Mooselu, M. G., M. R. Nikoo, L. Helge, M. S. Bjørkenes, A. Elnashar, S. A. Shojaeezadeh, and T. K. D. Weber, "Assessing road construction effects on turbidity in adjacent water bodies using Sentinel-1 and Sentinel-2", Science of The Total Environment, vol. 957, issue 2, pp. 177554, 2024. AbstractWebsite

Road construction significantly affects water resources by introducing contaminants, fragmenting habitats, and degrading water quality. This study examines the use of Remote Sensing (RS) data of Sentinel-1 (S1) and Senitnel-2 (S2) in Google Earth Engine (GEE) to do spatio-temporal analysis of turbidity in adjacent water bodies during the construction and operation of the E18 Arendal-Tvedestrand highway in southeastern Norway from 2017 to 2021. S1 radiometric data helped delineate water extents, while S2-Top of Atmosphere (TOA) multispectral data, corrected using the Modified Atmospheric correction for INland waters (MAIN), used to estimate turbidity levels. To ensure a comprehensive time series of RS data, we utilized S2-TOA data corrected with the MAIN algorithm rather than S2-Bottom Of Atmosphere (BOA) data. We validated the MAIN algorithm's accuracy against GLORIA (Global Observatory of Lake Responses to Interventions and Drivers) observations of surface water reflectance in lakes, globally. Subsequently, the corrected S2 data is used to calculate turbidity using the Novoa and Nechad retrieval algorithms and compared with GLORIA turbidity observations. Findings indicate that the MAIN algorithm adequately estimates water-leaving surface reflectance (Pearson correlation > 0.7 for wavelengths between 490 and 705 nm) and turbidity (Pearson correlation > 0.6 for both algorithms), determining Nechad as the more effective algorithm. In this regard, we used S2 corrected images with MIAN to estimate turbidity in the study area and evaluated with local gauge data and observational reports. Results indicate that the proposed framework effectively captures trends and patterns of turbidity variation in the study area. Findings verify that road construction can increase turbidity in adjacent water bodies and emphasis the employing RS data in cloud platforms like GEE can provide insights for effective long-term water quality management strategies during construction and operation phases.

Mooselu, M. G., M. R. Nikoo, H. Liltved, M. S. Bjørkenes, A. Elnashar, S. A. Shojaeezadeh, and T. K. D. Weber, "Assessing road construction effects on turbidity in adjacent water bodies using Sentinel-1 and Sentinel-2", Science of The Total Environment, vol. 957, issue 20, pp. 177554, 2024. AbstractWebsite

Road construction significantly affects water resources by introducing contaminants, fragmenting habitats, and degrading water quality. This study examines the use of Remote Sensing (RS) data of Sentinel-1 (S1) and Senitnel-2 (S2) in Google Earth Engine (GEE) to do spatio-temporal analysis of turbidity in adjacent water bodies during the construction and operation of the E18 Arendal-Tvedestrand highway in southeastern Norway from 2017 to 2021. S1 radiometric data helped delineate water extents, while S2-Top of Atmosphere (TOA) multispectral data, corrected using the Modified Atmospheric correction for INland waters (MAIN), used to estimate turbidity levels. To ensure a comprehensive time series of RS data, we utilized S2-TOA data corrected with the MAIN algorithm rather than S2-Bottom Of Atmosphere (BOA) data. We validated the MAIN algorithm's accuracy against GLORIA (Global Observatory of Lake Responses to Interventions and Drivers) observations of surface water reflectance in lakes, globally. Subsequently, the corrected S2 data is used to calculate turbidity using the Novoa and Nechad retrieval algorithms and compared with GLORIA turbidity observations. Findings indicate that the MAIN algorithm adequately estimates water-leaving surface reflectance (Pearson correlation > 0.7 for wavelengths between 490 and 705 nm) and turbidity (Pearson correlation > 0.6 for both algorithms), determining Nechad as the more effective algorithm. In this regard, we used S2 corrected images with MIAN to estimate turbidity in the study area and evaluated with local gauge data and observational reports. Results indicate that the proposed framework effectively captures trends and patterns of turbidity variation in the study area. Findings verify that road construction can increase turbidity in adjacent water bodies and emphasis the employing RS data in cloud platforms like GEE can provide insights for effective long-term water quality management strategies during construction and operation phases.

