
Indian Journal of Science and Technology, Vol 11(2), DOI: 10.17485/ijst/2018/v11i2/113956, January 2018
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

An Approach for Enhancing Data Access Security in
Heterogeneous Database Systems

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Department of Computer Science, Institute of Statistical Studies and Research, Cairo University, Giza, Egypt;
ahmedelbatal@hotmail.com, ahmgad10@yahoo.com, hehefny@ieee.org

*Author for correspondence

Abstract
Objectives: This paper proposes an enhanced data access security approach to allow virtual private database security
mechanism in heterogeneous multi-tier applications regardless of the data access security features provided by each
database management system. Methods/Statistical Analysis: An implementation of Data Access Layer has been done
respecting the proposed approach. This implementation enhances Microsoft’s Entity Framework that is widely used
in commercial multi-tier database applications as a Data Access Layer. Accordingly, it’s overloaded by the required
functionality including query modification and data validation. The output assembly then is tested in a typical HR database
application that targets three different DBMS’s (SQL Server, MySQL, Oracle) with exactly same database state. A time
measurement takes place to evaluate the processing cost of issuing CRUD operations compared with the same application
architecture without using the proposed approach (e.g. relying on the row-level security provided by Oracle on the DBMS
level). Findings: An illustrated case study respecting the proposed approach shows its scalability, reliability and efficiency.
It allows data access security in both homogenous and heterogeneous database applications. On the other hand, the results
show that the cost of processing both of data retrieval and data manipulation operations respecting predefined data access
security policies of the proposed approach compared with Oracle VPD are reduced by around 59% and 57% respectively.
Application/Improvements: As presented in the illustrative case study, the proposed approach can be easily applied
and reused in any modern heterogeneous multi-tier database application. It allows defining data access security policies
regardless of the target database management system type. Also, the results show an improvement in the processing cost of
the proposed approach compared with the Oracle virtual private database with both data retrieval and data manipulation
operations.

Keywords: Data Privacy; Data Access; Database; Heterogeneous Database Applications;

1.  Introduction
Data access control is one of the main security issues that
should be tackled in most database applications. One of the
most useful data access control mechanisms is the virtual
private database provided by some database management
systems (e.g. Oracle1 and PostgreSQL2) to facilitate row-
level data access control. However, this mechanism is not
yet presented in other relational database management
systems (e.g. SQL Server, MySQL, SQLite, etc.). On the
other hand, most of modern database applications are
built respecting the multi-tier architecture. Yet, they still

depend on the mechanisms provided by database man-
agement systems to implement data security in the lowest
tier of their architecture, the database tier. This depen-
dency makes it impossible to re-use the same security
policies in heterogeneous database applications where
different types of database management systems are
used. The following subsections introduce the multi-tier
application arechitecture and data access control. Also,
they give an overview about the virtual private database
mechanism provided by Oracle and the traditional way of
implementing the virtual private database mechanism in
a multi-tier application architecture

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 2

1.1  Multi-tier Application Architecture
Generally, most modern database applications are built
respecting the multi-tier architecture. The most widely
used multi-tier architecture is the three-tier architecture
that incorporates three tiers: 1. Data tier that includes both
of data access layer (DAL) and data persistence mecha-
nisms as database servers, file sharing, etc. Traditionally,
DAL includes a set of entity types by which each of them
corresponds to one of the persistent data objects (i.e. tables
or views) 2. Business logic tier that is responsible for coor-
dinating the application, satisfying the business rules and
makes the required computations and logical decisions.
3. The presentation tier represents the user interface that
facilitates the interaction between the user and the appli-
cation. It presents tasks and results in an easy-to-use and
understandable form to the application users. Accordingly,
the presentation tier represents the top-most level of an
application. Other forms of the multi-tier architecture
may expand one or more layer of the traditional three tiers
to represent different levels of abstraction. Figure 1 shows
the three-tier architecture in a single database application.
Commonly, it becomes natural for most multi-tier applica-
tion developers to use some sort of code generation process
to help in generating the needed for of the application’s
DAL. Many Object-Relational Mapping (ORM) tools are
used to accommodate this purpose such as NHibernate,
Dapper, Massive, etc. Some of these ORM tools allow data
access security at the object-level. Accordingly, a database
record is firstly loaded into the DAL before deciding if
it is accessible by the user or does not. In heterogeneous
database applications, where different types of database
management systems are used, the multi-tier architecture
considers a separate DAL for each database involved in the
application. Figure 2 shows the three-tier architecture in a
heterogeneous database application.

