

Abstract— In this paper, we introduce the design of an IP processor

core code-named CUSPARC for Cairo university SPARC processor.

This core is a 32 bit pipelined processor that conforms to SPARC v8 ISA.

It is complete with 4 register windows, I and D caches, SRAM and flash

memory controller, resolution hardware for the data and branch

hazards, interrupts and exception handling, instructions to support I/O

transfers, and two standard WISHBONE buses to support high speed

and low speed IO transfers. The design was downloaded and tested on

different FPGA platforms, in addition to 0.35µm and 0.13µm ASIC

technologies. CUSPARC has a promising metric of 0.9663 DMIPS/MHz.

A novel debugger tool was developed for validating CUSPARC. This tool

facilitates the testing of the processor running complex software loads by

invoking Mentor’s MODELSIM simulator in the background while

maintaining a “simulator-like” GUI in the foreground.

Index Terms — IP processor, processor design, SPARC, CUSPARC,

I. INTRODUCTION

P processors are proliferating across embedded systems at

an amazing rate. These systems impose demanding

constraints on power and cost while seeking to fulfill the

throughput requirements of the application considered.

Conventional designs focusing mainly on the throughput

metric and centered on high performance – albeit power

hungry - processors are no longer appropriate for these

embedded systems. Modern embedded systems will most

likely be based on light-weight, power efficient IP processors

mushrooming across a single or multiple ICs to form an energy

efficient solution that meets the throughput demands of the

application. This paper introduces the Cairo University

SPARC (CUSPARC) processor as an IP processors keyed to

these application domains.

SPARC is a CPU instruction set architecture (ISA), derived

from a (RISC) lineage, and published by Sun Microsystems in

1986 [1]. The SPARC architecture has the following attractive

features:

• Open standard: Various SPARC assemblers and compilers

are available.

• RISC architecture

• Windowed register file: the architecture contains variable

number (implementation dependent) of overlapped

registers windows. This register file organization speeds up

context switching and reduces memory traffic leading to

performance improvement.

The Cairo University SPARC (CUSPARC) processor

conforms to SPARC ISA V8 standard [2]. CUSPARC is the

first fully-operational Egyptian processor. It was fully

designed at the Electronics and Communications department,

Cairo University, Egypt during the past five years.

The rest of the paper is organized as follow: in section II the

architecture of our design is presented. Section III shows the

software tools developed for CUSPARC. Tests & applications

are presented in section IV. Finally, performance metrics are

given in section V.

II. PROCESSOR ARCHITECTURE

The main components of the CUSPARC processor are the

Integer Unit (IU), caching system, cache controller, memory

controller, a standard WISHBONE bus, Boot loader, and the

peripherals. Figure 1 shows the bock diagram of the processor.

Fig. 1: CUSPARC Architecture

CUSPARC IP Processor: Design,

Characterization and Applications

Ezz El-Din O. Hussein, Shoukry I. Shams, Mohamed I. Ali, Amr A. Z. Suleiman, Khalid ElWazeer,

Ehab A. Sobhy, Ahmad A. I. Ibrahim, Ahmed M. G. Ibrahim, Mohamed S. Khairy, Mohamed F. Fouda,

Al-Hussein A. El-Shafie, Ahmed H. M. Hareedy, ElSayed A. Ahmed, Ahmed R. Zakaria,

Khalid M. El-Galaind, Amr A. El Sherief, and S. E.-D. Habib
1

Department of Electronics and Communications

Cairo University

Cairo, Egypt
1
Corresponding author: seraged@ieee.org

I

22nd International Conference on Microelectronics (ICM 2010)

978-1-61284-150-2/10/$26.00 ©2010 IEEE 435

A. The Integer Unit (IU)

The IU is a 32 bit, 4-stage pipelined unit. The 4 stages are

Fetch, Decode, Execute, and Write back. The memory

read/write stage is specially handled so as not to disrupt the

pipeline. The instruction set includes about 80 different

instructions including Load/Store, Arithmetic/Logic/Shift,

Control transfer and Read/Write Control Register Instructions.

The CUSPARC IU includes four register file windows. At any

one instant, a program sees a large register file made of 8

global registers plus a 24-register window (8 inputs, 8 local

and 8 output registers). The windows are overlapped as shown

in Figure 2. This overlapping reduces the memory traffic when

going up and down the procedure call. It also enhances the CPI

(Clock per Instruction) of the processor as it alleviates the

need for the stack memory.

