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Abstract

Loop closure detection helps simultaneous localization and mapping systems
reduce map and state uncertainty via recognizing previously visited places
along the path of a mobile robot. However, visual loop closure detection
is susceptible to scenes with dynamic objects and changes in illumination,
background, and weather conditions. This paper introduces PlaceNet, a
novel plug-and-play model for visual loop closure detection. PlaceNet is
a multi-scale deep autoencoder network augmented with a semantic fusion
layer for scene understanding. The main idea of PlaceNet is to learn where
not to look in a dynamic scene full of moving objects, i.e., avoid being dis-
tracted by dynamic objects to focus on the scene landmarks instead. We
train PlaceNet to identify dynamic objects in scenes via learning a grayscale
semantic map indicating the position of static and moving objects in the
image. PlaceNet generates semantic-aware deep features that are robust to
dynamic environments and scale invariant. We evaluated our method on dif-
ferent challenging indoor and outdoor benchmarks. To conclude, PlaceNet
demonstrated competitive results compared to the state-of-the-art methods
over various datasets used in our experiments.
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1. Introduction

Visual SLAM has been receiving increasing attention in computer vision
and robotics communities in the past few years due to its wide range of
applications, including autonomous navigation, mine exploration, and reef
monitoring. Visual SLAM estimates visual sensor motion while simultane-
ously constructing an unknown environment’s map structure [1]. However,
motion uncertainties lead to an accumulated error in calculating the camera
pose and the map. Therefore, visual loop closure detection can help miti-
gate that accumulated error, increasing the accuracy and efficiency of Visual
SLAM models.

Visual loop closure detection minimizes uncertainties of location and map
estimates by detecting previously visited scenes based on their appearance in
the captured images from the visual sensor [2]. In other words, Visual SLAM
relies on such loop closures to correct its estimated camera pose and map,
leading to mitigating the motion noise effect. However, current state-of-the-
art visual loop closure detection modules face several difficulties in dealing
with visual detection challenges. For instance, as shown in Fig. 1, two images
of the same scene may look completely different due to dynamic objects caus-
ing partial occlusion of the scene, illumination variation, viewpoint changes,
and seasonal variations leading to severe background changes. Additionally,
indoor scene understanding suffers from perceptual aliasing due to similar
and repetitive place structures such as hallways and corridors.

This paper introduces a novel plug-and-play model for visual loop clo-
sure detection entitled ”PlaceNet.” PlaceNet is a multi-scale architecture for
deep convolutional auto-encoder networks, which yields competitive results
compared to the state-of-the-art approaches on standard benchmarks. The
main idea of PlaceNet is to learn where not to look at in a dynamic scene full
of moving objects. Therefore, we augment the encoder network of PlaceNet
with a semantic fusion layer to generate semantic-aware feature represen-
tations in an unsupervised scheme. As such, the reconstruction of these
semantic maps via the decoder network urges PlaceNet to yield feature maps
that are semantic-aware of the scene’s objects. Simultaneously, to avoid be-
ing distracted by dynamic objects, we train PlaceNet in a supervised way to
output a grayscale semantic channel that highlights such dynamic objects,
e.g., vehicles, pedestrians, and cyclists. After that, we apply principal com-
ponent analysis to eliminate the redundancy in extracted features caused by
the appearance of these dynamic objects in many consecutive frames.

2



(a)

(b)

(c)

(d)

Figure 1: Some examples of correctly detected loops by our workflow (a) in a dynamic
environment (b) with partial occlusion (c) with severe illumination change (d) an example
of perceptual aliasing case identified by our method successfully as a non-loop.
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Furthermore, PlaceNet generates feature representations that are also
scale-invariant besides being robust to dynamic environments on various sce-
narios. Our novel multi-scale architecture yields scale-invariant feature rep-
resentations by introducing input frames at different scales. Although the
literature on computer vision has heavily discussed the fusion of feature maps
at different scales, they generated such features from only a single input. On
the other hand, our approach simultaneously fuses feature maps: (i) directly
from multiple inputs and (ii) indirectly from previous convolutional layers in
one global end-to-end network that shares parameters between the different
scales.

We evaluated our method on different challenging benchmarks for loop
closure detection. We experimented with outdoor and indoor environments
under challenging conditions that include perceptual aliasing, partial occlu-
sion due to dynamic objects, changes in scene background, and variations
caused by changes in weather conditions, and illumination. We show the
robustness of our method to combat these variations in our experimental
results. We also performed an ablation study to show the effect of the multi-
scaling and semantic fusion layers.

To conclude, the contribution of this paper is as follows:

1. Introducing PlaceNet as a novel multi-scale semantic-aware architec-
ture for visual loop closure detection that yields competitive results
and robust performance in various scenarios compared to the state-of-
the-art approaches.

2. Performing loop closures in a dynamic scene full of moving objects
following a ”where not to look at” strategy.

3. Generating scale-invariant feature representations by introducing in-
put frames at different scales and performing a simultaneous fusion of
feature maps directly from multiple inputs and indirectly from previ-
ous convolutional layers in one global end-to-end network that shares
parameters between the different scales.

The paper outline is as follows: Section II discusses previous work related to
loop closure detection in literature. Next, Section III proposes PlaceNet as a
multi-scale semantic aware deep architecture for loop closure detection. After
that, Section VI presents experimental results and provides ablation studies
for loop closure detection using PlaceNet compared to the state-of-the-art
approaches. Finally, Section V concludes this paper.
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2. Related Work

Visual loop closure detection has gained an increasing attention in both
robotics and computer vision fields, respectively. The research scope devel-
oped from recognizing static scenes with few changes [3, 4] to realistic highly
dynamic scenes [5, 6]. Furthermore, several approaches were introduced to
handle challenging conditions such as scene structure repetition [7, 8] and
major changes in appearance due to viewpoint, illumination, shadows, day-
night change or season change [9, 10, 11, 12, 13, 14, 15, 16]. Moreover, many
solutions were introduced that rely on matching image sequences [5, 6], im-
proving distinctiveness of features [17], using graph representations [18], and
exploiting geo-tagged images [19, 8, 20]. Additionally, visual loop closure
detection has benefited from the improvements achieved by image retrieval
systems using handcrafted features [21, 22, 23, 24, 25, 26, 27, 28, 29], local
convolutional features [30, 31, 32, 33] and global convolutional representa-
tions [34, 35, 36, 37, 38].