Kheir, A. M. S., A. Elnashar, A. Mosad, and A. Govind, "An improved deep learning procedure for statistical downscaling of climate data", Heliyon, vol. 9, issue 7, pp. e18200, 2023. AbstractWebsite

Recent climate change (CC) scenarios from the Coupled Model Intercomparison Project Phase 6 (CMIP6) have just been released in coarse resolution. Deep learning (DL) based on statistical downscaling has recently been used, but more research is needed, particularly in arid regions, because little is known about their suitability for extrapolating future CC scenarios. Here we analyzed this issue by downscaling maximum, and minimum temperature over the Egyptian domain based on one General Circulation Model (GCM) as CanESM5 and two shared socioeconomic pathways (SSPs) as SSP4.5 and SSP8.5 from CMIP6 using Convolutional Neural Network (CNN) herein after called CNNSD. The downscaled maximum and minimum temperatures based CNNSD was able to reproduce the observed climate over historical and future periods at a finer resolution (0.1°), reducing the biases exhibited by the original scenario. To the best of our knowledge, this is the first time CNN has been used to downscale CMIP6 scenarios, particularly in arid regions. The downscaled analysis showed that maximum and minimum temperatures are expected to rise by 4.8 °C and 4.0 °C, respectively, in the future (2015–2100), compared to the historical period, under the moderate scenario (SSP4.5). Meanwhile, under the Fossil-fueled Development scenario (SSP8.5), these values will rise by 6.3 °C and 4.2 °C, respectively as analyzed by the CNNSD. The developed approach could be used not only in Egypt but also in other developing countries, which are especially vulnerable to climate change and has a scarcity of related research. The established downscaled approach's supply can be used to provide climate services, as a driver for impact studies and adaptation decisions, and as information for policy development. More research is needed, however, to include multi-GCMs to quantify the uncertainties between GCMs and SSPs, improving the outputs for use in climate change impacts and adaptations for food and nutrition security.

Kheir, A. M. S., S. Mkuhlani, J. W. Mugo, A. Elnashar, V. Nangia, M. Devare, and A. Govind, "Integrating APSIM model with machine learning to predict wheat yield spatial distribution", Agronomy Journal, vol. 115, issue 6, pp. 3188-3196, 2023. AbstractWebsite

Traditional simulation models are often point based; thus, more research is needed to emphasize spatial simulation, providing decision-makers with fast recommendations. Combining machine learning algorithms with spatial process-based models could be considered an appropriate solution. We created a spatial model in R (APSIMx_R) to generate fine-resolution data from coarse-resolution data, which is typically available at the regional level. The APSIM crop model outputs were then deployed to train and test the artificial neural network, creating a hybrid modeling approach for robust spatial simulations. The APSIMx_R package facilitates preparing the required model inputs, executes the prediction, processes, and analyzes the APSIM crop model outputs. This note demonstrates the use of a new approach for creating reproducible crop modeling workflows with the spatial APSIM next-generation model and machine learning algorithms. The tool was deployed for spatial and temporal simulation of potential wheat yield under different nitrogen rates and various wheat cultivars. The spatial APSIMx_R was validated by comparing the simulated yield at 100 kg N ha−1 to the analogues' actual yield at the same grid points, which showed good agreement (d = 0.89) between the spatially predicted and actual yield. The hybrid approach increased such precision, resulting in higher agreement (d = 0.95) with actual yield. When the interaction between cultivars and nitrogen levels was considered, it was found that the novel cultivar Sakha95 is nitrogen voracious, exhibiting a larger drop in yield (65%) under minimal nitrogen treatment (0 kg N ha−1) relative to the potential yield.

Kheir, A. M. S., A. Govind, V. Nangia, M. Devkota, A. Elnashar, M. E. D. Omar, and T. Feike, "Developing automated machine learning approach for fast and robust crop yield prediction using a fusion of remote sensing, soil, and weather dataset", Environmental Research Communications, vol. 6, issue 4, pp. 041005, 2024. AbstractWebsite

