
Abo‑El‑Yazid et al. Chem. Biol. Technol. Agric.            (2022) 9:55  
https://doi.org/10.1186/s40538-022-00325-z

RESEARCH

Green synthesized silver nanoparticles 
using Cyperus rotundus L. extract as a potential 
antiviral agent against infectious 
laryngotracheitis and infectious bronchitis 
viruses in chickens
Zahraa Hamdi Abo‑El‑Yazid1, Osama Konsowa Ahmed1, Mohamed El‑Tholoth2,3 and 
Mohamed Abdel‑Shakur Ali1*    

Abstract 

Background:  Infectious laryngotracheitis (ILT) and infectious bronchitis (IB) are two common respiratory diseases of 
poultry that inflict great economic burden on the poultry industry. Developing an effective agent against both viruses 
is a crucial step to decrease the economic losses. Therefore, for the first time green synthesized silver nanoparticles 
using Cyperus rotundus L. aqueous extract was evaluated in vitro as a potential antiviral against both viruses.

Results:  Silver nanoparticles from Cyperus rotundus were characterized by the spherical shape, 11–19 nm size, and 
zeta potential of − 6.04 mV. The maximum nontoxic concentration (MNTC) was 50 µg mL−1 for both viruses without 
harmful toxicity impact. The study suggested that some of the compounds in C. rotundus extract (gallic acid, chlo‑
rogenic acid, and naringenin) or its silver nanoparticles could interact with the external envelope proteins of both 
viruses, and inhibiting extracellular viruses.

Conclusions:  The results highlight that C. rotundus green synthesized silver nanoparticles could have antiviral activity 
against infectious laryngotracheitis virus (ILTV) and infectious bronchitis virus (IBV) in chickens.
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Background
Cyperus rotundus Linn. (Family Cyperaceae), sometimes 
called the coco-grass, Java grass, nutgrass, or purple nut-
sedge is labeled as the world’s worst weed that can dam-
age the ecosystem and has strong invasive nature. The 
plant has beneficial pharmacological, and therapeutic 
activities like antioxidant property, anti-inflammatory 
activity, antimicrobial activity, hepatoprotective activ-
ity, cytoprotective effect, antiviral activity, and anti-car-
iogenic property. It has different secondary metabolites 
including phenolic acid, flavonoids, alkaloids, iridoids, 
tannins, glycosides, saponins, terpenoids, and some iso-
lated phenolics [1–6].

Cyperus rotundus Linn. was used in India, West Asia, 
ancient Egypt and Chinese traditional medicine for 
the treatment of various human diseases like bronchi-
tis, stomach ache, liver diseases, disorders of menstrual 
cycles, leprosy, diarrhea, fever, parasitic infestation and 
renal colic [7–9]. There are no reports on usage of such 
plant in the veterinary field to treat infection with viruses 
infecting respiratory tract of chickens as infectious laryn-
gotracheitis (ILT) and infectious bronchitis (IB) viruses.

ILT is caused by a  double-stranded DNA  virus 
named gallid alphaherpesvirus  1 (GaHV-1), commonly 
known as infectious laryngotracheitis virus (ILTV) that 
belongs to the Alphaherpesvirinae subfamily within 

the Herpesviridae family. IB is caused by a single-
stranded  RNA  Gammacoronavirus. Both diseases share 
similar symptoms that include respiratory distress, high 
mortality rates, poor feed conversion rates, drop in egg 
production, and susceptibility to other respiratory tract 
infections [10–12]. Therefore, they impose huge eco-
nomic burden on the industry. Both causative viruses 
(herpesvirus and coronavirus) are enveloped with dif-
ferent structural viral proteins incorporated in the virus 
envelope [13, 14].