Global handcrafted descriptors, such as Histogram of Oriented Gradients
(HOG) [6], Gist [39], and Gist-BRIEF [40], have been used for image repre-
sentation in loop closure detection techniques. For example, SeqSLAM [5]
relies on image difference vectors as global descriptors to find the best match
of an input image within navigation sequences for the purpose of localiza-
tion. Other variants of SeqSLAM such as Fast-SeqSLAM [6] reduces the
time complexity of SeqSLAM without trading off accuracy via computing a
histogram of oriented gradients (HOG) as a global descriptor and applying
approximate nearest neighbor matching. However, global description-based
methods are less robust to occlusion and illumination effect, resulting in a
lower discriminative power and more perceptual aliasing effect.

Scale and rotation invariant local handcrafted features represented by
keypoints and their descriptor vectors, such as SIFT [41], SURF[42], ORB
[43], and FAST [44] with BRIEF [45], have been widely employed in many
successful visual place recognition methods such as FAB-MAP [3] which is a
probabilistic appearance-based method for visual place recognition based on
the widely known Bag-of-Words (BoW) algorithm. In FAB-MAP, the BoW
algorithm is trained on a large-scale image dataset to extract and cluster local
features e.g. SIFT or SURF, and build a large visual vocabulary codebook.
Consequently, each image is represented by a vector of visual words which is
used for similarity measurement between different frames. Similar to FAB-
MAP, another successful place recognition method is DBoW [46] which builds
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a vocabulary tree and uses FAST corners and BRIEF binary descriptors in-
stead of SIFT and SURF leading to real time performance. This method has
been successful in many real life applications and has been applied in ORB-
SLAM system [47] resulting in a significant improvement in both accuracy
and efficiency. Furthermore, Bampis et al. [48] extends DBoW [46] to de-
scribe image sequences, instead of single images, using visual-word-vectors.
Moreover, Angeli et al. [49] presented an incremental online BoW approach
that relies on Bayesian filtering to improve the generalization ability of offline
BoW algorithms to new environments other than those used for training. Ad-
ditionally, Garcia-Fidalgo and Ortiz [50] tackled the generalization problem
as well using an incremental Bag-of-Binary-Words. Other related work in this
area is the work of Tsintotas et al. [51] which operates online in real time
via assigning local descriptors to visual words generated from earlier frames
of a given sequence refraining from any pre-training procedure or vocabulary
construction, then a probabilistic nearest neighbor search method detects
loops. Similarly, the work of Labb and Michaud [52] is suitable for real-time
large-scale and long-term operation with less memory requirements and less
time complexity. However, loop closure detection algorithms based on BoWs
still suffer from several limitations leading to poor performance in challeng-
ing environments, such as dynamic environments with varying conditions of
lighting, shadows, and seasonal changes.

Convolutional neural networks (CNNs) [35] lead to substantial improve-
ments when used in loop closure detection tasks [20]. Training deep CNN
models on information-rich datasets results in high-level abstractions of in-
put images, which correspond to complex features that outperform manu-
ally handcrafted features. Therefore, image representations of CNNs, such
as AlexNet [53], OverFeat [54], VGG [55], Inception [56], ResNet [57], and
Inception-ResNet [58], result in better scene understanding and better scene
recognition.

In general, extracting features from CNNs can be performed in several
ways: (1) the whole image is used as the input of the network, and the
activations generated at one of its last hidden layers are extracted as the
image’s descriptor [59, 20] (2) specific regions of the image are input to the
network, and the respective activations are aggregated to generate the im-
age’s descriptor [60, 61, 62] (3) the whole image is input to the network, and
the activations of specific convolutional layers that detect distinct patterns
are extracted, thus identifying the most prominent regions [63, 64] (4) the
whole image is input to the network to predict its global and local descrip-
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tors simultaneously [65, 66]. These convolutional features are faster, more
accurate, and less sensitive to illumination changes compared to handcrafted
features [10, 67, 68, 69, 70, 71, 72, 73]. Furthermore, Zhang et al. [74] com-
bine convolutional features and temporal information of sequence images in
a graph-based visual recognition and apply a diffusion process leading to
accuracy and time improvements. As opposed to the holistic approaches
mentioned above, Li et al. [75] divide images into smaller patches and con-
struct for every image pair an adaptive weighted similarity matrix between
convolutional descriptors representing each patch. Similarly, Sünderhauf et
al. [32] proposed a robust method for place recognition based on pre-trained
convolutional features extracted from landmark regions in the image rather
than the whole image, which renders their model invariant to viewpoint and
appearance variation. Then, Chen et al. [76] improved the choice of these
landmark and selected regions.

Instead of relying on supervised convolutional models, several approaches
[77], [78], [79] have proposed learning image features using auto-encoders in
an unsupervised way. For example, Gao and Zhang [77] divided raw in-
put images into equally-sized vectorized patches and fed them to a stacked
denoising auto-encoder to learn compressed representations of these raw in-
put images. They used these learned features as descriptors to construct a
similarity matrix between different frames. Merrill and Huang [78] stepped
a further step and trained a denoising convolutional auto-encoder for loop
closure (CALC) on HOG descriptors instead of raw images to learn more
robust features to extreme variations in appearance. This method achieves
outstanding results in loop detection accuracy and extraction speed, how-
ever it performs neither temporal consistency checks nor geometric checks as
a post-processing step to filter false positives.