1.2  Data Access Control
In relational databases, Data Access Control (DAC) is
considered to be one of the main control techniques that
are used to provide security of data. It is responsible for
filtering data so that only the user accessible data that he/
she has right to access are available. Commonly, a data-
base management system incorporates a database security
and authorization subsystem for preventing unauthor-
ized access. Yet, some of such subsystems in traditional
RDBMs do not differentiate between individual rows in
a table. Accordingly, a user can access all or nothing of a

table rows3. For example, ”GRANT SELECT” on a table
allows a user to access populated rows in that table. In
contrary, row-level security richens data security with
an additional layer of access controls on a per-row basis.
Accordingly, a security requirement such as “an employee

Figure 1.  The three-tier architecture in a single database
application.

Figure 2.  The three-tier architecture in heterogeneous
database applications.

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Indian Journal of Science and Technology 3Vol 11 (2) | January 2018 | www.indjst.org

can only view certain orders that he/she is responsible for”
becomes allowable. So, it can be defined and enforced by
the DBMS. The typical form of row-level security is known
as label-based security in which the user is given a session
label by the database administrator4. Consequently, such
label is used by DBMS to get the data accessible by the user.

1.3  Virtual Private Database
In order to satisfy the customers’ needs, some DBMSs
provide different forms of security mechanisms that aim
to allow row-level data access security5. In February 1999,
Oracle introduced the concept of Virtual Private Database
(VPD) as a technology that enables users to add secu-
rity policies to control database access at the row-level1.
Commonly, VPD allows dynamic WHERE clauses to SQL
that attempt to access a table, synonym, or view to which
a VPD security policy is attached. Accordingly, there is
no way to escape this type of security. Such security poli-
cies are directly attached to the specified data objects.
Consequently, the policies are automatically applied
whenever a user attempts to access data. Generally, when
a user attempts to access a table, view, or synonym that
is protected with a VPD policy, the DBMS dynamically
modifies the issued SQL statement to reflect the existed
security policy. Such modification creates a WHERE
condition, called a predicate, returned by a function rep-
resenting the predefined security policy. In other words,
the DBMS modifies the SQL statement by a condition that
can be expressed by the function. Consequently, a VPD
policy can be set to any of the data manipulation opera-
tions namely SELECT, INSERT, UPDATE and DELETE.
For example, suppose a user has access to the orders of
Sales Representative identified by ID equal 123. Assuming
that, the user generates the following query statement:

SELECT*FROM OE.ORDERS;
Dynamically, the VPD policy is fired and adds a ’WHERE’
clause as follows:

SELECT*FROM OE.ORDERS
WHERE SALES_REP_ID =123;

In consequence, the user can only retrieve the data of
orders made by sales representative with ID equals 123.
Moreover, to retrieve the orders data accessible by a user
based on the session information, such as his/her user ID,
the following “WHERE” clause can be used:

SELECT*FROM OE.ORDERS
WHERE SALES_REP_ID = SYS_CONTEXT
(’USERENV’,’SESSION_USER’);

Where SYS_CONTEXT is a function that retrieves the
stored session-based variables in an Oracle database.

Accordingly, a function defining the data privacy restric-
tions is used to generate a dynamic “WHERE” clause.
Usually, the security administrator creates such function
in the specified database schema. The function takes as
arguments a schema name and an object (table, view,
or synonym) name as inputs and returns a predicate or
”WHERE” clause representing the specified security
policy. Generally, to set a VPD policy, the table, view, or
synonym to which the security policy is applied must be
specified rather than the types of statements the policy
controls. The following block of code shows an example of
how to add a VPD policy in an Oracle database.