Estimating smallholder crop yields robustly and timely is crucial for improving agronomic practices, determining yield gaps, guiding investment, and policymaking to ensure food security. However, there is poor estimation of yield for most smallholders due to lack of technology, and field scale data, particularly in Egypt. Automated machine learning (AutoML) can be used to automate the machine learning workflow, including automatic training and optimization of multiple models within a user-specified time frame, but it has less attention so far. Here, we combined extensive field survey yield across wheat cultivated area in Egypt with diverse dataset of remote sensing, soil, and weather to predict field-level wheat yield using 22 Ml models in AutoML. The models showed robust accuracies for yield predictions, recording Willmott degree of agreement, (d > 0.80) with higher accuracy when super learner (stacked ensemble) was used (R2 = 0.51, d = 0.82). The trained AutoML was deployed to predict yield using remote sensing (RS) vegetative indices (VIs), demonstrating a good correlation with actual yield (R2 = 0.7). This is very important since it is considered a low-cost tool and could be used to explore early yield predictions. Since climate change has negative impacts on agricultural production and food security with some uncertainties, AutoML was deployed to predict wheat yield under recent climate scenarios from the Coupled Model Intercomparison Project Phase 6 (CMIP6). These scenarios included single downscaled General Circulation Model (GCM) as CanESM5 and two shared socioeconomic pathways (SSPs) as SSP2-4.5and SSP5-8.5during the mid-term period (2050). The stacked ensemble model displayed declines in yield of 21% and 5% under SSP5-8.5 and SSP2-4.5 respectively during mid-century, with higher uncertainty under the highest emission scenario (SSP5-8.5). The developed approach could be used as a rapid, accurate and low-cost method to predict yield for stakeholder farms all over the world where ground data is scarce.

Bibi, S., T. Zhu, A. Rateb, B. R. Scanlon, M. A. Kamran, A. El Nashar, A. Bennour, and C. Li, "Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins", Hydrology and Earth System Sciences, vol. 28, issue 7, pp. 1725-1750, 2024. AbstractWebsite

The increasing reliance on global models for evaluating climate- and human-induced impacts on the hydrological cycle underscores the importance of assessing the models' reliability. Hydrological models provide valuable data on ungauged river basins or basins with limited gauge networks. The objective of this study was to evaluate the reliability of 13 global models using the Gravity Recovery and Climate Experiment (GRACE) satellite's total water storage (TWS) seasonal cycle for 29 river basins in different climate zones. Results show that the simulated seasonal total water storage change (TWSC) does not compare well with GRACE even in basins within the same climate zone. The models overestimated the seasonal peak in most boreal basins and underestimated it in tropical, arid, and temperate zones. In cold basins, the modeled phase of TWSC precedes that of GRACE by up to 2–3 months. However, it lagged behind that of GRACE by 1 month over temperate and arid to semi-arid basins. The phase agreement between GRACE and the models was good in the tropical zone. In some basins with major underlying aquifers, those models that incorporate groundwater simulations provide a better representation of the water storage dynamics. With the findings and analysis of our study, we concluded that R2 (Water Resource Reanalysis tier 2 forced with Multi-Source Weighted Ensemble Precipitation (MSWEP) dataset) models with optimized parameterizations have a better correlation with GRACE than the reverse scenario (R1 models are Water Resource Reanalysis tier 1 and tier 2 forced with the ERA-Interim (WFDEI) meteorological reanalysis dataset). This signifies an enhancement in the predictive capability of models regarding the variability of TWSC. The seasonal peak, amplitude, and phase difference analyses in this study provide new insights into the future improvement of large-scale hydrological models and TWS investigations.

Fenta, A. A., A. Tsunekawa, N. Haregeweyn, H. Yasuda, M. Tsubo, P. Borrelli, T. Kawai, A. S. Belay, K. Ebabu, M. L. Berihun, et al., "An integrated modeling approach for estimating monthly global rainfall erosivity", Scientific Reports, vol. 14, issue 1, pp. 8167, 2024. AbstractWebsite

Modeling monthly rainfall erosivity is vital to the optimization of measures to control soil erosion. Rain gauge data combined with satellite observations can aid in enhancing rainfall erosivity estimations. Here, we presented a framework which utilized Geographically Weighted Regression approach to model global monthly rainfall erosivity. The framework integrates long-term (2001–2020) mean annual rainfall erosivity estimates from IMERG (Global Precipitation Measurement (GPM) mission’s Integrated Multi-satellitE Retrievals for GPM) with station data from GloREDa (Global Rainfall Erosivity Database, n = 3,286 stations). The merged mean annual rainfall erosivity was disaggregated into mean monthly values based on monthly rainfall erosivity fractions derived from the original IMERG data. Global mean monthly rainfall erosivity was distinctly seasonal; erosivity peaked at ~ 200 MJ mm ha−1 h−1 month−1 in June–August over the Northern Hemisphere and ~ 700 MJ mm ha−1 h−1 month−1 in December–February over the Southern Hemisphere, contributing to over 60% of the annual rainfall erosivity over large areas in each hemisphere. Rainfall erosivity was ~ 4 times higher during the most erosive months than the least erosive months (December–February and June–August in the Northern and Southern Hemisphere, respectively). The latitudinal distributions of monthly and seasonal rainfall erosivity were highly heterogeneous, with the tropics showing the greatest erosivity. The intra-annual variability of monthly rainfall erosivity was particularly high within 10–30° latitude in both hemispheres. The monthly rainfall erosivity maps can be used for improving spatiotemporal modeling of soil erosion and planning of soil conservation measures.

