
 

  

Abstract— In this paper, we introduce the design of an IP processor 

core code-named CUSPARC for Cairo university SPARC processor. 

This core is a 32 bit pipelined processor that conforms to SPARC v8 ISA. 

It is complete with 4 register windows, I and D caches, SRAM and flash 

memory controller, resolution hardware for the data and branch 

hazards, interrupts and exception handling, instructions to support I/O 

transfers, and two standard WISHBONE buses to support high speed 

and low speed IO transfers. The design was downloaded and tested on 

different FPGA platforms, in addition to 0.35µm and 0.13µm ASIC 

technologies. CUSPARC has a promising metric of 0.9663 DMIPS/MHz. 

A novel debugger tool was developed for validating CUSPARC. This tool 

facilitates the testing of the processor running complex software loads by 

invoking Mentor’s MODELSIM simulator in the background while 

maintaining a “simulator-like” GUI in the foreground. 

 

Index Terms — IP processor, processor design, SPARC, CUSPARC,   

 

I. INTRODUCTION 

P processors are proliferating across embedded systems at 

an amazing rate. These systems impose demanding 

constraints on power and cost while seeking to fulfill the 

throughput requirements of the application considered. 

Conventional designs focusing mainly on the throughput 

metric and centered on high performance – albeit power 

hungry - processors are no longer appropriate for these 

embedded systems. Modern embedded systems will most 

likely be based on light-weight, power efficient IP processors 

mushrooming across a single or multiple ICs to form an energy 

efficient solution that meets the throughput demands of the 

application. This paper introduces the Cairo University 

SPARC (CUSPARC) processor as an IP processors keyed to 

these application domains. 

SPARC is a CPU instruction set architecture (ISA), derived 

from a (RISC) lineage, and published by Sun Microsystems in 

1986 [1]. The SPARC architecture has the following attractive 

features: 

• Open standard: Various SPARC assemblers and compilers 

are available. 

• RISC architecture  

• Windowed register file: the architecture contains variable 

number (implementation dependent) of overlapped 

 
 

registers windows. This register file organization speeds up 

context switching and reduces memory traffic leading to 

performance improvement. 

The Cairo University SPARC (CUSPARC) processor 

conforms to SPARC ISA V8 standard [2]. CUSPARC is the 

first fully-operational Egyptian processor. It was fully 

designed at the Electronics and Communications department, 

Cairo University, Egypt during the past five years.  

The rest of the paper is organized as follow: in section II the 

architecture of our design is presented. Section III shows the 

software tools developed for CUSPARC. Tests & applications 

are presented in section IV. Finally, performance metrics are 

given in section V.  

II. PROCESSOR ARCHITECTURE 

The main components of the CUSPARC processor are the 

Integer Unit (IU), caching system, cache controller, memory 

controller, a standard WISHBONE bus, Boot loader, and the 

peripherals. Figure 1 shows the bock diagram of the processor. 

 
Fig. 1:  CUSPARC Architecture 
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A. The Integer Unit (IU) 

The IU is a 32 bit, 4-stage pipelined unit. The 4 stages are 

Fetch, Decode, Execute, and Write back. The memory 

read/write stage is specially handled so as not to disrupt the 

pipeline. The instruction set includes about 80 different 

instructions including Load/Store, Arithmetic/Logic/Shift, 

Control transfer and Read/Write Control Register Instructions. 

The CUSPARC IU includes four register file windows. At any 

one instant, a program sees a large register file made of 8 

global registers plus a 24-register window (8 inputs, 8 local 

and 8 output registers). The windows are overlapped as shown 

in Figure 2. This overlapping reduces the memory traffic when 

going up and down the procedure call. It also enhances the CPI 

(Clock per Instruction) of the processor as it alleviates the 

need for the stack memory.  