BEGIN
DBMS_RLS.ADD_POLICY(
	 object_schema =>’HR’,
	 object_name=>’EMPLOYEES’,
	 policy_name =>’SECURE_UPDATES’,
	 policy_function =>’CHECK_UPDATES’,
	 statement_types =>’SELECT,UPDATE’
);
END;

Figure 3:  Virtual private. Database

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 4

This example shows how to attach a VPD policy called
”SECURE_UPDATES” to the ”EMPLOYEES” table in the
database schema “HR”. The function attached to the policy is
CHECK_UPDATES. On the other hand, this policy is speci-
fied for SELECT and UPDATE SQL statements. Accordingly,
the policy is applied only when issuing such statements over
the “employees” table. Commonly, the combination of cre-
ating the security policy function and then applying it to a
table or view is referred to as creating a VPD policy1.

1.4 � Virtual Private Database in Multi-tier
Architecture

Normally, to work with VPD in a multi-tier architecture
application the security policy should not leave its place in
the database storage. It still defined as a predicate function
in the database dictionary and executed within the DBMS
runtime environment. Figure 4 describes the architecture
of the typical form of VPD in a single three-tier database
application. Typically, data access via VPD in a three-tier
architecture, shown in Figure 5, acts as follows:

•	 The business logic layer issues some data manipu-
lation operation.

•	 In turn, the DAL transforms the operation into the
suitable SQL statement and sends it to the DBMS.

•	 The DBMS hits the data access security package.
•	 The DBMS executes the policy definition (defined

as a predicate function) attached to the manipu-
lated table(s).

•	 The policy definition returns the filter expression
according to the user context.

•	 The data access security package returns the accu-
mulative filter expression gathered from each
policy attached to the manipulated table(s).

•	 In consequence, the DBMS queries the database
using the resulted filter expression combined with
the original query statement.

•	 The DBMS holds the returned data from the
manipulated table.

•	 The DBMS transfers the resulted data to the DAL
•	 In turn, the DAL sends the resulted data to the

business logic layer.

Moreover, in heterogeneous database applications, each
database has its own row-level security mechanism at the
optimistic case. However, some contributing DBMS’s in
heterogeneous applications may not have any row-level

security mechanism at all like MySQL and Sqlite. Figure 6
shows a typical implementation of VPD in heterogeneous
three-tier database applications.

The rest of this paper is organized as follows: Section
2 introduces the related work. The proposed approach is
presented in the Section 3. In consequence, Section 4 gives
an illustrative case study with results and findings. Finally,
the conclusion and future works are given in Section 5.

Figure 4.  VPD in three-tier single database applications.

Figure 5.  Security policy processing in VPD with the
three-tier architecture.

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Indian Journal of Science and Technology 5Vol 11 (2) | January 2018 | www.indjst.org

2.  Related Work
Generally, data access control mechanisms provided by a
DBMS are not the only factor to put in mind when choos-
ing the appropriate DBMS for a database application6– 9.
Some customers choose a DBMS that fits their business
and system requirements such as license cost, scalabil-
ity and performance regardless of data access control.
Such DBMS’s may lack the appropriate data access con-
trol mechanism needed to fulfill the data access security
issues. In such case, it becomes very important to build
a custom data access security mechanism or using some
other mechanisms as a work around.

Some previous works uses VIEWS to implement row-
level data access security as a work around that is suitable
for all kinds of existed RDBMS. However, this technique
has some disadvantages: It is hard to administer, as the
data access rules are embedded in the views. Also, its
implementation is limited and requires careful design
and development10–12. In addition, another crucial prob-
lem of using such approach takes place when attempting
to migrate to another DBMS. It would then costs a lot
time and effort to transform the existing data access con-
trol implementation to the other DBMS. Moreover, this
would costs more if the existing application uses some
mechanisms that do not even exist in the other DBMS
(e.g. like the VPD). On the other hand, in a Multi-tier

Application, it is more appropriate to put all the system’s
business rules including data access rules in the business
layer. Unfortunately, putting them in a lower layer (i.e.
Database DDL) would violate the multi-tier architecture
of the application13.

Although, moving data access mechanism one
layer up in a multi-layer application is not a new idea;
Corcoran et al. proposed a new programming language
called SELinks14,15. It provides a uniform programming
model for building secure multi-tier web applications.
Yet, it focused on label-based security (i.e. not as flexible
as the VPD mechanism) and as a programming model,
it is hard to be implemented and integrated with existing
applications. This is due to the effort needed to transform
the existing code to meet its equivalent syntax.