Fig. 2: Register File Windows

B. Caching System

CUSPARC has a Harvard Architecture, with separate

instruction cache (4 KBytes) and data cache (4 KBytes). Both

caches are direct mapped. The I-Cache is just a simple finite

state machine that reads the instructions from the main

memory in case of a cache miss. On the other hand, the D-

Cache is more complex as, in our design, it is required to

perform read and write operations, and also deal with data

transfers from/to I/O devices. In the later case, no data is

stored in the static ram of the D-cache. Rather, the D-cache

simply sends an I/O (read/write) request to the cache controller

to read or write the data from or to the required I/O device

respectively.

C. Cache Controller

The cache controller works as a server to respond to the

cache miss requests from the two caches or to I/O access

requests. The cache controller is the only master on the

Wishbone Bus. This makes the bus implementation simpler as

there is no need for a bus arbiter. The major tasks attached to

the cache controller are as follows:

- Scheduling the incoming requests from I and D caches.

- Interfacing to the WISHBONE bus [2].

D. Memory controller

This controller interfaces CUSPARC to the main memory

(RAM) or the boot memory (Flash). It maps the address from

caches to the external memory. This mapping is based on the

memory organization. The design of the controller

handshaking timing diagram with external memory is generic

and is controlled by software. The software should include the

number of clock cycles needed by main memory and boot

memory to respond. This provides flexibility to use different

RAM or FLASH memories with different speeds.

E. WISHBONE Bus

The design includes two structured Wishbone Busses:

- An internal 64-bit bus for interfacing the cache controller

as a master to the memory controller and peripherals as

slaves.

- An external 8-bit bus, to provide slow I/O interface for

CUSPARC.

A bridge (FIFO) is used to connect the two buses.

F. Boot loader

The Boot Loader is implemented as a simple Direct

Memory Access (DMA) device that is used only to move the

Text and Data sections from the boot memory to the main

memory. This device is totally guided by software to

determine when to start, and give it the exact location of the

source and destination of the Text and Data that will be

moved.

G. Peripherals

CUSPARC has 2 UARTs, 3 timers and a watch dog timer.

There’s also an interrupt controller, supporting 3 different

interrupts.

III. SOFTWARE TOOLS

A. CUSPARC Compiler

The open-source LEON GCC cross compiler (BCC – Bare

C Cross Compiler) [3] was adapted for our processor. A small

software parser was developed to remove LEON processor

initializations from the compiler output and insert instead the

CUSPARC initializations. These initializations include

initializing the stack pointer, setting memories timing (RAM &

FLASH), filling trap table and trap handlers. A function library

was developed to facilitate testing CUSPARC both in

simulation and real time environments. This library includes

basic assembly functions for watching and validating variables

during simulation such as (watch) and (assert) functions. These

functions make it easy to trace where an error happened by

stopping simulation immediately after the error. Many other

functions are coded inside the library to write to the IO ports

and the UARTs available on the processor.

436

Fig. 3: CUSPARC IDE

B. CUSPARC Debugger IDE

CUSPARC debugger is different from the traditional

debugger as it is developed to test the hardware design itself,

in addition to the software. There are two versions of the

debugger; one for simulation and the other for real-time

debugging. These two debuggers proved invaluable for

uncovering hardware bugs in odd processor “states”.

1) Simulation debugger:

CUSPARC supports over 80 instructions and over 20 traps

(exceptions or interrupts). At any instant of time, 4

instructions are in progress inside its pipeline. This creates a

huge number of processor states that are very difficult to trace

using dynamic timing simulators like Mentor’s ModelSim.

The basic idea behind the CUSPARC simulation debugger is

to invoke the MODELSIM simulator in the background while

maintaining a “simulator-like” GUI in the foreground.

The above-mentioned GUI makes it easy for users to select

the variables to watch and to track the output step by step.

When debugging starts, the program scans the C file to find

the variable names and their type. After that, the user selects

the variables to be watched in addition to any processor

registers. The debugger then modifies the C code by inserting

watches after each line for each variable elected. The new C

file is compiled again and fed to ModelSim to simulate it on

the processor. After the simulation is completed, our GUI

parses the output dump file to extract the variables for each C

line. The user finally can scan step by step the code and see

how these variables are changing. A snap shot of the GUI is

shown in Figure (3). It was written using Microsoft C# .NET.