Vaccination is the major way of controlling both ILT 
and IB [13, 14]. Live attenuated and killed virus vaccines 
are used for chicken’s protection against both diseases. 
However, limitations facing usage of live-attenuated 
vaccines for controlling include: reversion to virulence, 
recombination between vaccine and field strains that 
may develop new virus variants and the potential effect 
of maternal antibody on vaccine efficacy [15–17]. On the 
other hand, killed vaccines require priming with live-
attenuated vaccines and multiple vaccinations due to 
the short duration of induced immunity [18, 19]. Moreo-
ver, there have been reports of ILT and IB outbreaks in 
Egypt although chickens were vaccinated [20, 21]. There-
fore, developing of new alternative and complementary 
strategies that target different variants of viruses is war-
ranted. One of these strategies could be the use of green 
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synthesized nanoparticles using various plants as antivi-
ral agents.

Green synthesis of silver nanoparticles (SNPs) using 
various plants constituents is environment-friendly, non-
pathogenic, and cost-effective way for medicinal applica-
tions, providing nontoxic, and safe reagents. Interestingly, 
SNPs has been reported to reveal antimicrobial and 
catalytic antiviral activities. C. rotundus extract is used 
as reducing agent for silver metal ions, and responsible 
for stabilizing and capping process for SNPs. Therefore, 
phytochemical classes contribute to the green synthesis 
of C. rotundus silver nanoparticle; The SNPs prevent viral 
replication by binding to the viral/host proteins and/or 
nucleic acid [4, 22–27].

The current research was conducted to study for the 
first time the inhibitory effect of green synthesized silver 
C. rotundus nanoparticles as an antiviral agent against 
ILT and IB viruses and determine active compounds that 
are responsible for such antiviral activity.

Results and discussion
Phenolics and flavonoids profile in C. rotundus aqueous 
extract by high‑performance liquid chromatography 
(HPLC)
Table 1 depicts the 14 phenolic and flavonoid compounds 
detected in C. rotundus aqueous extract by the HPLC 
technique. Some of these compounds had antiviral activ-
ity as previously reported [28–37], such as gallic acid, 

chlorogenic acid, naringenin, rutin, kaempferol, methyl 
gallate, and quercetin with concentrations of 9259.23, 
1434.62, 762.60, 87.03, 65.04, 54.80, and 18.60  µg  g−1, 
respectively, and percentages of 45.30, 13.67, 10.86, 0.59, 
1, 3.22, and 0.21%, respectively. Gallic acid, chlorogenic 
acid, and naringenin were the major compounds in the 
HPLC profile of C. rotundus aqueous extract. They had 
various activities like antioxidant, anti-inflammatory, 
antibacterial, antiviral, antimutagenic and anticancer 
activity.

Gallic acid, chlorogenic acid, and naringenin act as 
antioxidants by scavenging free radicals and reduc-
ing lipid peroxidation-mediated oxidative DNA dam-
age. These compounds’ hydroxyl substituents (OH) are 
responsible for their antioxidant action. High reactiv-
ity against reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) is exhibited by these hydroxyl 
groups. The reported virucidal activity of the mentioned 
compounds may be as a result of the hydrophobic inter-
action between the hydroxyl group and the components 
of virion and/or the inhibition of the life cycle of viruses 
by either targeting viral envelopes or viral replication 
enzymes [30, 38–40].

C. rotundus SNPs characterization
UV–VIS spectrum of C. rotundus SNPs
Figure 1 depicts the UV–VIS spectrum of the synthesized 
SNPs. SNPs had a single maximum absorbance located 
at the lower wavelength. The maximum peaks at 484 nm, 
suggesting that the SNPs were formed by absorbance at 
1.25 after incubation period in dark overnight at room 
temperature [4].

The bio-reduction of silver ion to the nanoparticles 
via biochemical contents presented within the aqueous 
extract in solution color conversion from slightly yellow 
to heavy reddish as in Fig.  2. In the green biosynthesis, 
AgNO3 contained Ag+ and was bio-reduced to silver 
Ag0, forming the nanoparticle silver core due to surface 
plasmon vibration excitation in SNPs which have free 
electrons and give rise it to a surface plasmon resonance 
(SPR) absorption [41].