In consequence16 survey the area of securing web
applications from the server side, with the aim of sys-
tematizing the existing techniques into a big picture that
promotes future research. They discussed SELinks in the
perspective of application logic vulnerabilities within new
web applications security construction. Other mecha-
nisms mentioned in their survey are more about input
validation and data flow tracking between layers rather
than securing the data that resides on the data base layer
(i.e. attached to a DBMS). Recently, researchers are work-
ing on enhancing the use of SELinks for the purpose of
controlling data flow over multi-tier applications. Balliu et
al. toke SELinks as an inspiration to develop a new frame-
work called JSLINQ as an extension of the WebSharper
library to track data flow17.

3.  The Proposed Approach
The proposed approach in this paper aims mainly to
enhance the DAL itself to allow attaching security poli-
cies to its entity types that may existed on heterogeneous
DBMSs. Accordingly, such defined data security policies
can be used later to append the predefined filter expres-
sions when executing data manipulation operations. An
example of implementing data security polices in a hetero-
geneous database system based on the proposed approach
is introduced in the case study section. The implementa-
tion uses the publically used DAL of Microsoft, the Entity
Framework. However, the same approach can be imple-
mented using any kind of code generated DAL.

Figure 7 shows the architecture of the proposed
approach in three-tier database applications. In such

Figure 6.  VPD in three-tier heterogeneous database
applications.

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 6

architecture, the security policy is moved away from the
database dictionary. Accordingly, the functionality of
modifying a SQL statement with the filtering condition
is executed in the DAL which resides in the application
runtime environment rather than the DBMS. Such a way
makes it easy to work with heterogeneous database appli-
cations. Also, it facilitates migration from one DBMS to
another one. Figure 8 presents the architecture of the
proposed approach in heterogeneous three-tier database
applications. Consequently, the security policy definition
becomes part of the business logic layer. Accordingly, the
security policies are considered as collection of business
rules that are defined in the business logic layer in the
form of predicate functions. On the other hand, the secu-
rity policy execution package is shared among all DALs
involved in the heterogeneous application. It contains the
necessary classes to do the functionality of DAC; which is
abstracted away from being a part of each separated DAL.
A simple implementation of the relationship between
DALs and a shared security policy execution package
can be done by using inheritance. Such that each sepa-
rated DAL inherits from the base classes that contain the
security policy execution functionality. In the proposed
approach, data access security is fulfilled as shown in
Figure 9 and according to the following steps:

•	 The business logic layer issues some data manipu-
lation function.

•	 The DAL hits the data access security package
resides in its runtime environment.

•	 The data access security package executes the pol-
icy definition (defined as a predicate function in
the business logic layer) attached to the manipu-
lated tables.

•	 The policy definition returns the filter expression
according to the user context.

•	 The security policy package returns the accumu-
lative filter expression gathered from each policy
attached to the manipulated table(s).

•	 The DAL then hits the DBMS with the resulted fil-
ter expression combined with original statement.

•	 The DBMS executes the final query statement
including the filter expression.

•	 The DBMS holds the returned data from the
manipulated table.

•	 The DBMS transfers data to the DAL.
•	 In turn, the DAL sends the resulted data to the

business logic layer.

Respecting the processing scenario of the proposed
approach, the added value of its applicability compared
with traditional ones can be addressed as follows:

•	 The defined data access security policy is executed
in the application runtime environment rather than
delegating it to the DBMS. Accordingly, the pro-
posed approach leads to an earlier execution of the
defined data security policy that is more suitable in
heterogeneous data base applications. So, the gen-
eration of the filter expression becomes related to
the runtime environment used in the application.
It also keeps the DBMS away from managing the
data access security and leaves it dedicated to the
data manipulation operations.

•	 Also, the predicate function representing the required
security policy is defined and executed within the
business logic layer. Accordingly, each security policy
is considered as a part of the business rules defined
in that layer and may re-use other predefined rules.

•	 In heterogeneous applications, the same defined
data access security policy can be accessed by dif-
ferent DALs.

•	 Moreover, migration to different DBMS becomes
easier since no change required to be done on the
predefined security policies. In addition, the same
approach can be used with any type of DBMS regard-
less of whether it provides VPD capability or not.