Other approaches tended to improve features extraction via support-
ing input images with extra information. For example, some approaches
employed a multi-scale feature embedding method to generate condition-
and viewpoint-invariant features [80, 81]. Additionally, the use of semantics
[82, 83, 84] has recently received wide attention for place recognition tasks
since similar images will have comparable semantic responses. Garg et al. [85]
presented a local semantic descriptor using convolutional feature maps gen-
erated from a dense semantic segmentation network. They combined seman-
tic and appearance-based global descriptors for image-pair matching. They
check against the frequency map of high activation regions in higher-order
convolutional layers of the network, since these regions capture visual se-
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mantics. Similarly, Camara and Přeučil [86] use pre-trained VGG-16 [55]
activations of different layers as image features. These convolutional features
that encode semantic and spatial information are image matching. Further-
more, Wang et al. [87] focused on compressing redundant information (e.g.
moving objects and background change) in convolutional holistic represen-
tations to achieve more robust performance in measuring image similarity in
highly dynamic environments.

Recent approaches use end-to-end Convolutional Siamese Networks (CSN)
to combine feature extraction and similarity measurement steps. Liu et
al. [88] apply a hierarchical weighted distance layer to fuse features from
multiple scales of CSNs in different layers, while Garg et al. [11] use fea-
ture pyramid Siamese networks on RGB-D images via providing information
about scale, structure and depth of the scene in order to ease capturing of ob-
ject representations from different scales to improve the overall performance.
Alternatively, Appalaraju and Chaoji [89] proposed a deep multi-scale CSN
where each branch of the Siamese network operates on a scale of the original
input image. The final layer fuses the outputs of these branches to generate
image embeddings for similarity measurement.

The state-of-the-art approaches of visual loop closure detection includes
LoopNet [90], NetVLAD [20], CALC2.0 [79], GeM [91], AP-GeM [92], Den-
seVLAD [93], Wang et al. [87], FILD++ [94], LiPo-LCD++ [95], Zhang
et al. [96, 97], Xu et al. [98], Gehrig et al. [99], Tsintotas et al. [100, 101, 102]
and Papapetros et al. [103]. In our previous work, LoopNet [90], we detect
similarities between scenes using a multi-scale attention-based Siamese net-
work. The attention mechanism helps in focusing on key landmarks in scenes.
As for NetVLAD [20], it extracts convolutional features from an off-the-shelf
CNN and pools these features into a trainable VLAD pooling layer. Unlike
VLAD which relies on hard assignment of descriptors to offline-learned clus-
ters, NetVLAD applies soft assignment of VLAD descriptors to these clusters
rendering NetVLAD as a trainable end-to-end architecture for visual place
recognition using a triplet ranking loss function. Furthermore, the work of
Merrill and Huang [79] (CALC2.0) constructed a robust holistic-image de-
scriptor describing both the visual appearance and semantic layout of an
image by training a network comprising a semantic segmentator, variational
auto-encoder and a Siamese triplet embedding network to extract such de-
scriptors. Moreover, GeM [91] introduces generalized-mean (GeM) pooling
layers that leads to better image retrieval compared to conventional global
max and average pooling layers. Then, AP-GeM [92] optimizes mean average
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precision (mAP) directly instead of pair-wise losses, besides adopting GeM
pooling layers. As for DenseVLAD [93], it uses dense VLAD descriptors to
match scenes regardless of possible variations in scene appearance. Further-
more, Wang et al. [87] perform redundant information compression via post-
processing raw holistic convolutional representations, where the compression
ratio corresponds to the level of scene variations. However, they focus only
on outdoor environments. FILD++ [94] extracts global and local convo-
lutional features using different scales. Then, it constructs an incremental
database using the global features to recommend potential loop closures to
be evaluated using the local features. However, FILD++ faces some difficul-
ties dealing with significant background changes due to weather conditions
and perceptual aliasing, as we show later in our experimental section. Ad-
ditionally, LiPo-LCD++ [95] learns lines and points for low-textured scenes;
however, it suffers from scenes with perceptual aliasing, as mentioned in [95].
Furthermore, Zhang et al. [96] learn the motion field of local neighborhood
structures based on extracted convolution features to detect loop closures.
Then, they extended their approach in [97] to operate online without the
need to construct a vocabulary database relying on an attention variant of
NetVLAD [20]. Also, Xu et al. [98] rely on NetVLAD [20] and combine it
with features generated from a second-order attention module to recommend
matching candidates. However, their approach is sensitive to view-point
change. On the other hand, Gehrig et al. [99] rely on probabilistic voting,
while Tsintotas et al. [100, 101, 102] and Papapetros et al. [103] consider
bag-of-words-based models.

These state-of-the-art methods still lack generality to perform efficiently
in any outdoor or indoor environment that may feature highly repetitive
structures, substantial scene variations, or changes in illumination. As op-
posed to these methods, we address these challenges by proposing a general
and efficient solution for visual loop closure detection that can operate in
any environment. Our method learns feature representations that are se-
mantic aware of dynamic objects to avoid being distracted by them to focus
on the scene landmarks instead. All in all, PlaceNet generates scale invariant
feature representations that are also semantic-aware and robust to dynamic
environments.
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3. PlaceNet

Convolutional Neural Networks have shown their dominance in loop clo-
sure detection due to their powerful representation. As such, we propose
PlaceNet as a multi-input multi-scale deep convolutional auto-encoder (CAE)
network with semantic map fusion and weighted scale-wise loss function. We
feed to PlaceNet multi-scale variants of input frames and their corresponding
semantic information. We perform semantic segmentation as a pre-processing
step using the pre-trained UPerNet network [104] on the original RGB in-
put image to generate a 3-channel RGB pixel-level annotated semantic map.
Then, we train PlaceNet in an unsupervised way to generate multi-scale out-
puts similar to the multi-scale inputs by learning a compact representation
of the discriminative features. Additionally, we train it simultaneously in
a supervised way to generate a grayscale semantic channel that highlights
dynamic objects.