Zeng, H., B. Wu, A. Elnashar, and Z. Fu, "Dryland Dynamics in the Mediterranean Region", Dryland Social-Ecological Systems in Changing Environments: Springer, 2024. Abstract

Mediterranean drylands are rich in biodiversity and play an important role in global ecosystem sustainable management. This study summarizes the characteristics, dynamic change, and change drivers of Mediterranean drylands. The drylands showed strong spatial heterogeneity, hyperarid and arid regions were dominant in North Africa and West Asia, and semiarid and dry subhumid regions were widely distributed in European countries. Mediterranean dryland is experiencing a warming trend that would become stronger under representative concentration pathways (RCP) 4.5 and 8.5, which would increase the risk of land degradation and desertification. Arid North Africa and West Asia faced rapid population growth that put considerable pressure on food supply and water consumption. The conflicts among land, water, food, and the ecosystem intensified under the warming trend. The significant expansion of cropland and urbanization was widely observed in arid areas, such as Egypt, while the rotation of land reclamation, degradation, abandonment, and reclamation was observed in arid areas and caused large-scale cross-border migration. The Mediterranean region had low food self-sufficiency due to a booming population, and the crop structure of cash crops was dominant. The expansion of cropland also significantly increased the water consumption in the arid area of the Mediterranean region, and water consumption increased by 684.54 × 106 m3 from 2000 to 2020 in Egypt. More robust models and fine spatial resolution data should be developed for the sustainable development of Mediterranean drylands.

Kheir, A. M. S., G. Z. Medhat, A. A. El Baroudy, H. A. Shams El-Din, R. H. Sahar, and A. Elnashar, "Integrating remote sensing, GPS, and GIS to monitor land use change in the Nile Delta of Egypt", Merit Research Journal of Agricultural Science and Soil Sciences, vol. 6, issue 6, pp. 050-064, 2018. AbstractWebsite

Urbanization-associated land use changes lead to modifications of agricultural land including crop area estimation. The goal of the paper is to improve the estimation of main crop areas using high resolution satellite images, image classification, and dynamic GPS to produce land use map of year 2013, and to detect the changes of land use between 1991, 2007 and 2013. In this study, a suitable methodology is developed for estimating crop area and land use by integrating remote sensing with GIS. RapidEye is used in the agricultural field to provide up to date crop information for better production management and monitoring the agricultural areas. Different observation points cover Meet Yazeed command area were collected in the field using dynamic GPS, these points present as the sampling area of cultivated crops and other features in the study area. Three land use maps dated in 1991, 2007 and 2013 were used to monitor the changes in land use classes in the command area. The results indicated that the loss of agricultural areas increased from old date (1991) to the modern date (2013) due to increasing the urban areas.

Kheir, A. M. S., Z. Ding, M. G. M. Ali, T. Feike, A. I. N. Abdelaal, and A. Elnashar, "Wheat Crop Modelling for Higher Production", Wheat Crop Modelling for Higher Production: Springer Singapore, 2020. Abstract

Due to quick growth of population, climate change and diminished natural resources, food security and nutrition issues face major challenges. Crop models successfully proved crop yield simulation under diverse environments, biotic constraints, gene factors and climate change impacts and adaptation. But, the accuracy of crop models for yield estimates needs to be improved with other limitation factors affecting yield growth and production to ensure global food security. These factors include short-term severe stresses (i.e. cold and heat), pest and diseases, soil dynamic changes due to climate changes, soil nutrient balance, grain quality (i.e. protein, iron and zinc) as well as the potential integration between genotype and phenotype in crop models. Here, we outlined the potential and limitation of wheat crop models to assist breeders, researchers, agronomists and decision-makers to address the current and future challenges linked with global food security.

Tourism