According to the proposed approach, it becomes easy to
define a data security policy to be applied in a heteroge-
neous database application. The following code segment
instantiate a database model and define a security policy.

This example shows how to instantiate a new Database
Context ”Northwind Context”. It adds a security pol-
icy called ”Filter By Department” to be applied on the”
Employees” table respecting any type of data manipula-
tion operations denoted by ”VPDbStatementType.All”.
The security policy uses a pre-defined predicate function
called ”Filter By Department Function” that returns a
dynamic filter string. Consequently, four data manipu-
lation operations including SELECT, INSERT, UPDATE
and DELETE on the targeted employees table are exe-
cuted. Accordingly when executing the ”Save Changes”
function, if there is any attempt to violate one of the
added security policies then an exception will be thrown.
On the other hand, the following code block shows an
example of a predicate function ”Filter By Department

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Indian Journal of Science and Technology 7Vol 11 (2) | January 2018 | www.indjst.org

//Instantiate a database context

var NorthwindContext =new NorthwindModel();

//Modifying its application context

NorthwindContext.applicationContext[“CurrentUserDepartmentId”]=5;

//Adding a security policy

VPDbPolicies.AddPolicy(NorthwindContext, NorthwindContext.Employees,

	 “FilterByDepartment”, FilterByDepartmentFunction, VPDbStatementType.All);

//Selecting filtered employees

var employees = NorthwindContext.Employees;

//Add new employee with id=12

var newEmployee =new Northwind.Model.Employee();

newEmployee.EmployeeID =12;

newEmployee.FirstName =”John”;

newEmployee.LastName =”Michael”;

newEmployee.DepartmentId =5;

NorthwindContext.Employees.Add(newEmployee);

NorthwindContext.SaveChanges();

//Update an existing employee whose id=12

var existingEmployee=NorthwindContext.Employees.Find(12);

existingEmployee.FirstName =”Peter”;

NorthwindContext.SaveChanges();

//Delete an existing employee whose id=12

var deleteEmployee = NorthwindContext.Employees.Find(12);

NorthwindContext.Employees.Remove(deleteEmployee);

NorthwindContext.SaveChanges();

Function” that uses the value of the ”Current User
Department” key stored in the application context to
return the appropriate filter expression that would be

then applied, through the ”Filter By Department” security
policy, to allow the current user to manipulate only the
data of employees belong to his department.

string FilterByDepartmentFunction (VPDbApplicationContext applicationContext)

{

 if(applicationContext[“CurrentUserDepartmentId”]!=null)

	 return@”DepartmentId=” + applicationContext[“CurrentUserDepartmentId”];

 else

	 return@”1=0”;

}

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 8

4. An Illustrative Case Study
This case study represents an implementation of the pro-
posed approach. It incorporates a set of most popular
DBMS’s (i.e. MSSQL, MySQL and Oracle) using a simple
HR database that existed on each DBMS with typical large
amount of data.

4.1  Objectives
The main objective of this case study is to show the flex-
ible applicability of the proposed approach with any type
of DBMS that is supported by the Entity Framework.
Another objective is to compare the performance of
the proposed approach against Oracle VPD in the same
environment (i.e. using Entity Framework as the DAL).
Also, the case study shows the cost of processing differ-
ent manipulation operations on a set of heterogeneous
DBMSs that obey or violate a predefined data access secu-
rity policy.

4.2  Schema and Data Sample
A simple HR schema is considered for the case study that
includes two tables as follows:

•	 Employees (Employee Id, First Name, Last Name,
Email, Phone, Address, City, State, Zip Code,
Country, SSN, Salary, Birth Date, Department Id)
with 10 million records (about 2.5 GB).

•	 Departments (Department Id, Department Name),
with 10 records.

Figure 7.  The proposed approach in a three-tier application
architecture.

Figure 8.  The proposed approach in a heterogeneous
three-tier application architecture.

Figure 9.  The flow of executing a security policy in the
proposed approach.