PlaceNet, similar to any convolutional autoencoder network, consists
mainly of two sub-networks: (1) an encoder network that compresses the
input into a bottleneck layer via convolutional and pooling layers, and (2)
a decoder network that reconstructs the original input from the bottleneck
layer via upsampling or deconvolutional layers. After the training phase, we
extract a deep feature representation that captures the input image’s most
distinctive features from the bottleneck layer. Then, we rely on such compact
deep representation to perform image similarity comparison. The rest of this
section highlights the impact of multi-scale semantic information fusion and
discusses the network architecture of PlaceNet. It also presents the weighted
scale-wise loss function used in training our model and the similarity metrics
used in detecting loop closures.

3.1. Multi-Scale Semantic Information Fusion

Scene parsing via semantic segmentation is crucial for scene understand-
ing and enhances extracting powerful features that genuinely describe scenes
for loop closure detection. Thus, we designed the auto-encoder network of
PlaceNet to restore both input RGB images and their semantic information
such that the extracted features of PlaceNet can describe the semantics of
scene objects in addition to their structure, texture, and location. It is worth
mentioning that there is no need for ground-truth semantic information to be
provided. However, as a pre-processing step, we perform semantic segmenta-
tion using the pre-trained UPerNet network [104] on the original RGB input
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image to generate a 3-channel RGB pixel-level annotated semantic map.
Furthermore, since loop-closure detection is sensitive to dynamic scenes,

it is essential to differentiate between dynamic objects and static objects
that act as a scene background. Thus, we trained PlaceNet to output a
grayscale semantic map categorizing objects into static objects (e.g., build-
ings, trees, and walls), weakly-dynamic objects (e.g., vehicles, buses, and
trains) and dynamic objects (e.g., pedestrians, cyclists, and vendors) with
pixel intensities 0, 0.5, and 1, respectively. As such, the feature represen-
tations learned by the network should be able to locate the regions in the
input image containing dynamic objects, and then perceive these regions as
redundant information that does not help in loop closure detection. The fea-
tures representing dynamic objects are considered redundant since dynamic
objects appear in several consecutive frames due to their dynamic nature.
Accordingly, following the work of Wang et al. [87], we apply principal com-
ponent analysis to eliminate redundancy in extracted features caused by the
appearance of dynamic objects in several consecutive frames.

We fuse the RGB semantic map and the original RGB image, as shown in
Fig. 2, in a 6-channel input volume and generate a 7-channel output volume.
Such volume comprises the reconstructed RGB image and semantic map,
learned in an unsupervised way, in addition to the grayscale dynamic map
learned simultaneously in a supervised way. Therefore, PlaceNet can learn
features that deeply understand scenes and focus on scenes’ backgrounds.

Moreover, we introduce a novel multi-scale architecture that results in
scale invariant feature representations by introducing input frames at differ-
ent scales. As opposed to the literature in computer vision, which heavily
discusses the fusion of feature maps at different scales generated only from
a single input, we perform multi-scaling on the 6-channel input volume and
feed the multi-scale variants, including the original input, to PlaceNet. Ac-
cordingly, the expected output of PlaceNet is also a 7-channel output volume
per each scale.

3.2. Network Architecture

Inspired by the Unet architecture used by Ronneberger et al. [105] for
medical image segmentation, we introduce PlaceNet as a CAE for extract-
ing powerful features that are invariant to scale changes while incorporating
semantic information about the scene objects and their dynamism. Fig. 3
shows that the network architecture consists of an encoder part and a de-
coder part with a bottleneck layer in between. Instead of having a single-
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Figure 2: Examples of semantic fusion for PlaceNet with the original image, pixel-
annotated semantic map, and grayscale dynamic map at the first, second, and third row,
respectively. The left two columns represent two different images from CityScapes dataset
captured outdoors with moving objects at different times of the day, where the right col-
umn represents an indoor image from ADE20K dataset.

input single-output network, PlaceNet is a three-input three-output network
(or a three-channel-network). Each input represents one scale (octave) of
the input image I and its semantic map Is. The three network channels
represent the input at full-scale, half-scale, and quarter-scale. The encoder
network follows a typical architecture of a convolutional network with 7x7,
5x5, and 3x3 single convolutional layers applied to the full-scale, half-scale,
and quarter-scale input volumes, respectively. We follow each convolutional
layer implicitly by a batch normalization (BN) layer and a rectified linear unit
(ReLU) activation layer. Next, we downsample the full-scale convolutional
layer’s output via a 2x2 max-pooling operation and add it to the half-scale
first convolutional layer’s output. Then, we pass the fused output to two
3x3 convolutional layers, further downsample and add it to the quarter-scale
first convolutional layer’s output. The three scales, combined in the gener-
ated feature map, are repeatedly applied to two 3x3 convolutional layers and
2x2 max-pooling for downsampling until we reach the bottleneck layer (the
last two convolutional layers). Note that we double the number of feature

12



48
0x
64
0

64

24
0x
32
0

128128 128

256 256 256

12
0x
16
0

64 64

512 512 512

1024 1024
512

512 512
256

256 256
128

128 128
64

64 64

60
x8
0

30
x4
0

Scale-wise Weighted Loss FunctionGlobal Average Pooling

128

64

7
7 7

12
0x
16
0

24
0x
32
0

48
0x
64
0

Convolutional Layer (Encoder)

Pooling Layer

Bottleneck Layer

Upsampling Layer

Convolutional Layer (Decoder)

Figure 3: PlaceNet Multi-scale Architecture. The encoder network (left part of the net-
work) is trained on three scales of the input image (full, half and quarter). The bottleneck
layer (middle part of the network) is the feature extraction layer. The decoder network
(right part of the network) consists of upsampling and convolutional layers with skip con-
nections (dotted) to the encoder network to reconstruct the input image, the semantic
map and the grayscale dynamic map.

maps at each scale down towards the bottleneck layer and that we reduce
the dimensions of these maps to half.