 
 

Fig. 2:  Register File Windows 

B. Caching System 

CUSPARC has a Harvard Architecture, with separate 

instruction cache (4 KBytes) and data cache (4 KBytes). Both 

caches are direct mapped. The I-Cache is just a simple finite 

state machine that reads the instructions from the main 

memory in case of a cache miss. On the other hand, the D-

Cache is more complex as, in our design, it is required to 

perform read and write operations, and also deal with data 

transfers from/to I/O devices. In the later case, no data is 

stored in the static ram of the D-cache. Rather, the D-cache 

simply sends an I/O (read/write) request to the cache controller 

to read or write the data from or to the required I/O device 

respectively.  

C. Cache Controller 

The cache controller works as a server to respond to the 

cache miss requests from the two caches or to I/O access 

requests. The cache controller is the only master on the 

Wishbone Bus. This makes the bus implementation simpler as 

there is no need for a bus arbiter. The major tasks attached to 

the cache controller are as follows: 

- Scheduling the incoming requests from I and D caches. 

- Interfacing to the WISHBONE bus [2].  

D. Memory controller 

This controller interfaces CUSPARC to the main memory 

(RAM) or the boot memory (Flash). It maps the address from 

caches to the external memory. This mapping is based on the 

memory organization. The design of the controller 

handshaking timing diagram with external memory is generic 

and is controlled by software. The software should include the 

number of clock cycles needed by main memory and boot 

memory to respond. This provides flexibility to use different 

RAM or FLASH memories with different speeds. 

E. WISHBONE Bus 

The design includes two structured Wishbone Busses: 

- An internal 64-bit bus for interfacing the cache controller 

as a master to the memory controller and peripherals as 

slaves. 

- An external 8-bit bus, to provide slow I/O interface for 

CUSPARC.  

A bridge (FIFO) is used to connect the two buses. 

F. Boot loader 

The Boot Loader is implemented as a simple Direct 

Memory Access (DMA) device that is used only to move the 

Text and Data sections from the boot memory to the main 

memory. This device is totally guided by software to 

determine when to start, and give it the exact location of the 

source and destination of the Text and Data that will be 

moved. 

G. Peripherals 

CUSPARC has 2 UARTs, 3 timers and a watch dog timer. 

There’s also an interrupt controller, supporting 3 different 

interrupts. 

III. SOFTWARE TOOLS 

A. CUSPARC Compiler 

The open-source LEON GCC cross compiler (BCC – Bare 

C Cross Compiler) [3] was adapted for our processor. A small 

software parser was developed to remove LEON processor 

initializations from the compiler output and insert instead the 

CUSPARC initializations. These initializations include 

initializing the stack pointer, setting memories timing (RAM & 

FLASH), filling trap table and trap handlers. A function library 

was developed to facilitate testing CUSPARC both in 

simulation and real time environments. This library includes 

basic assembly functions for watching and validating variables 

during simulation such as (watch) and (assert) functions. These 

functions make it easy to trace where an error happened by 

stopping simulation immediately after the error. Many other 

functions are coded inside the library to write to the IO ports 

and the UARTs available on the processor.  
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Fig. 3:  CUSPARC IDE 

B.  CUSPARC Debugger IDE 

CUSPARC debugger is different from the traditional 

debugger as it is developed to test the hardware design itself, 

in addition to the software. There are two versions of the 

debugger; one for simulation and the other for real-time 

debugging. These two debuggers proved invaluable for 

uncovering hardware bugs in odd processor “states”. 

 

1) Simulation  debugger:  

CUSPARC supports over 80 instructions and over 20 traps 

(exceptions or interrupts). At any instant of time, 4 

instructions are in progress inside its pipeline. This creates a 

huge number of processor states that are very difficult to trace 

using dynamic timing simulators like Mentor’s ModelSim. 

The basic idea behind the CUSPARC simulation debugger is 

to invoke the MODELSIM simulator in the background while 

maintaining a “simulator-like” GUI in the foreground.  

The above-mentioned GUI makes it easy for users to select 

the variables to watch and to track the output step by step. 