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Indian Journal of Science and Technology 9Vol 11 (2) | January 2018 | www.indjst.org

4.3  Application Structure
The .NET application of the case study has been made
up of a set of layers and sub-projects. The database layer
includes three databases with the same database state
on MSSQL, MySQL and Oracle DBMSs. On the other
hand, the DAL incorporates a library named EFRLS that
contains the required classes that encapsulate the imple-
mentation of the data access security policies. Also, The
DAL includes four entity framework sub-projects. Three
of them are Hr.Model.MSSQL, Hr.Model.MySQL and
Hr.Model.Oracle that represent the entity framework
DAL for each corresponding DBMS (MSSQL, MySQL
and Oracle DBMSs respectively). The fourth sub-project
called Hr.Model.OracleVPD represents the normal entity
framework DAL of the Oracle database without apply-
ing the proposed approach. The Hr.Model.OracleVPD
is responsible for creating the required security policies
respecting the Oracle supported VPD feature.

4.4 � An Implementation of the Proposed
Approach

Accordingly, the areas of DAL code that have been modi-
fied to accommodate the implementation the proposed
approach are as follows:

•	 The Data base Context that represents a combina-
tion of the Unit of Work and Repository patterns
(Datasets) such that it can be used to query from a
database and group together changes that will then
be written back to the store as a unit. It has been
modified to override the base Entity Framework’s
Database Context on two major functionalities:
1. Allow passing an Application Context (user
defined collection of key/value pairs that may con-
tain some shared or session-based variables) to any
new instance of the Database Context. 2. Validate
the changes made on its datasets before saving
them to the database store.

•	 The dataset representing the collection of all enti-
ties in the context that can be queried from the
database, of a given type. It has been modified
to override the base Entity Framework’s Dataset
on two major functionalities: 1. Validate added,
updated or deleted entities on the server before
affecting the original dataset and throw an excep-
tion if any of the working entities violates the
added security policies. 2. Exposing the filtered

dataset, instead of the original one, to any SELECT
operation made on a dataset instance.

•	 The database model that inherits from the Database
Context and represents an implementation of a
specific database. It has been modified to add two
major functionalities: 1.Allow passing an applica-
tion context to any new instance of the database
model. 2. Using the modified dataset instead of the
base Entity Framework’s Dataset.

 4.5  Testing the Proposed Approach
The implemented application starts with instantiating
each of the four DALs. In consequence, it assigns their
application context that will be used later in the security
policy’s predicate function. It then adds a simple secu-
rity policy to all of those instances. Finally, it separately
executes the operations stated in Table 1, from operation
Op01 to operation Op13, on HR databases existed on
different database servers via their corresponding entity
framework’s DAL.

4.6  Results
The illustrative case study shows that the proposed
approach can be easily applied with the entity framework’s
DAL. It also shows good performance compared with the
Oracle VPD especially on data manipulation operations
(i.e. insert, update and delete). This because the process
of checking the assigned security policies on adding a
new entity or updating or deleting an existing one is per-
formed on the DAL runtime environment rather than
passing it to the DBMS. Also, it can be noted that the cur-
rently used approaches in data manipulation operations
in a DBMS that does not support row level security is to
put the validation process (i.e. an IF condition) in line in a
higher level than the DAL. So, it does not take more than
one tick to proceed.

In this case study a set of different data manipula-
tion operations are considered. Table 1 shows a set of
data manipulation operations that are applied in the case
study. On the other hand, both of Table 2 and Table 3
show the result of the case study. The first column of each
table shows the SQL operation that is being executed by
the DAL. On the other hand, the second column shows
the number of records affected/selected per each executed
SQL operation. For each DBMS involved in the case
study, “Normal” refers to the currently used approach
in three tiers architecture (i.e. putting the required filter

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 10

Table 1. A set of SQL operations that are considered in the experiment

Operation
ID

SQL
Statement SQL Operation

Op01 SELECT Retrieving the first 1 record that matches a given filter expression.

Op02 SELECT Retrieving the first 10 records that match a given filter expression.

Op03 SELECT Retrieving the first 100 records that match a given filter expression.

Op04 SELECT Retrieving the first 1000 records that match a given filter expression.

Op05 UPDATE Updating an existing entity with values that obey an assigned security policy.

Op06 UPDATE Updating an existing entity with values that violate an assigned security policy.

Op07 UPDATE Updating an existing entity with no security policy assigned.