On the other hand, every step along the reconstruction path consists
of an upsampling layer which doubles the dimensions of feature maps and
reduces the number of these maps to half, then a concatenation with the
corresponding feature maps from the encoding path via a skip connection,
followed by two 3x3 convolutional layers. The output layer of each of the
three scales in the decoder network consists of one convolutional layer with
a sigmoid activation function to reconstruct the output of the given scales.

The skip connections result in learning more powerful multi-scale features
of the input image since they allow the network to learn directly from the
input at the corresponding scale. Accordingly, combining two different ways
of learning at each scale, i.e., directly via skip connections and in a cascaded
way from the upper layers, allows the network to focus on both coarse and
fine details of the image. Hence, the learned features become robust to scale
variance.
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3.3. A Weighted Scale-Wise Loss Function

The loss function must account for restoring different scales of input im-
ages and their corresponding semantic maps to ensure that the generated
features are powerful enough to describe coarse and fine details of the image
in addition to their semantic information, including objects’ dynamism. We
use an element-wise mean squared error loss function, as follows:

L =
−1

N

N∑
i=1

(yi − ŷi)
2, (1)

where ŷ represents the predicted output value, y is the corresponding ground-
truth value, and N is the total number of output volume elements. We apply
this loss function to compute the reconstruction loss for both the output
image, LI , and its corresponding output semantic and dynamic maps, LIS ,
defined as:

LI =
M∑
m

Lm
I , (2)

and

LIS =
M∑
m

Lm
IS
, (3)

where M is the set of scales considered in the network, while Lm
I and Lm

IS

correspond to the reconstruction loss of a particular scale m for both an out-
put image and its corresponding semantic and dynamic maps, respectively.
After that, we aggregate both losses, as follows:

LI,IS = βSLI + (1− βS)LIS , (4)

where βS is weighting hyper-parameter, and we tune it to give more weight to
the image reconstruction loss than the semantic map reconstruction loss. We
favor image reconstruction since semantic maps, as input to PlaceNet, are
not ground-truth maps but are rather generated from a pre-trained seman-
tic segmentation network, i.e., UPerNet [104]. Therefore, the proximity of
these generated semantic maps to the ground-truth pixel annotated semantic
maps is heavily dependent on the performance of the semantic segmentation
network.
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3.4. Similarity Measurement

In order to measure the similarity between images to detect loop closures,
we extract features from the bottleneck layer of PlaceNet and perform global
average pooling (GAP) to reduce the dimensionality. Then, we concatenate
the results in a 1-D feature vector for each image, perform a PCA whiten-
ing as a post-processing step to eliminate objects semantically labelled as
dynamic. Finally, we can evaluate visual similarity using a cosine similar-
ity measurement score between normalized feature vectors of any pairwise
frames i and j, as follows:

Sv(i, j) = max(0,
fi

||fi||
.
fj

||fj||
), (5)

where fi and fj are their feature vectors, respectively. We note that the PCA
step is performed incrementally at each keyframe while the SLAM system is
checking for loop closure. Thus, the descriptors of the captured frames up
to the current step are taken into consideration when performing the PCA.

Although adjacent frames to the query frame look very similar, they do
not represent an actual loop and lead to many false positives. Therefore, sim-
ilar to the work presented by Zhang et al. [74], we add a temporal constraint
on similarity score to account for adjacent frames. So, we use a temporal
similarity measurement, defined as:

St(i, j) = exp(−κt ∗ (i− j)2), (6)

where κt is a temporal similarity parameter. Thus, adjacent frames will
have very high temporal similarity score and vice versa. This approach is
better than having a sliding window over the query frame and searching
everywhere outside this window which may not be the best option when
the same sequence is collected in different speeds. Accordingly, we use this
temporal similarity score to penalize the visual similarity score, as follows:

S(i, j) = max(0, γt ∗
fi

||fi||
.
fj

||fj||
− (1− γt) ∗ St(i, j)), (7)

where γt is a parameter used to weight the importance of visual similarity
compared to temporal similarity. Thus, we can construct a similarity matrix
S between all frames in a given sequence. In practice, after the model is
fully trained and tested, we inspect the similarity score between two frames
and detect a loop if it exceeds 0.75 indicating a positive match and return a
negative match otherwise.
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4. Experiments

We evaluated our approach on several publicly available benchmarking
datasets. Furthermore, we validate our approach with quantitative results
and qualitative analysis and compare our method with the state-of-the-art
loop closure detection algorithms. It is worth mentioning that the testing
datasets used in our experiments are non-overlapping and totally different
from those used in training our models.

4.1. Training Phase

We trained PlaceNet on CityScapes dataset [106] and a subset of ADE20K
dataset [107]. We chose to train our network on scene-centric sequences
rather than object-centric images to obtain more scene-representative fea-
tures. Cityscapes is a dataset for semantic urban scene understanding with
5,000 high-quality pixel-level annotated images collected from 50 cities across
Germany in different seasons with 30 classes. Alternatively, ADE20K is a
huge dataset with around 20K training images and up to 150 classes, and it
represents a more challenging and diverse dataset that includes outdoor and
indoor sequences. We unified the class labels and annotations across the two
datasets.