When debugging starts, the program scans the C file to find 

the variable names and their type. After that, the user selects 

the variables to be watched in addition to any processor 

registers. The debugger then modifies the C code by inserting 

watches after each line for each variable elected. The new C 

file is compiled again and fed to ModelSim to simulate it on 

the processor. After the simulation is completed, our GUI 

parses the output dump file to extract the variables for each C 

line. The user finally can scan step by step the code and see 

how these variables are changing. A snap shot of the GUI is 

shown in Figure (3).  It was written using Microsoft C# .NET. 

The important note here is that during simulation, we 

verify both the software code and also the hardware VHDL 

code since the simulation is performed for the VHDL model 

of the processor. Using the functions inside the CUSPARC 

library, one can judge whether the bug is in the C code itself 

or in the processor design.  

 

2) Real time debugger: 

A real time debugger was also developed for validating the 

CUSPARC processor. This debugger verifies the code while 

it is running on the processor after burning it on the FPGA. 

The UARTs available on the processor are used for 

debugging in this case. Simply the user selects the variables 

to watch from within the IDE. The IDE modifies the C code 

so as to make the processor transmit the values of these 

variables via the UART and then hang up waiting for a 

command from the user to step one line or run to a certain 

breakpoint in the code. This operation continues until the 

program is finished. Obviously, the main advantage of the 

real time debugger over the simulation debugger is speed.  

IV. TESTING AND APPLICATIONS 

We have gone through several phases during the verification 

and testing of the processor. These phases included test 

benching the individual building blocks of the processor, 

simulating the processor while running short sequences of 

instructions and finally testing the processor while running 

complex real-life programs. The afore-mentioned simulation 

and real time debuggers were extensively used during these 

validation phases. 

CUSPARC processor was implemented on different Altera 

FPGA families (Flex10KE, Apex20KC, Cyclone, Cyclone II, 

Stratix-II, and Stratix-III.   

The CUSPARC processor was used to implement several 

embedded applications on FPGA platforms. These 

applications include the PHY layer of a Wi-Fi transceiver and 

a Bluetooth transceiver. Custom Hardware accelerators are 

occasionally attached to CUSPARC processor to speed up 

computationally intensive functions like FFT and Viterbi 

decoding. The basic data rates of 1Mb/s and 6Mb/s for the 

Bluetooth and Wi-Fi transceivers respectively were achieved 

on the STRATIX III FPGA platform. These applications 

culminated in a Software Defined Radio (SDR) application. 

This SDR was implemented using several CUSPARCs 

connected as a processor pipeline on Altera’s STRATIX III 

FPGA DSP kit. This generic hardware platform can be 

software configured to run the Bluetooth 2 or Wi-Fi protocols. 

Three CUSPARC processors were used to implement the 

transmitter and another three processors were used to 

implement the receiver.  

V. PERFORMANCE & METRICS 

A. FPGA design 

As mentioned in section IV, CUSPARC was implemented 

on many Altera FPGA kits. Table (I) shows the result of 

CUSPARC on Altera Stratix-III EP3SL150H1152C2 FPGA. 

Combinational logic occupies around 6% of ALUTs (Adaptive 

Look-Up Table) of this chip. More than 5% of available 

registers is used, mainly in the register file. Instruction and 

TABLE I 

CUSPARC REPORT ON STRATIX-III FPGA 

 

FPGA device used Stratix-III (EP3SL150H1152C2) 

Combinational ALUTs
*
 6,763/113,600 (6%) 

Dedicated logic registers 5,901/113,600 (5%) 
Total memory block bits 79,872/5,630,976 (1%) 

Max. Frequency 135MHz 
*ALUT: Adaptive Look-Up Table 
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data caches are implemented using the memory blocks in the 

FPGA, consuming around 1% of the available memory. 

CUSPARC operates at maximum frequency of 135MHz on 

this FPGA.  