Transmission electron microscopy (TEM) of C. rotundus SNPs
The TEM micrographs (Fig.  3) illustrated the morphol-
ogy and size of the SNP of C. rotundus which are spheri-
cal in shape with size ranging from 11 to 19 nm, which 
agreed with the SPR of UV–VIS Spectrum in our results 
[42, 43].

Zeta potential and particle size of C. rotundus SNPs
As shown in Fig. 4a the zeta potential value of C. rotundus 
SNPs was negatively charged value (−  6.04  mV) which 
could affect cellular, viral proteins, and/or interaction 

Table 1  HPLC analysis of phenolic and flavonoid compounds in 
Cyperus rotundus aqueous extract

P, phenolic compound; F, flavonoid compound; ND, not determined

No. Compounds’ name Area sum % Concentrations 
(µg g−1)

Type

1 Gallic acid 45.30 9259.23 P

2 Chlorogenic acid 13.67 1434.62 P

3 Naringenin 10.86 762.60 F

4 Ellagic acid 2.70 357.28 P

5 Ferulic acid 4.91 264.90 P

6 Syringic acid 4.03 261.66 P

7 Coumaric acid 10.35 225.34 P

8 Catechin 0.79 114.50 F

9 Rutin 0.59 87.03 F

10 Kaempferol 1.00 65.04 F

11 Methyl gallate 3.22 54.80 P

12 Vanillin 1.86 53.90 P

13 Quercetin 0.21 18.60 F

14 Cinnamic acid 0.43 5.84 P

15 Caffeic acid ND ND P

16 Pyrocatechol ND ND P

17 Hesperetin ND ND F
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with each other. On the other hand, the average size of C. 
rotundus SNPs was 38.06 nm, and it has only one sharp 
peak which means good biosynthesis of SNPs (Fig. 4b).

Attenuated total reflectance‑Fourier transform‑infrared 
spectrum (ATR‑FT‑IR) of C. rotundus SNPs
The SNPs ATR-FT-IR spectrum (Fig.  5b) revealed 
absorption peaks at 3254  cm−1 due to –O–H stretching 

vibration, while those at 2923 and 2853 cm−1 due to C–H 
stretching vibration. The presence of biomolecules in C. 
rotundus extract (Fig. 5a) can be assigned from the peak 
at 1612 cm−1 became 1617 cm−1of C=O stretching vibra-
tion as well as C–C bond stretching and C–O–H bending 
vibrations at 1331 and 1076 cm−1 became 1336 cm−1 and 
1078 cm−1, respectively.

Fig. 1  UV–visible spectrum of Cyperus rotundus silver nanoparticles

Fig. 2  Cyperus rotundus aqueous extract morphology change in color
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Fig. 3  Transmission electron microscope micrograph of Cyperus rotundus silver nanoparticles

Fig. 4  Zeta potential (a) and DLS (b) of Cyperus rotundus SNPs
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In addition, C–O–C stretching vibration for SNPs at 
1148, 1205 and 1240 cm−1 and 1149 cm−1 for C. rotundus 
extracts and aromatic C–H in-plane bending at 998 cm−1 
for aqueous extract became 995  cm−1  in SNPs. The 
appearance of peaks at 594 cm−1 showed Ag–O binding 
in SNPs [22].

The SNPs formation in presence of phenolic com-
pounds which had aromatic ring act as high nucleophilic 
agent attached to free hydroxyl groups and carbonyl 
groups (gallic acid, chlorogenic acid, ferulic acid, etc.) are 
able to bind and reduce the metal salt into a nanoparticle 
form.