Inspired by [108], we used a polynomial learning rate policy with learning
rate at each iteration is multiplied by (1 − iter

maxiter
)power of the base learning

rate. We set the initial learning rate and power to 0.01, and 0.9 respec-
tively. We adopted mini-batch learning with mini-batch size of 64 for 2K
epochs, using Adam optimizer with momentum parameters β1 and β2 set
to 0.9 and 0.999 respectively and weight decay regularization parameter of
0.0001. We used the parameters βS, κt, and γt with values 0.65, 0.3, and
0.002 respectively. We applied data augmentation on the training set in the
form of random mirroring, random Gaussian noise, and random rotation be-
tween +10 and -10 degrees to reduce the effect of overfitting. Additionally,
we specified a training/validation split of 10K/1K images, respectively. We
used Keras [109] with TensorFlow backend for training our model ( 24 MB
in total), and we performed our experiments on a core i7 5820K 3.3 GHz
machine, with 32 GB RAM and GPU Nvidia RTX2070 with 8 GB memory.

4.2. Testing Datasets

In this section, we discuss the characteristics and challenges of each test-
ing dataset. Furthermore, Table 1 demonstrates a summarized comparison
between these test datasets.
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Table 1: Datasets detailed description.

Dataset
frames
No. of

Environment
Position
Camera

Resolution
Image

Change
Background

Change
Viewpoint

Objects
Dynamic

Interval
Time

City Center 2474
Urban

Outdoors,
Lateral 640x480 Minor Medium Many Short

New College 2146
Campus
Outdoors,

Lateral 640x480 Minor Medium Few Short

KITTI-00 4551
Urban

Outdoors,
Frontal 1241x376 Minor Medium Many Short

KITTI-05 2761
Urban

Outdoors,
Frontal 1241x376 Minor Medium Many Short

KITTI-06 1101
Urban

Outdoors,
Frontal 1241x376 Minor Medium Many Short

Nordland 2828
Railway
Outdoors,

Frontal 1920x1080 Severe None None Long

Gardens Point 400
Campus
Outdoors,

Lateral 960x540 Minor High Many Medium

TUM-SLAM 2585
Office

Indoors,
Handheld
Frontal,

640x480 Minor High None Short

4.2.1. City Center and New College

Both datasets, published in [3], are widely used in Visual SLAM research
and have been established as a benchmarking standard for loop closure de-
tection algorithms. A robot collects these two datasets with two monocular
cameras (left and right) mounted on it without any overlap. We perform our
experiments on the left and right image sequences separately and combine
their results with the ground-truth values readily available. Additionally,
both sequences’ images were captured during a relatively short time and
thus had stable illumination conditions and very little background change.
City Center (CC) dataset collected along with urban areas and roads near
the city center features many dynamic objects such as cars, trucks, and
pedestrians. Thus, City Center dataset faces partial occlusion and unstable
shadow features in some scenes. The second dataset, New College (NC),
collected around New College in Oxford, covers large regions with intense
visual repetition and repeated structures, with little scene change or moving
objects, including challenging identical repeating archways and a garden area
surrounded by long uniform stone walls and bushes.

4.2.2. KITTI

The KITTI vision benchmark suite [110] is used mainly to evaluate visual
odometry and SLAM systems. It consists of 22 sequences captured in urban
outdoor environments. We evaluated our model using only three sequences,
namely KITTI-00, KITTI-05, and KITTI-06, which contain several loop clo-
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sures compared to the other sequences with very few loop closures. These
three sequences feature a minor background change similar to New College
and City Center datasets but face significant viewpoint changes caused by
different trajectories. The main challenge in KITTI sequences is the signifi-
cant amount of moving objects, mainly cars, trucks, and pedestrians, causing
partial occlusions in loop scenes. We use the ground-truth values provided
by Arroyo et al. [111] since KITTI sequences do not include ground-truth
labels for loop closure detection.

4.2.3. Nordland

The Nordland dataset [112] is one of the longest sequences collected from
the same viewpoint of a moving train on a railroad between two cities in
northern Norway. The images were collected in four different seasons. Thus,
this dataset corresponds to a loop that is traversed four times. It is considered
one of the most challenging datasets because of the dramatic changes in the
landscape between different seasons. Throughout the journey, most of the
scenes are mainly natural scenery with rare occasions when the train passes
by urban areas or stops at railway stations. Unlike the datasets mentioned
above, there is no viewpoint change and barely any moving objects causing
occlusions.

We evaluated our method on the Spring-Summer and the Spring-Winter
sequences since they include significant background changes due to weather
conditions such as snow, fog, cloud, and sunlight change. For the ground-
truth values, the images are time-synchronized and matched one-to-one be-
tween the two sequences. We consider two scenes to represent the same place
if they are separated temporally by less than ten frames relative to the speed
of the train from which the sequence was captured.

4.2.4. Gardens Point

The Gardens Point (GP) dataset [10] is a two-day sequence taken at
a university campus in Brisbane, using a forward-facing hand-held mobile
camera. The two sequences correspond to a cycle that is traversed twice.
However, one route is traversed on the left-hand side of the path while the
other being on the right-hand side of the path, capturing both pose and
condition change. Furthermore, the two sequences include many moving
students on campus, which is a challenge in this dataset. We consider two
images to represent the same place if they are separated temporally by five
images or less relative to the speed of the camera capturing the sequence.
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4.2.5. TUM-SLAM

Unlike previous datasets, which feature mainly outdoor scenes, TUM
dataset [113] incorporates many indoor RGB-D sequences and is commonly
used in visual SLAM research. We evaluated our method on the indoor office
sequence ”freiburg3/long office household” which is the only sequence that
contains loop closures. This experiment’s main purpose is to evaluate the
system’s performance in indoor environments on image sequences captured
with hand-held cameras.

4.3. Evaluation Metrics

We evaluate our model by comparing our workflow predictions against the
ground truth values for each sequence. We use precision-recall (PR) curves
to evaluate the performance of the proposed method. Accordingly, we count
the number of true positives (TP ), true negatives (TN), false positives (FP ),
and false negatives (FN). Recall is the proportion of correct loops retrieved
from all actual loops TP/(TP + FN)) while precision is the ratio of correct
loops to all detected loops by our method (TP/(TP + FP )). We construct
the PR curve by computing the recall and precision values for a variety of
thresholds above which the scene is detected as a loop.

