliant High Performance GPU
	OpenGL ES 1.1 Compliant High Performance GPU
	OpenGL ES 1.1 Compliant High Performance GPU
	Slide Number 6
	Registers
	Registers
	Registers
	Registers
	Vertex Processing stage
	Vertex Processing stage
	Vertex Processing stage
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Culling & Clipping
	Rasterization
	Rasterization
	Rasterization
	Fragment Processing Algorithm
	Per-fragment Processor
	Tests Algorithm