B. Dhrystone v.2 benchmark 

The Dhrystone metric [4] measures the performance of 

processors more meaningfully than MIPS metric, because 

exact instruction count comparisons between different 

instruction sets (e.g. RISC vs. CISC) are not meaningful. The 

Dhrystone metric is widely used to measure the performance 

of embedded processors. The common representation of the 

Dhrystone benchmark is the DMIPS (Dhrystone MIPS), 

obtained by dividing the Dhrystone score by 1757 (the number 

of Dhrystones per second obtained on the VAX 11/780, 

defined as the unity MIPS machine). CUSPARC DMIPS is 

shown in Table (II). 

 

 

 

 

 

CUSPARC performs about 230,000 Dhrystone iterations 

per second at 135MHz on Stratix III EP3SL150H1152C2 

FPGA platform. Thus, CUSPARC scores 0.9663 

DMIPS/MHz. A comparable ARM processor (ARM7TDMI), 

scores 0.9 DMIPS/MHz [5]. 
TABLE III 

DHRYSTONE BENCHMARK RESULTS COMPARISON BETWEEN CUSPARC, 

LEON2, & MICROBLAZE PROCESSORS OPERATING ON 30MHz [5] 

 CUSPARC LEON2 MicroBlaze 

Time for a Dhrystone 

iteration (us) 

19.63 22.5 32.7 

Dhrystone 

iterations/second 

50933.8 44444.4 30611.4 

Dhrystone 

iterations/second/MHz 

1697.79 1481.48 1020.38 

DMIPS/MHz 0.9663 0.84319 0.58075 

 

Another comparison is shown in Table (III) between 

CUSPARC, LEON2 and MicroBlaze processors [6]. All 

processors operate on the same 30MHz frequency. The results 

show that CUSPARC is the best, followed by LEON2 then 

MicroBlaze. 

C. ASIC design 

CUSPARC was modified to target ASIC design to probe its 

potential for embedded SoC applications. These minor 

modifications are mainly in the cache memory blocks. Two 

different technologies were used, AMS (Austrian Micro 

Systems) 0.35µm, and IBM 0.13µm technologies. Table (IV) 

shows a comparison between the two designs. 

 
TABLE IV 

ASIC DESIGNS COMPARISON 

 AMS 0.35µm IBM 0.13µm 

Chip Area 9 mm2 1.96 mm2 

I & D Caches size 1 kB each 4 kB each 

Number of Routing layers 4 8 

Frequency 180 MHz 260 MHz 

 

Areas indicated includes cache memory blocks area. Also, 

sizing down caches in 0.35µm design was due to limited 

design area. Typical post-layout simulations indicate that the 

current ASIC implementation of CUSPARC at the 0.13µm 

node achieves a maximum operating frequency of 260 MHz. 

VI. CONCLUSION 

A working IP processor core conforming to the SPARC v8 

ISA is built, with the ability to interface custom hardware. We 

code named this processor CUSPARC for Cairo University 

SPARC. CUSPARC is a 32 bit processor with 4-stage 

pipelining. Data and control hazard prevention is 

implemented, traps and interrupts are supported. It has 2 

UARTs, 3 timers, watch dog timer and a standard 

WISHBONE bus interface. The design is ported to several 

FPGA families. 

A complete software suite supporting this processor was 

developed including a novel real time and off-line Debugger. 

Three SoC applications were implemented and verified using 

CUSPARC processor. Also, ASIC designs were targeted on 

0.35µm & 0.13µm technologies. A maximum operating 

frequency of 135 MHz was achieved on Stratix-III FPGA kit 

and 260MHz for the ASIC design on 0.13µm technology. 

CUSPARC has scored 0.9663 DMIPS/MHz.  
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TABLE II 

CUSPARC DHRYSTONE SCORES, 135 MHz ON STRATIX-III FPGA 

Dhrystones per second 229202.04 
DMIPS / MHz 0.9663 
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