The important note here is that during simulation, we

verify both the software code and also the hardware VHDL

code since the simulation is performed for the VHDL model

of the processor. Using the functions inside the CUSPARC

library, one can judge whether the bug is in the C code itself

or in the processor design.

2) Real time debugger:

A real time debugger was also developed for validating the

CUSPARC processor. This debugger verifies the code while

it is running on the processor after burning it on the FPGA.

The UARTs available on the processor are used for

debugging in this case. Simply the user selects the variables

to watch from within the IDE. The IDE modifies the C code

so as to make the processor transmit the values of these

variables via the UART and then hang up waiting for a

command from the user to step one line or run to a certain

breakpoint in the code. This operation continues until the

program is finished. Obviously, the main advantage of the

real time debugger over the simulation debugger is speed.

IV. TESTING AND APPLICATIONS

We have gone through several phases during the verification

and testing of the processor. These phases included test

benching the individual building blocks of the processor,

simulating the processor while running short sequences of

instructions and finally testing the processor while running

complex real-life programs. The afore-mentioned simulation

and real time debuggers were extensively used during these

validation phases.

CUSPARC processor was implemented on different Altera

FPGA families (Flex10KE, Apex20KC, Cyclone, Cyclone II,

Stratix-II, and Stratix-III.

The CUSPARC processor was used to implement several

embedded applications on FPGA platforms. These

applications include the PHY layer of a Wi-Fi transceiver and

a Bluetooth transceiver. Custom Hardware accelerators are

occasionally attached to CUSPARC processor to speed up

computationally intensive functions like FFT and Viterbi

decoding. The basic data rates of 1Mb/s and 6Mb/s for the

Bluetooth and Wi-Fi transceivers respectively were achieved

on the STRATIX III FPGA platform. These applications

culminated in a Software Defined Radio (SDR) application.

This SDR was implemented using several CUSPARCs

connected as a processor pipeline on Altera’s STRATIX III

FPGA DSP kit. This generic hardware platform can be

software configured to run the Bluetooth 2 or Wi-Fi protocols.

Three CUSPARC processors were used to implement the

transmitter and another three processors were used to

implement the receiver.

V. PERFORMANCE & METRICS

A. FPGA design

As mentioned in section IV, CUSPARC was implemented

on many Altera FPGA kits. Table (I) shows the result of

CUSPARC on Altera Stratix-III EP3SL150H1152C2 FPGA.

Combinational logic occupies around 6% of ALUTs (Adaptive

Look-Up Table) of this chip. More than 5% of available

registers is used, mainly in the register file. Instruction and

TABLE I

CUSPARC REPORT ON STRATIX-III FPGA

FPGA device used Stratix-III (EP3SL150H1152C2)

Combinational ALUTs
*
 6,763/113,600 (6%)

Dedicated logic registers 5,901/113,600 (5%)
Total memory block bits 79,872/5,630,976 (1%)

Max. Frequency 135MHz
*ALUT: Adaptive Look-Up Table

437

data caches are implemented using the memory blocks in the

FPGA, consuming around 1% of the available memory.

CUSPARC operates at maximum frequency of 135MHz on

this FPGA.

B. Dhrystone v.2 benchmark

The Dhrystone metric [4] measures the performance of

processors more meaningfully than MIPS metric, because

exact instruction count comparisons between different

instruction sets (e.g. RISC vs. CISC) are not meaningful. The

Dhrystone metric is widely used to measure the performance

of embedded processors. The common representation of the

Dhrystone benchmark is the DMIPS (Dhrystone MIPS),

obtained by dividing the Dhrystone score by 1757 (the number

of Dhrystones per second obtained on the VAX 11/780,

defined as the unity MIPS machine). CUSPARC DMIPS is

shown in Table (II).