Op08 INSERT Adding a new entity with values that obey an assigned security policy.

Op09 INSERT Adding a new entity with values that violate an assigned security policy.

Op10 INSERT Adding a new entity with no security policy assigned.

Op11 DELETE Removing an existing entity with values that obey an assigned security policy.

Op12 DELETE Removing an existing entity with values that violate an assigned security policy.

Op13 DELETE Removing an existing entity with no security policy assigned.

expression inline in a higher layer than the DAL), “VPD”
refers to the using of virtual private database approach
(i.e. in Oracle Database only) and “Proposed” refers to the
implemented one respecting the proposed approach. Also
in this case study, the time cost of executing each SQL
statement is measured by a number of CPU ticks (one

tick = 10−4 millisecond) elapsed until processing that SQL
statement. Accordingly, the numbers in the table show
the CPU ticks of performing each operation. It has been
calculated as an average of the elapsed ticks of 100 itera-
tions per process. For better visualization, Figures 10, 11,
12 and 13 also show the same results in a bar chart format.

Table 2. The processing cost of executing different data retrieval operations (SELECT statements) respecting a
predefined data access security policy

Operation
 ID

Count of
Records

Oracle MSSQL MySQL

Normal VPD Proposed Normal Proposed Normal Proposed

Op01 1 5800 15872 6858 3001 3074 3398 3653
Op02 10 6342 16361 7096 8083 8468 8876 8934
Op03 100 7014 22818 7958 31050 31654 10425 11402
Op04 1000 7015 29048 12620 32038 34207 25206 15943

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Indian Journal of Science and Technology 11Vol 11 (2) | January 2018 | www.indjst.org

Figure 10.  The case study results of the select statement.

Figure 11.  The case study results of the CRUD statements with invalid rules.

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 12

Figure 12.  The case study results of the CRUD statement with valid rules.

Figure 13.  The case study results of the CRUD statements with no assigned rules.

Ahmed Elbatal, Ahmed M. Gadallah and Hesham Hefny

Indian Journal of Science and Technology 13Vol 11 (2) | January 2018 | www.indjst.org

Table 3. The processing cost of executing different data manipulation operations respecting a predefined data
access security policy

Operation
ID

SQL
Statement Rules

Oracle MSSQL MySQL

Normal VPD Proposed Normal Proposed Normal Proposed

Op05 INSERT Valid Rules 6190 16198 9945 4301 7144 4216 9432
Op06 INSERT Invalid Rules 1 16206 3223 1 1790 1 1934
Op07 INSERT No Rules 5919 14781 9661 7051 7482 4080 5607
Op08 UPDATE Valid Rules 3153 12167 7669 2927 5119 10864 12706
Op09 UPDATE Invalid Rules 1 15179 2393 1 1980 1 2082
Op10 UPDATE No Rules 3073 12374 4169 3244 3908 10057 13604
Op11 DELETE Valid Rules 3303 12100 5782 2673 4398 8057 10319
Op12 DELETE Invalid Rules 1 11350 4406 1 3731 1 3894
Op13 DELETE No Rules 4355 13475 5798 3908 4582 11196 12917

As shown in the results of the case study presented in
Table 2 and Table 3, the processing cost of one DAP is
almost the same when applied on different DBMS as it
takes place in a shared layer, the DAL runtime environ-
ment. Yet, there are different processing costs of the same
data manipulation operation due to different processing
scenario of each DBMS to manipulate such operation.
Accordingly, the overall cost of performing a SQL opera-
tion respecting a defined data access security policy
differs from one DBMS to another one.

Also, it can be noted that the time cost of executing a
data security policy respecting the proposed approach is
less than executing the same policy in Oracle DBMs using
its supported virtual private data security VPD. As shown
in Table 2, the proposed approach compared with Oracle
VPD reduces the processing cost of data retrieval opera-
tions respecting a predefined data access security policy
by around 59%. On the other hand, it reduces the pro-
cessing cost of data manipulation operations compared
with Oracle VPD respecting a predefined data access
security policy by around 57% in average. This is reason-
able as the process of generating a query statement in the
proposed approach takes place in the application’s run-
time environment rather than the DBMS. Such generated
query statement incorporates a where clause satisfying
the assigned policies. Accordingly, the DBMS becomes
responsible for processing a query statement without suf-
fering from the cost of checking a security policy.