Also in case of flavonoid compounds (naringenin, rutin, 
quercetin, kaempferol) which contain the oligosaccharide 
moiety has multi-hydroxyl groups bind with aglycone 
part in glycoside leading to enol–keto tautomerism and 
reactive hydrogen atom to bio-reduction process [4, 44]. 
From previous  results, C. rotundus aqueous extract  not 
only used for reducing metal salt and the core formation 
of SNPs, but also act as stabilizing agent for SNPs.

Cytotoxicity effect
The cytotoxicity of aqueous extract and green synthe-
sized SNPs were tested on the Vero cells by MNTC 
method of each extract that determined in the range of 
the cytotoxic concentrations at 0–600 µg mL−1 for aque-
ous extract, and 0–200 µg  mL−1for SNPs pre- and post-
infection treatment using 104.8 and 103.7TCID50 mL−1 for 
IBV and ILTV viruses, respectively.

Fig. 5  ATR-FT-IR spectrum of Cyperus rotundus silver nanoparticles

Table 2  MNTCa and IC50
b for C. rotundus extracts against ILTV 

and IBV

ND not determined
a Maximum nontoxic concentration
b The 50% inhibitory concentrations of infected Vero cells

Extract name MNTC of Vero 
cells (µg mL−1)

IC50 ILTV 
(µg mL−1)

IC50 IBV 
(µg mL−1)

Aqueous ≤ 400 310 ND

SNP pre-infection ≤ 50 16 19

SNP post-infection ≤ 50 9.5 9.5
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Microscopically demonstrated normal cell morphol-
ogy was observed and no cytotoxic effect of the extracts 
on the Vero cells in the range of the cytotoxic con-
centrations at 0–400  µg  mL−1 of aqueous extract, and 
0–50 µg mL−1 for SNPs (Table 2) [45, 46].

Assessment of antiviral activity
The antiviral activity was measured against ILTV and 
IBV using C. rotundus aqueous extract and expressed 
as infected cell percentage (Table  3). In the case of 
anti-ILTV activity, there was significantly different at 
400 µg mL−1 (IC50 310 µg mL−1) which had the lowest 
infection percentage (41.07 ± 0.9%), while the anti-IBV 
activity was not efficient and showed infection per-
centage of 95.20 ± 0.20% in comparison to the virus-
infected controls.

Gallic acid, naringenin, and chlorogenic acid were 
predicted to have anti-ILTV (gallid alphaherpesvirus  1) 
activity since they demonstrated high anti-herpetic effi-
cacy [31–37]. They in particular, had 22-, 13.8-, and 3.5-
times higher concentrations than previously reported [28, 
29, 37]. Gallic acid has a virucidal activity against herpes 
because it has an aromatic structure that can inhibit viral 
protein expression [30].

The polyphenolic compounds, both flavonoids, and 
phenolic acids which had virucidal activity because they 
have a high binding affinity to viral and/or host cell mem-
brane protein and form a complex that prevent absorp-
tion of the virus in the early stage of the herpes virus 
replication cycle [28]. Results in Table  1 indicate that 
these polyphenolic compounds may have the potential 
to bind to ILTV envelope glycoproteins and form a com-
plex that inhibits the virus’ ability to infect host cells, as 
shown in Table  3 that 400  µg  mL−1 concentration has 
41.07% ILTV-infected cells.

The results in Tables  4 and 5 exhibited the ILTV and 
IBV-infected Vero cell percentage following pre- and 
post-infection treatment with C. rotundus SNPs. The 
infection percentages at concentration of 50 µg mL−1 for 
pre- and post-infection treatment were 27.35 ± 0.75%, 
and 14.0 ± 4.2%, respectively, for ILTV-infected cells 
while for IBV-infected cells were 29.10 ± 0.40 and 
12.93 ± 0.80, respectively (IC50 9.5 µg mL−1).

These results revealed significant antiviral activity of C. 
rotundus SNPs in both pre-infection and post-infection 
exposures. However, the efficacy of antiviral activity was 
increased when the infected cells were post-treated with 
SNPs.