The higher the area under the precision-recall curve indicates that a
method achieves high precision, i.e., returns accurate results, and high re-
call, i.e., returns the majority of all positive results. Although there are many
ways to interpret the precision-recall curve, we consider the maximum recall
value (r) achieved at 100% precision to compare our workflow against other
methods since it implies no false positives. A false positive, i.e., wrong loop
closure, in mapping tasks can lead to inconsistent maps, and therefore avoid-
ing false positives is essential to the robustness of the mapping algorithm.
Furthermore, the (r) metric is more reliable than the area under the curve
(AUC) score since some classifiers can have non-perfect precision for all recall
values despite having a high AUC score.

4.4. Results and Evaluation

We compare, as shown in Table 2, PlaceNet with state-of-the-art CNN-
based approaches for visual loop closure detection [20, 79, 91, 92, 94, 93, 90,
72, 95, 74, 96, 97, 98] beside classical methods including probabilistic models
[3, 5, 99] and bag-of-words-based models [50, 102, 103, 51, 100, 101]. Our
method clearly shows an improved performance in the case of KITTI-00, Gar-
dens Points, and TUM-SLAM datasets. Furthermore, our method achieves
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Table 2: Maximum recall (r) at 100% precision for different benchmark datasets

Method
Center
City

College
New

00
KITTI

05
KITTI

06
KITTI

Spr-Win
Nordland

Spr-Sum
Nordland

Point
Gardens

SLAM
TUM-

AVG.

PlaceNet - Ours 92.50 90.66 98.50 92.46 98.14 90.26 93.26 100.0 96.32 93.83

NetVLAD [20] 86.34 85.17 96.72 87.90 95.50 39.52 43.51 100.0 53.64 68.03

CALC2.0 [79] 84.47 81.32 97.25 82.24 97.54 98.58 99.50 47.00 85.23 82.68

GeM [91] 86.74 85.35 97.00 89.50 95.30 86.50 74.26 98.50 84.62 88.64

AP-GeM [92] 87.29 84.22 98.12 89.25 96.00 89.24 75.59 98.50 86.10 86.82

FILD++ [94] 90.01 82.37 94.92 95.42 98.16 81.00 80.50 95.67 90.15 89.80

DenseVLAD [93] 83.45 81.28 95.40 84.26 93.22 45.90 76.19 99.20 83.24 78.21

LoopNet [90] 89.15 84.62 ∗ ∗ ∗ 82.95 88.66 100.0 92.45 n.a.

Wang et al. [72] 87.52 88.10 96.68 79.96 97.69 96.83 - 86.50 - n.a.

LiPo-LCD++ [95] 92.99 - 98.08 93.68 99.62 - - - - n.a.

Zhang et al. [74] 63.19 48.79 95.37 71.01 - - - - - n.a.

Zhang et al. [96] 84.75 - 94.29 91.81 99.26 - - - - n.a.

Zhang et al. [97] - 89.05 94.29 91.57 - - - - - n.a.

Xu et al. [98] - 91.02 97.46 - 98.9 - - - - n.a.

FAB-MAP [3] 38.50 51.91 49.21 37.65 55.34 - - - - n.a.

Seq-SLAM[5] 51.91 49.39 67.04 41.37 64.68 - - - - n.a.

Gehrig et al. [99] 74.00 84.70 92.80 86.00 98.50 - - - - n.a.

iBOW-LCD[50] 88.25 73.10 76.50 53.00 95.53 85.23 87.23 95.00 91.27 82.79

BoTW-LCD[102] 36.00 87.00 97.70 94.00 98.10 86.20 83.00 96.50 93.43 85.57

Papapetros et al. [103] - 85.8 83.4 ∗ - - - - - n.a.

Tsintotas et al. [51] - 87.97 93.18 94.20 - - - - - n.a.

Tsintotas et al. [100] - - 93.5 90.0 - - - - - n.a.

Tsintotas et al. [101] - - 97.5 - - - - - - n.a.

The (-) symbol means that the corresponding method did not experiment on the open dataset.
The (∗) symbol means that the corresponding method was trained on that dataset.

a very comparable performance in City Center, New College, KITTI-05, and
KITTI-06. As opposed to the state-of-the-art, our model demonstrates its
ability to generalize and perform robustly in various scenarios, including dy-
namic objects (as in KITTI sequences), perceptual aliasing (as in New Col-
lege), scene change (as in City Center), and indoor environments (as in TUM-
SLAM). In this regard, it is worth mentioning that LiPo-LCD++ [95] suffers
from scenes with perceptual aliasing, as mentioned in [95], which also ap-
plies to [51] based on its performance on New College dataset. Furthermore,
CALC2.0 [79] suffers from view-point change, especially when combined with
many dynamic obstacles, as in the Gardens Point dataset. Additionally, the
sensitivity to view-point change also applies to the approach of Xu et al. [98],
as they mentioned.

PlaceNet is outperformed by CALC2.0 in Nordland sequences due to the
limited number of images containing natural scenery in our training set. Also,
the grayscale semantic map for dynamic objects does not add much repre-
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Figure 4: Examples of reconstructed grayscale dynamic maps by PlaceNet.

sentative power to this sequence since there are barely any moving objects on
a train journey. Additionally, the scenes in the winter sequence are mostly
covered in snow, concealing many details about object semantics and lead-
ing to less successful scene understanding with semantic fusion. However,
PlaceNet is more robust and performs more consistently than CALC2.0 in
various scenarios, as shown by the results on the rest of the datasets yielding
an average improvement of 11.15% compared to CALC2.0.