5.  Conclusion
The proposed approach attempts to move the data access
security one level up in a multi-tier application to the DAL
instead of being a part from the DBMS itself. Accordingly,
it can be used with all types of DBMS regardless of the
security features supported by the selected DBMS for the
database application. Also, the proposed approach is more
flexible when migrating from one DBMS to another. The
effort needed in case of such migration is just rebuilding
the DAL (e.g. using the Entity Framework) to cope with
the new DBMS with its appropriate database provider. On
the other hand, the proposed approach fits better with the
multi-tier architecture in that the business rules related
to data privacy can be now represented in its appropri-
ate position in a multi-tier application, the business logic
layer. It modularizes the data access security needed in
heterogeneous database applications.

Nevertheless, we must notice that it also comes with
some shortages. It doesn’t prevent data access to the
DBMS directly. That is, if someone issues some SQL state-
ment to the database directly using a database tool like
SQL Plus, he would easily retrieve all data. Also, since
the implementation of the proposed approach depends
on the framework used to build the DAL. So that, if
needed to use another framework (e.g. other than the
Entity Framework), a modification of the code generated
from the new framework is required to perform the same
mechanism. It also takes the task of maintaining data
access security away from the database administrator.

An Approach for Enhancing Data Access Security in Heterogeneous Database Systems

Indian Journal of Science and TechnologyVol 11 (2) | January 2018 | www.indjst.org 14

6.  References
1.	 Huey P. Oracle Database Security Guide 11g. Oracle Corp;

2008.
2.	 Row-security - PostgreSQL Wiki. N.p., n.d. Web. 2016 01

Feb.
3.	 Elmasri R. Fundamentals of database systems. 7th ed.

University of Texas at Arlington; 2015.
4.	 Afyouni H. Database security and auditing: Protecting data

integrity and accessibility. Cengage Learning; 2005.
5.	 Knox D. Effective Oracle database 10g security by design.

McGraw-Hill, Inc; 2004.
6.	 Thomsen C, Torben BP. A survey of open source tools for

business intelligence. Data Warehousing and Knowledge
Discovery. Springer Berlin Heidelberg; 2005. p. 74–84.
Crossref.

7.	 Angles R. et al. Bench marking database systems for social
network applications. First International Workshop on
Graph Data Management Experiences and Systems. ACM;
2013.

8.	 Kuhlenkamp J, Markus K, Oliver R. Benchmarking scal-
ability and elasticity of distributed database systems.
Proceedings of the VLDB Endowment 7.12; 2014. p. 1219–
30. Crossref.

9.	 Difallah DE, et al. Oltp-bench: An extensible test bed for
benchmarking relational databases. Proceedings of the
VLDB Endowment 7.4; 2013. p. 277–88. Crossref.

10.	 Licis ND. Desktop database data administration tool with
row level security. U.S. Patent No. 7,155,612; 2006 Dec 26.

11.	 Cotner C, Miller RL. Row-level security in a relational data-
base management system. U.S. Patent No. 7,240,046; 2007
Jul 3.

12.	 Thomson RD, Geiwitz R. Data security system and method.
U.S. Patent No. 5,751,949; 1995 May 23.

13.	 Fowler M. Patterns of enterprise application architecture.
Addison Wesley; 2002.

14.	 Corcoran BJ, Swamy N, Hicks M. Cross-tier, Label-based
Security Enforcement for Web Applications; 2009.

15.	 Swamy N, Corcoran BJ, Hicks M. Fable: A language for
enforcing user-defined security policies. Proceedings of the
29th IEEE Symposium on Security and Privacy. 369383.
Oakland ‘08. 2008. Crossref.

16.	 Li X, Xue Y. A survey on server-side approaches to securing
web applications. ACM Computing Surveys (CSUR). 2014;
46(4):54.

17.	 Balliu M, et al. JSLINQ: Building secure applications across
Tiers. Proceedings of the Sixth ACM on Conference on
Data and Application Security and Privacy; ACM. 2016.

https://doi.org/10.1007/11546849_8
https://doi.org/10.14778/2732977.2732995
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1109/SP.2008.29