CUSPARC performs about 230,000 Dhrystone iterations

per second at 135MHz on Stratix III EP3SL150H1152C2

FPGA platform. Thus, CUSPARC scores 0.9663

DMIPS/MHz. A comparable ARM processor (ARM7TDMI),

scores 0.9 DMIPS/MHz [5].
TABLE III

DHRYSTONE BENCHMARK RESULTS COMPARISON BETWEEN CUSPARC,

LEON2, & MICROBLAZE PROCESSORS OPERATING ON 30MHz [5]

 CUSPARC LEON2 MicroBlaze

Time for a Dhrystone

iteration (us)

19.63 22.5 32.7

Dhrystone

iterations/second

50933.8 44444.4 30611.4

Dhrystone

iterations/second/MHz

1697.79 1481.48 1020.38

DMIPS/MHz 0.9663 0.84319 0.58075

Another comparison is shown in Table (III) between

CUSPARC, LEON2 and MicroBlaze processors [6]. All

processors operate on the same 30MHz frequency. The results

show that CUSPARC is the best, followed by LEON2 then

MicroBlaze.

C. ASIC design

CUSPARC was modified to target ASIC design to probe its

potential for embedded SoC applications. These minor

modifications are mainly in the cache memory blocks. Two

different technologies were used, AMS (Austrian Micro

Systems) 0.35µm, and IBM 0.13µm technologies. Table (IV)

shows a comparison between the two designs.

TABLE IV

ASIC DESIGNS COMPARISON

 AMS 0.35µm IBM 0.13µm

Chip Area 9 mm2 1.96 mm2

I & D Caches size 1 kB each 4 kB each

Number of Routing layers 4 8

Frequency 180 MHz 260 MHz

Areas indicated includes cache memory blocks area. Also,

sizing down caches in 0.35µm design was due to limited

design area. Typical post-layout simulations indicate that the

current ASIC implementation of CUSPARC at the 0.13µm

node achieves a maximum operating frequency of 260 MHz.

VI. CONCLUSION

A working IP processor core conforming to the SPARC v8

ISA is built, with the ability to interface custom hardware. We

code named this processor CUSPARC for Cairo University

SPARC. CUSPARC is a 32 bit processor with 4-stage

pipelining. Data and control hazard prevention is

implemented, traps and interrupts are supported. It has 2

UARTs, 3 timers, watch dog timer and a standard

WISHBONE bus interface. The design is ported to several

FPGA families.

A complete software suite supporting this processor was

developed including a novel real time and off-line Debugger.

Three SoC applications were implemented and verified using

CUSPARC processor. Also, ASIC designs were targeted on

0.35µm & 0.13µm technologies. A maximum operating

frequency of 135 MHz was achieved on Stratix-III FPGA kit

and 260MHz for the ASIC design on 0.13µm technology.

CUSPARC has scored 0.9663 DMIPS/MHz.

ACKNOWLEDGEMENT

 Many people contributed to four earlier versions of

CUSPARC. The following list acknowledges these

contributors: Mohamed A. Khairy, Hesham W. H. Sabry,

Karim A. Hosny, Khalid H. M. Khallaf, Ramy R. A. S. Eissa,

Ahmed A. M. Bakr, Amgad K. AbdElSalam, Mahmoud M.

AbdAllah, Ahmed H. Mostafa, Ahmed H. Fathy, Ahmed A.

Ayoub, Ahmed A. Abdelwahab, Ahmed M. Abdelgaber,

Hesham M. Mahfouz, Mohamed K. AbdElFattah, Hesham M.

El-Sayed, Mohamed M. Farag, Amr S. Abu-Bakr and Karim

A. Tarek.

The authors also acknowledge a MOSIS MEP grant # 4960

granting access to the technology files and standard cell library

of IBM 0.13µm CMOS 8RF-DM technology. They also

acknowledge AMS foundry for granting access to HitKit

package of their AMS 0.35 µm technology.

REFERENCES

[1] The SPARC International Inc. The SPARC Architecture Manual, version

8. Available at http://www.sparc.com/standards/V8.pdf
[2] Wishbone bus specification, "WISHBONE system-on-Chip (SoC)

Interconnection Architecture for Portable IP Cores". Available at

http://opencores.org/opencores,wishbone.

[3] GCC Web site, http://gcc.gnu.org/

[4] Alan R. Weiss, "Dhrystone Benchmark White Paper", Available at

http://www.eembc.org/techlit/whitepaper.php#dhrystone, November

2002.

[5] ARM processors, http://www.arm.com/products/processors/classic/

[6] Daniel Mattson & Marcus Christensson, "Evaluation of synthesizable

CPU cores", Chalmers University of Technology, Gothenburg 2004.

TABLE II

CUSPARC DHRYSTONE SCORES, 135 MHz ON STRATIX-III FPGA

Dhrystones per second 229202.04
DMIPS / MHz 0.9663

438