We also show in Fig. 4 the reconstruction of the dynamic maps gener-
ated by PlaceNet in some dynamic environments. Fig. 4 demonstrates that
PlaceNet learns a feature vector that embeds information about the seman-
tics of moving objects in the scene as an encoded representation. Accordingly,
the power of PlaceNet can be viewed in Fig. 5 showing loops detected by
PlaceNet in dynamic scenes rich with moving objects.

Table 3 demonstrates the average computation time required to encode
and match an image in a sequence. We demonstrate that PlaceNet is also
computationally efficient. PlaceNet achieves a slightly improved average
computation time to [20, 79, 93], and is very comparable to [90, 91, 92].

Additionally, We performed an ablation study using six variants of PlaceNet
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Figure 5: Examples of detected loops along the trajectory of the navigating vehicle in City
Center Experiment where each column represents a loop closure instance.

Table 3: Comparison of running time, i.e., total of encoding and matching times, per
image for different benchmark datasets (in msec).

Method
Center
City

College
New

Point
Gardens

Spr-Sum
Nordland

SLAM
TUM-

Average

PlaceNet - Ours 5.24 5.26 5.38 4.98 5.10 5.19
LoopNet [90] 4.85 4.70 4.68 4.71 4.80 4.58
NetVLAD [20] 8.96 8.85 8.7 8.45 8.79 8.75
CALC2.0 [79] 7.52 7.19 7.48 7.69 7.55 7.49
GeM [91] 3.29 3.25 3.88 3.74 3.69 3.57

AP-GeM [92] 3.85 3.79 3.81 3.88 3.74 3.81
DenseVLAD [93] 5.69 5.60 5.74 5.70 5.56 5.65

in order to investigate the effect of multi-scaling and semantic fusion on the
performance of our method in loop closure detection. As shown in Table
4, we conducted experiments on PlaceNet with and without semantic fusion
and with different combinations of input scales. We trained these models
using the same settings as PlaceNet.

As shown in Fig. 6 and Table 4, PlaceNet models with semantic fusion
achieve higher AUC scores and maximum recall values than those without
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Table 4: Maximum recall (r) at 100% precision for different variants of PlaceNet

Fusion
Semantic

Scales
No. of

Center
City

College
New

00
KITTI

05
KITTI

06
KITTI

Spr-Win
Nordland

Spr-Sum
Nordland

Point
Gardens

SLAM
TUM-

Yes 3 92.50 90.66 98.50 92.46 98.14 90.26 93.14 100.0 96.32

Yes 2 90.16 89.00 97.53 90.10 96.47 89.50 92.75 100.0 93.76

Yes 1 86.26 83.56 96.68 87.97 94.98 87.91 88.21 99.24 92.48

No 3 78.56 74.42 94.05 85.40 93.75 93.25 93.50 93.0 86.22

No 2 77.45 73.87 93.50 83.23 93.28 92.69 92.87 92.80 85.24

No 1 72.10 68.32 93.24 82.66 93.10 89.34 90.58 91.17 81.50
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Figure 6: Precision-Recall results for different datasets. The scale of the x-axis (recall)
in the above figures is adjusted for better view and interpretation of results. The Area
Under the Curve (AUC) score is shown between parentheses for every model.
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semantic fusion for almost all datasets. The most significant improvements
correspond to New College, City Center, and TUM-SLAM datasets with an
approximate increase of 16%, 14%, and 10%, respectively, in the maximum
recall value at 100% precision. However, PlaceNet models with semantic
fusion do not boost performance in Nordland sequences and are slightly out-
performed by 3% in maximum recall value. Since most of the scenes through-
out the train journey in the Nordland dataset are mainly natural scenery;
however, most of the training set is collected in urban areas with minimal
landscape scenes or country-side views. Thus, the semantic interpretation of
objects in Nordland scenes could not help the model much as expected.

Figure 7: City Center Map. The red trajectory indicates loop closure in the vehicle path.

Moreover, Table 4 illustrates the significant positive impact of multi-
scaling on the performance of PlaceNet on all test sets. It is clear that the
performance increases as we add different scales of the input frames. This
improvement is observed remarkably in New College and City Center datasets
with an increase of 7% and 6%, respectively, for the models using semantic
fusion when the three scales are employed contrary to the full-scale only.
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Finally, we present an example 1 of our experiments on the City Center
sequence in Fig. 5. This example highlights the performance of our model
and its robustness in detecting loop closures along the trajectory shown in
Fig. 7.

5. Conclusion

This paper proposes a novel plug-and-play model for loop closure detec-
tion based on a novel multi-scale convolutional auto-encoder network archi-
tecture for powerful feature extraction. The main components of this work-
flow are (i) the semantic fusion network, (ii) the multi-scale encoder-decoder
architecture, (iii) the weighted scale-wise loss, and (iv) the similarity mea-
surement with temporal checks. We showed the significant impact of our
proposed multi-scale architecture in generating scale-invariant feature repre-
sentations, besides the effect of semantic fusion that yields semantic aware
features that efficiently deal with dynamic environments. We conducted
several experiments on various challenging benchmarks and demonstrated
that PlaceNet yields competitive results compared to the state-of-the-art ap-
proaches for loop closure detection, besides being computationally efficient.
Furthermore, we demonstrated that our method is robust to perceptual alias-
ing, partial occlusion due to moving objects and condition change and power-
ful in detecting loops in indoor and outdoor scenes. Our future work includes
enhancing the performance of PlaceNet in environments with severe weather
conditions and non-urban environments. Furthermore, we can extend our
model to handle loop closure detection in day-night sequences where the scene
undergoes a significant change in illumination between day and night. In that
regard, we may consider augmenting scene images with thermal-infrared im-
ages since monocular vision sensors operating in the visible spectrum alone
suffer from the fundamental limitation of cyclic appearance change over 24
hours.
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