Multiple plants have natural compounds which can be 
used for biologically reducing sliver salt to form SNPs 
via green synthesis; SNPs have many therapeutic effects, 
such as antiviral activity. Previous studies on HSV-1 
revealed that SNPs of 4–13 nm have 80% antiviral activity 
[42, 43]. SNPs could bind to the disulfide link of gp120 
receptor, inhibit hepatitis B virions (HBV) production 
in  vitro, damage enveloped viral glycoproteins, block 
HSV-1 entry to host cell, as well as could react with G 
protein of respiratory syncytia virus (RSV) inhibiting 
specific virus attachment [47].

Table 3  Anti-ILTV and IBV activity of C. rotundus aqueous extract 
at different concentrations

Each value represents the mean ± standard deviation, n = 3. Values within 
columns that are followed by the same letter do not differ significantly at 
p < 0.01

Concentrations (µg mL−1) ILTV-infected Vero 
cells %

IBV-infected 
Vero cells %

0 100.0 ± 0.00a 100.0 ± 0.00a

150 72.17 ± 11.60b 98.60 ± 0.53b

250 55.75 ± 5.05c 91.06 ± 1.05d

400 41.07 ± 0.90d 95.20 ± 0.20c

Table 4  Anti-ILTV activity of C. rotundus silver nanoparticles pre/
post-infection at different concentrations

Each value represents the mean ± standard deviation, n = 3. Values within 
columns that are followed by the same letter do not differ significantly at 
p < 0.01

Concentrations 
(µg mL−1)

ILTV-infected Vero cells %

SNP treatment pre-
infection

SNP treatment 
post-infection

0 100.0 ± 0.00a 100.0 ± 0.00a

12.5 54.35 ± 1.45b 31.73 ± 0.83b

25 37.80 ± 2.40c 19.03 ± 1.45c

50 27.35 ± 0.75d 14.00 ± 4.20d

Table 5  Anti-IBV activity of C. rotundus silver nanoparticles pre/
post-infection at different concentrations

Each value represents the mean ± standard deviation, n = 3. Values within 
columns that are followed by the same letter do not differ significantly at 
p < 0.01

Concentrations 
(µg mL−1)

IBV-infected Vero cells %

SNP treatment pre-
infection

SNP treatment 
post-infection

0 100.0 ± 0.00a 100.0 ± 0.00a

12.5 57.80 ± 2.60b 33.17 ± 2.06b

25 40.40 ± 0.90c 20.17 ± 4.95c

50 29.10 ± 0.40d 12.93 ± 0.80d
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As described previously in [48], suppression of ILTV 
and IBV replication by SNPs could be explained by pos-
sible interaction of SNPs with enveloped glycoproteins’ 
ILTV, such as gB. The pervious results demonstrated that 
multiple sequence alignment of gB ILTV with 6 other 
Herpesviridae members stated that both of 10 cysteine 
residues and N-linked glycosylation positions were com-
pletely and largely conserved, respectively. Therefore, 
they could react with host cell membrane glycoproteins’ 
and inhibit the ILTV entry process [48]. Similarly, SNPs 
may interact in the same manner with spike proteins of 
the enveloped IBV resulting in significant anti-IBV effi-
cacy. Moreover, SNPs are able to release silver ions that 
bind with thiol groups by the irreversible reaction within 
proteins such as respiratory enzymes in host cells and 
causing protein dysfunction. Also, they could react with 
nucleic acids (DNA and/or RNA) causing blockage of cel-
lular pathways and /or viral replication cycle [49–52].

Material and methods
Aqueous extract preparation of Cyperus rotundus
The root part of C. rotundus was kindly authenticated in 
Flora and Phytotaxonomy Researches Department, Agri-
culture Museum, Egypt.

The root part was washed with tap water, dried, and 
ground into plant powder, and hot extracted at 80–90 °C 
for 30 min with stirring, then centrifuged at 2150×g and 
the filtrate collected and lyophilized, ready for use [53].

Phenolics and flavonoids profile in C. rotundus aqueous 
extract by high‑performance liquid chromatography 
(HPLC)
HPLC technique analysis was applied using an Agilent 
Technologies 1260 series. The separation has occurred via 
column type, ZORBAX Eclipse C18 (4.6  mm × 250  mm 
i.d., 5 μm as particle size). The mobile phase consisted of 
H2O (A) and acetonitrile containing 0.05% trifluoroacetic 
acid (B) at a flow rate of 1  mL/min. The mobile phase 
composition was programmed consecutively in a linear 
gradient as follows: 0 min (18% B); from 0 to 5 min (20% 
B); from 5 to 8 min (40% B); from 8 to 12 min (40% B); 
from 12 to 15 min (18% B); from 15 to 16 min (18%B) and 
from 16 to 20 (18%B). The multi-wavelength detector was 
monitored at 280 nm. The injection volume was 5 μL; the 
column temperature was 40 °C [54].

Green synthesis of silver nanoparticles (SNPs)
A 5  mL of C. rotundus aqueous extract was added to 
50  mL of prepared 1  mM silver nitrate (AgNO3) solu-
tion and stirred for 30  min. The purified nanoparticles 

were separated by centrifugation in a Beckman Coulter’s 
Avanti J-E centrifuge (USA) at 20,426×g for 20 min. [53].

SNPs characterization
Physical properties, morphology and size of the pre-
pared SNPs were characterized by various techniques. 
The ultraviolet–visible (UV–Vis) spectrum of synthesized 
SNPs was recorded using a UV–Vis spectrophotometer 
(PG Instruments Ltd T70). Attenuated total reflectance-
Fourier transform infrared spectroscopy (BRUKER Ver-
tex 80  V spectrophotometer, Germany, ATR-FTIR) was 
performed to detect the bio-functional groups present 
in the C. rotundus aqueous extract that may account for 
nanoparticles reduction and stabilization. Transmission 
electron microscopy (TEM; JOEL-JEM-1400TEM, Japan) 
analyzed the size and morphology of the nanoparticles. 
The size distribution of the synthesized SNPs was deter-
mined by dynamic light scattering (DLS) with a Zeta 
sizer Nano ZS (Malvern, UK) instrument at 25 °C.

Cytotoxicity and antiviral activity
Cells and viruses
Vero cell line (African green monkey kidney cell line) 
was propagated in Dulbecco’s modified Eagle’s medium 
(DMEM; Gibco BRL,  Grand Island, NY, USA) supple-
mented with 10% fetal bovine serum (FBS) (Invitrogen, 
Grand Island, MI), 100 U penicillin  mL−1 (Gibco, Invit-
rogen), 0.1 mg streptomycin mL−1 (Invitrogen, Gaithers-
burg, MD, USA), 0.1  mg gentamycin  mL−1 (Invitrogen, 
Gaithersburg, MD, USA), and 1% non-essential amino 
acids 100x (Invitrogen, Gaithersburg, MD, USA) and 
incubated at 37  °C with CO2 (5%). Cells were examined 
daily for confluency and sub-cultured when reached 90% 
confluency. The fifth passage was used for antiviral assay. 
Infectious laryngotracheitis virus (ILTV) and infectious 
bronchitis virus (IBV) were isolated originally from a 
disease outbreak in Dakahlyia Governorate, Egypt, and 
molecularly identified as described previously [55, 56].

Cytotoxicity effect
Cell suspensions were seeded at 100  µL/well of 96-well 
plates at a density of 105 cells/mL. The cells were pre-incu-
bated at 37 °C as stabilizations prior to the addition 100 µL 
of extract at ranged concentrations from 100 to 600 μg mL−1 
for aqueous extract and from 12.5 to 200 μg mL−1 for SNP 
extract. Viability of the cells was assessed by ethidium mon-
oazide bromide (EMA) staining, ensuring > 99% viability at 
the highest concentration of each extract. MNTC was eval-
uated by the microscopically observation of cells’ morpho-
logical changes at 12 h of incubation [43].
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In vitro infection experiments for assessment of antiviral 
activity
Antiviral activity experiments were conducted as pre-
viously described [57]. Vero cells were treated pre- and 
post-infection with various concentrations of Cyperus 
rotundus L. aqueous extract (150 to 400  μg  mL−1) and 
corresponding SNPs (12.5 to 50  μg  mL−1). For pre-
infection exposure, 104.8 and 103.7 TCID50/mL for IBV 
and ILTV viruses, respectively were incubated at 37  °C 
with different Cyperus rotundus L. aqueous extract (150, 
250, 400 µg  mL−1) and its SNPs (12.5, 25, 50 µg  mL−1), 
and 100  µL of the mixture was then added to the Vero 
cells seeded at 100 µL/well of 96-well microtiter plate at 
a density of 105 cells/mL. Cells were incubated at 37  °C 
for 2  h with 5% CO2. Subsequently, cells were washed 
three times with phosphate buffer saline (PBS) and fur-
ther incubated with 100  µL of DMEM containing 2% 
FBS. For post-infection exposure, 104.8 and 103.7 TCID50/
mL for IBV and ILTV viruses, respectively were added 
to the Vero cells and incubated at 37  °C for 2 h in CO2 
incubator (5% CO2). Thereafter, cells were washed three 
times and incubated with 100 µL of different concentra-
tions Cyperus rotundus L. SNPs (12.5, 25, 50  µg  mL−1). 
As controls for all experiments, mock-control and virus-
infected control were included. All plates were incubated 
at 37  °C for 48  h in CO2 incubator and cells were fixed 
using paraformaldehyde (4%) at 20  °C for 10  min. The 
immunofluorescence staining of infected cells was carries 
out (see below).

Immunofluorescence staining of infected cells
The fixed cells were permeabilized with Triton X-100, 
0.1% (Sigma–Aldrich GmbH, Steinheim, Germany). For 
the identification of virus-infected cells, the viral antigens 
were incubated with hyperimmune serum against ILTV 
and IBV containing 10% normal goat serum at 37 °C for 
1  h, followed by washing with PBS for 3 times. Subse-
quently, the cells were incubation with fluorescein isothi-
ocyanate (FITC)-labeled goat anti-rabbit IgG (Molecular 
Probes) for 1 h at 37 °C followed by washing for 3 times 
with PBS. Finally, the stained cells analyzed by fluores-
cence microscopy (Carl Zeiss, Germany) [58].

Statistical evaluation
The null hypothesis was rejected, and the confidence 
level was at 99% that the parameters were significantly 
different found at P ≤ 0.01, using analysis of variance 
(ANOVA) one-way, followed by SMD. The statistical sig-
nificance of the main results obtained from treating two 
viruses with both SNPs pre-treatment and post-treat-
ment was compared to control [59].

Conclusions
In conclusion, this is a novel research that studied for the 
first time the inhibitory effect of green synthesized silver 
C. rotundus nanoparticles as an antiviral agent against 
ILT and IB viruses and determine active compounds 
responsible for such antiviral activity. The HPLC profile 
of C. rotundus aqueous extract indicated that there are 14 
phenolic and flavonoid compounds some of these has the 
antiviral efficacy like gallic acid, chlorogenic acid, methyl 
gallate, naringenin, kaempferol, quercetin and rutin. The 
results showed significant antiviral activity of C. rotundus 
SNPs in both pre-infection and post-infection exposures. 
However, the efficacy of antiviral activity was increased 
when the infected cells were post-treated with SNPs.

Green synthesized C. rotundus SNPs are potential 
potent antiviral agent against both IBV and ILTV. Further 
in vivo study is crucial to prove the antiviral effect of C. 
rotundus silver nanoparticles against both viruses in dis-
eased chickens.
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